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Image segmentation is one of the crucial tasks in the postprocessing of syn-
thetic aperture radar (SAR) images. However, SAR images are textural in nature,
marked by the textural patterns of widely disparate mean intensity values. This
renders conventional multi-resolution techniques inefficient for the segmentation
of these images. This article proposes a novel technique of combining both inten-
sity and textural information for effective region classification. To achieve this, two
new approaches, called Neighbourhood-based Membership Ambiguity Correction
(NMAC) and Dynamic Sliding Window Size Estimation (DSWSE), have been pro-
posed. The results obtained from the two schemes are combined, segregating the
image into well-defined regions of distinct textures as well as intensities. Promising
results have been obtained over the SAR images of Nordlinger Ries in the Swabian
Jura and flood regions near the river Kosi in Bihar, India.

1. Introduction

Synthetic aperture radar (SAR)-based imaging is an all-weather and day–night sensing
system. Hence, SAR images are very crucial input for Earth mapping during routine
assessments and also during disaster management programmes.

The current work deals with effective segmentation of SAR images. The images
acquired by the SAR system often contain intricate textural patterns, including cases
where similar textural patterns are observed for markedly different mean intensity
values.

Early statistical methods for SAR image segmentation include methods based on
the co-occurrence matrix (Lam 1996, Zwiggelaar 2004, Wu et al. 2008). The semi-
automatic algorithm proposed by Bernad et al. (2007) uses the variation coefficient
and co-occurrence inertia matrix for image classification into homogeneous regions.
This is followed by ‘Forest/Field’ discrimination using costs based on certain potential
functions. However, the article focuses on discerning Land/Forest areas only. Hence,
it tends to lose generality and cannot be applied to other textural patterns. Further,
since no justification has been provided for the usage of the inertia measure out of
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4156 P. K. Singh et al.

the 14 statistical features proposed by Haralick, the possibility of better results with
other measures cannot be ruled out. Other methods include Gaussian Markov random
fields, etc. (Haralick et al. 1973, Derin and Elliott 1987, Cohen et al. 1991, Manjunath
and Chellappa 1991). But all these methods work satisfactorily only with a certain spe-
cific class of images. Also, their scopes are limited to spatial interactions over relatively
small neighbourhoods, and hence, are suited only for microtexture (Unser, 1995). Of
late, multi-resolution techniques like the Gabor filter (Haley and Manjunath 1995,
Saito et al. 1996, Arivazhagan et al. 2006) have also been used for SAR image seg-
mentation. However, Gabor filtering suffers from the drawback of non-orthogonality
of the results. As a corollary of this, there is significant correlation between differ-
ent textures (Arivazhagan and Ganesan 2003). They also require precise setting of
different parameters (Chang and Kuo, 1993). The wavelet transform method (Mallat
1989, Unser 1995, Charalampidis and Kasparis 2002) belongs to the class of multi-
resolution image filtering techniques which has been observed to be free from the
drawbacks mentioned above. Several statistical tools (Laine and Fan 1993) applied
in the wavelet sub-bands can be used for effective region classification of images at
different scales.

The techniques described above work only for cases where the image is purely tex-
tural, that is, no information is contained in the intensity levels. However, if applied
over images containing both intensity and texture variation, these tend to produce
noisy results along with inaccurate region boundaries (Dubuisson-Jolly and Gupta
2000). For the above mentioned algorithms, the feature extraction or image pixel
classification is based on the gradation of the intensity values and not on the values
themselves. Dubuisson-Jolly and Gupta (2000) proposed a probabilistic model to deal
with this issue. It employs maximum likelihood to cluster the data which is fitted over
a Gaussian curve. However, the assumption of a particular class of distribution may
not always fit the data accurately. Also, it uses a training data set for region classifica-
tion. This makes the algorithm unsuitable for dealing with new modalities of texture
types.

In this article, we present an innovative approach to segment SAR images, taking
into account both intensity and textural variations. The approach uses a two-
dimensional wavelet transform to segment the textural content of the image. It
commences with the estimation of the coefficient matrix for four different resolu-
tion levels of the image. This is followed by a self-proposed method of Dynamic
Sliding Window Size Estimation (DSWSE) based on image intensity variability. The
window is slid over each of the corresponding coefficient matrices to obtain four
variance matrices. The Modified Fuzzy c-Means (MFCM) approach is employed to
cluster these matrices, providing us with the texture-based classified result. The orig-
inal image is then segmented based on intensity using MFCM followed by a novel
approach of Neighbourhood-based Membership Ambiguity Correction (NMAC). It
removes most of the pixel level noise and also smooths the boundaries between abut-
ted regions. Segmentation results from the above two methods are fused together to
obtain the final output. Figure 1 shows the diagrammatic representation of the whole
algorithm.

2. Wavelet transform

Wavelet analysis (Mallat 1989) is a contemporary approach developed for multi-
resolution representation of signals. It has the advantage of being localized in the time

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 2
2:

47
 2

8 
Se

pt
em

be
r 

20
12

 



Texture information methodology for SAR images 4157
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Figure 1. Diagrammatic representation of the whole algorithm.

as well as the frequency domain over its counterparts, like the Fourier transform or
discrete cosine transform which are localized in the frequency domain only. A signal
is decomposed into both translated and dilated versions of a single function called the
mother wavelet � given as

�a,b(x) = 1√
a
�

(
x − b

a

)
(1)

where a is the scaling parameter, b indicates the translation of the mother wavelet and
x is the independent variable in the continuous wavelet transform.

Replicating the same in the discrete domain, the discrete wavelet transform can be
calculated using a filter bank consisting of a set of quadrature mirror filters, G̃ and H̃,
at each level. Here, G̃ and H̃ are the frequency responses of a low-pass and a high-pass
filter, g̃(−n) and h̃(−n) being their impulse responses, respectively.

Passing the signal through this filter bank results in a set of two outputs at each level
given as

Ad
2j =

∞∑
k=−∞

f (k) g̃(2n − k) (2)

Dd
2j =

∞∑
k=−∞

f (k) h̃(2n − k) (3)

where Ad
2j is the discrete approximation signal and Dd

2j is the discrete detail signal of a
function f (x) at resolution 2j (Mallat 1989).

We proceed by taking the wavelet transform of the complete image using a
Haar wavelet as the mother wavelet. This concept can easily be extrapolated
to two-dimensional signals, as shown in figure 2, to obtain the following four
components:

(i) low-frequency coefficient, Ad
2j ;

(ii) vertical high-frequency coefficient, D1
2j ;

(iii) horizontal high-frequency coefficient, D2
2j ; and

(iv) high-frequency coefficient in both the horizontal and vertical directions, D3
2j .
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4158 P. K. Singh et al.

Figure 2. Frequency-based image segregation into sub-bands at a single level.

3. Modified FCM

Conventional Fuzzy c-Means (FCM) clustering algorithms (Lin et al. 1996) suffer
from the drawback of considering pixels as independent units. This makes them more
sensitive to noise. There is much previous work in the open literature aimed at finding a
solution to this problem by using localized spatial information like the neighbourhood
effect (Chumsamrong et al. 2000, Ahmed et al. 2002). As per these algorithms, a pixel’s
membership grade is also affected by those of its neighbouring pixels. The neighbour-
hood consideration mitigates the effect of noise on a pixel. One such algorithm is
proposed by Yong et al. (2004), where the membership grade, μi,j, of each pixel and
the cluster centre are updated using a parameter pi,j, called the weight, which repre-
sents the probability of the ith pixel belonging to the jth cluster and is determined using
the neighbourhood model. In each iteration of conventional FCM, μi,j is updated to
μ∗

i,j according to the following equation:

μ∗
i,j = μi,jpi,j (4)

where,

μi,j =

(
1

(di,j)
2

)1/(m−1)

∑c
l=1

(
1

(di,l)
2

)1/(m−1)
. (5)

Here, di,j is the distance between the ith pixel and the jth cluster centre, m is a fuzzifi-
cation parameter, and c is the number of cluster centres. The cluster centre, wj, in the
next iteration is updated accordingly using μ∗

i,j in place of μi,j in equation (6):

wj =
∑M

i=1 μm
i,jxi∑M

i=1 μm
i,j

. (6)

Here, xi is the intensity value of the ith pixel and M is the total number of pixels in
the image. The method proposed for determining the weight pi,j is inspired from the
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Texture information methodology for SAR images 4159

k-nearest neighbour (k-NN) algorithm and is computed according to the following
formula:

pi,j =
∑

l∈Nj

1
1+α(dl,j)

2∑
l∈Ni

1
1+α(dl,j)

2

. (7)

Here, α is a positive constant, Ni is a set of k nearest pixels of the ith pixel and Nj is the
subset of Ni consisting of pixels belonging to the jth cluster.

4. Proposed algorithm

Real life SAR images are accompanied by a variety of distinct aspects, all of which
should be dealt with subtlety during analysis. Certain classes of images consist of both
intensity and textural variations (Dubuisson-Jolly and Gupta 2000, Sun et al. 2008).
Segmentation of these images based on intensity or texture alone produces erroneous
results.

For correct classification, any two pixels in the image should be graded into the
same region if and only if they correspond to the same texture and the same inten-
sity region simultaneously; or else, they should be classified into distinct regions. To
address this requirement, intensity- and texture-based classification has been proposed
(Dubuisson-Jolly and Gupta 2000, Sun et al. 2008). Working on similar lines, this
article presents a novel algorithm for segmentation of the above-mentioned class of
images. Texture-based segmentation has been executed with wavelet analysis at its
core, while intensity-based segmentation is carried out with MFCM. The following
two subsections describe these two algorithms.

4.1 Texture-based segmentation

4.1.1 Evaluation of coefficient matrices. We proceed by taking the wavelet transform
of the complete image using a Haar wavelet as the mother wavelet.

This gives us the low-frequency coefficient, Ad
2j , the vertical high-frequency coef-

ficient, D1
2j , the horizontal high-frequency coefficient, D2

2j and the high-frequency
coefficient in both the horizontal and vertical directions, D3

2j at the first level as
described in section 2.

In conventional approaches, the four coefficient matrices so obtained are downsam-
pled as shown in figure 2. However, the representation does not conserve an essential
property, that is, invariance by translation. This article offers a solution by the use of
an over-complete wavelet decomposition called the Discrete Wavelet Frame (DWF)
(Unser 1995). This results in better retention of textural characteristics and more
detailed region boundaries.

4.1.2 Dynamic Sliding Window Size Estimation (DSWSE). The coefficient matrices
provide us with the frequency characteristics along with spatial localization, that is,
they not only contain the information about the frequency distribution but also the
spatial location of different frequencies. Evaluation of these matrices is followed by a
channel variance calculation algorithm using a sliding window over each of the matri-
ces. This gives us a localized trait around each pixel in the form of a variance matrix
for each of the four resolution levels.
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4160 P. K. Singh et al.

A texel is the fundamental element of a texture, whose repetition over a plane yields
a texture pattern. Greater variance within the window as defined above corresponds
to a greater range of frequencies present in it, which in turn is a direct indicator of the
smaller size of a texel. However, the size of the window plays a crucial role in extracting
the textural aspects. In an image, the texel size contains the information regarding the
approximate periodicity of the textural pattern. Images having comparatively smaller
texel size will be accompanied by a higher number of sub-texel regions corresponding
to a particular gradient. This is because a larger number of data points will be covered
in forming the pattern. These types of images will require smaller windows to cover a
texel. So, the window to be chosen should be small enough so that it may not diffuse
the boundaries. At the same time, it should be large enough so as to contain a texel.
These two conditions necessitate capping the size. This advocates the need for an image
dependent window size.

A new algorithm based on the gradient of each of the coefficient matrices is pro-
posed here. In order to calculate the variance, a window is taken such that its size is
smaller than the texel sizes of most textures and hence ensures the retrieval of intra-
texel features. Experimental observations advocate a sliding window of size ranging
from 3 × 3 to 7 × 7 to ensure this. We have used a window of 5 × 5 pixels. The
variance matrix is calculated using the following equation:

σk,l =
k+2∑

i=k−2

l+2∑
j=l−2

(xi,j − μk,l)2 (8)

where,

μk,l = 1
25

k+2∑
i=k−2

l+2∑
j=l−2

xi,j. (9)

Here, xi,j represents the data point at position (i, j) in the coefficient matrix, and μk,l

and σ k,l are the mean and variance, respectively, of the window centred at position
(k, l) in the coefficient matrix.

The resultant matrix characterizes the actual textural information at the corre-
sponding resolution level. The gradient of this matrix is taken, which supplies us with
the rate of variability of the textural pattern over the whole image. The following
equation is used for estimating the gradient, ϑ , at position (k, l) in the matrix obtained
above:

ϑk,l = [(σk+1,l − σk,l)2 + (σk,l+1 − σk,l)2]1/2. (10)

A histogram of the gradient matrix shows that the majority of the information
regarding the nature of the textural image with respect to the periodicity, the rate
of intensity variation, etc., is mostly contained at the beginning of the whole gradient
range. Further, the following information can also be interpreted from the histogram
in order to explain the subtleties in its profile:

(i) A large percentage of the whole area of the histogram in the starting region
corresponds to a dominantly slowly varying texture. For such images, a larger
window is required for effective region classification.
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Texture information methodology for SAR images 4161

(ii) A smaller percentage of area signifies a primarily fast varying textural pattern
and is expected to give better results with a comparatively smaller window.

Thus, it can be observed that the size of the window has a relationship to the dis-
tribution of the gradient values on the histogram. Thus in order to obtain the size
automatically, the following methodology has been employed. The gradient range of
each of the four variance matrices is plotted in the form of a histogram divided into 50
bins in order to achieve a significant level of resolution. In this case, the first three bins
have been found to constitute the major portion of the gradient distribution. Hence,
the information contained in these three bins has been used to determine the size of
the window. To make the process automated, a third-degree polynomial was obtained
with the independent variable as the percentage of data points falling in the initial
three bins of the gradient histogram and the dependent variable as the window size.
It has been experimentally verified that fitting over a second-order polynomial does
not provide enough flexibility to the window size and hence leads to poor estimates.
Experimentation with higher degree polynomials results in the coefficients of fourth
and higher order components becoming nearly zero. Thus, a third-degree polynomial
is chosen as it has the advantage of superior estimates without much computational
load.

The polynomial so obtained has been tested with other synthetic images and has
been found to provide encouraging results (section 5).

4.1.3 Calculation of the variance matrix. Once the window size is determined, the
next step is to calculate the variance over a sliding window run over the corresponding
coefficient matrix:

vk,l =
k+w/2∑

i=k−w/2

l+w/2∑
j=l−w/2

(xi,j − μk.l)2 (11)

where,

μk,l = 1
w2

k+w/2∑
i=k−w/2

l+w/2∑
j=l−w/2

xi,j (12)

where w is the window size determined using DSWSE. The window size is always
chosen to be even.

This furnishes us with the variance matrix

V = {vk,l} (13)

which contains all the textural information of the corresponding component of the
image. The data contained in the four V matrices is clustered using an extension of
the MFCM approach (as described in section 3) in four dimensions. In this case, the
Euclidean distance is taken between any two data points given by

di,j =
√√√√ 4∑

n=1

(vn
i,j − wn

j )2 (14)
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4162 P. K. Singh et al.

where vn
i,j is the value at the (i, j)th position of the nth variance matrix. Similarly, wn

j is
the jth cluster centre of the nth variance matrix. Since the number of textural regions is
visually perceivable, the number of clusters is fed manually into the MFCM algorithm.

4.2 Intensity-based segmentation

4.2.1 Diffusion of image (texture suppression). Ordinary intensity-based segmenta-
tion techniques such as those described by Pratt (2001) cannot be used directly on
textural images. The reason is that texture in an image is fundamentally perceived by
the pattern of intensity variations. So applying the intensity algorithms directly will
assign multiple classes within a single textural region. In order to avoid this, we use
the Speckle Reducing Anisotropic Diffusion (SRAD) (Yu and Acton 2002) technique
in a novel way. The filter threshold is set so as to diffuse the texture details from an
image. However, since the filter is adaptive, it protects the region boundaries from get-
ting diffused. Another advantage of its adaptability is that the smooth portions of the
images are not affected by the filter. This provides us with a smooth image which is
segmented using MFCM.

4.2.2 Neighbourhood-based Membership Ambiguity Correction (NMAC). After the
application of MFCM to the unbiased and contrast-enhanced image, we obtain an
interim segmented image. In the process of clustering according to the final mem-
bership function U found by MFCM, a number of pixels are encountered where the
difference in their membership grades for two clusters is low. Regions in the proxim-
ity of the boundaries have been found to be attributed with this characteristic. Pixels
in such regions are marked with fairly close intensity levels and constitute a set of
‘ambiguous pixels’. These pixels form smudged boundaries between different textu-
ral classes. In normal FCM or MFCM, such pixels are classified into that cluster
for which their membership grade is maximum. However, this may lead to misclas-
sification as the extent of associativity to a particular class is uncertain. This poses
a problem in accurately determining the area of any specific region in SAR images.
To find a solution for this issue, we present a method based on the neighbourhood
effect.

We define ambiguous pixels as those in which the difference between the maximum
and any other value of its membership grade is less than 0.15. The segmentation result
for figure 3(a) is shown in figure 3(b). In this, the ambiguous pixels are shown in white.
Experimental observations for such cases show that the pixels constituting the periph-
ery of these smudged boundaries are less ambiguous than the inner ones. Since the
identification of ambiguities is dependent upon the spatially neighbouring pixels, the
outer pixels should be corrected first followed by the inner ones. This is because the
outer pixels have greater probability of having a larger number of correctly classified
pixels as their neighbours as compared to the inner pixels. Taking a cue from this
hypothesis, the set of ambiguous pixels, A, is divided into three subsets according to
the extent of the ambiguity:

A1 = {xi|xi ∈ A & |μi1 − μi2| < 0.05},
A2 = {xi|xi ∈ A & 0.05 ≤ |μi1 − μi2| < 0.1},
A3 = {xi|xi ∈ A & 0.1 ≤ |μi1 − μi2| < 0.15} (15)
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Texture information methodology for SAR images 4163

(a) (b)

Figure 3. (a) Still image, and (b) segmented result showing ambiguous pixels in white colour.

such that

A = A1 ∪ A2 ∪ A3 (16)

where xi represents the ith pixel in the image and μi,1 is max
{
μi,j

}
and μi2 is

max
{
μi,j\μi,1

} ∀j ∈ {1, . . . , c} and c is the number of cluster centres.
We define C as the set of correctly classified pixels given by

C = {xi|xi /∈ A}. (17)

The sets A3, A2 and A1 represent the increasing orders of ambiguity. It has been
experimentally found out that the pixels constituting the outer portions of blurred
boundaries are less ambiguous than the inner ones. Hence, in such cases, the outer
pixels should be corrected first followed by the inner pixels. The reason behind this
is that the pixels in the outer portions of the boundaries have a higher probability of
having correctly classified pixels as their neighbours than the inner pixels.

We first consider N, the set of nearest neighbours of the ith pixel, where xi ∈ A3.
We define Nc as the set of neighbours of the ith pixel which are distinctly classified, as
given by

Nc = N ∩ C. (18)

Consider θ i,k such that

θi,k =
{

1 if μi,k = μi,1

0 otherwise.
(19)

Now the ith pixel belongs to the kth cluster if

∑
xi∈Nc

θi,k = max
{ ∑

xi∈Nc

θi,j

}
∀j ∈ {1, . . . , c}. (20)
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4164 P. K. Singh et al.

If the above equation becomes valid for some other cluster, l also, then the ith pixel
belongs to the kth cluster if

∑
xi∈Nc

μi,k >
∑

xi∈Nc

μi,l. (21)

Otherwise it belongs to l.
The above procedure is repeated for all the points of A3, after which we proceed to

points of A2 and then finally to those of A1. The results obtained are observed to be
of significantly improved quality.

4.3 Combining results of texture- and intensity-based segmentation

The final result of the segmentation process is produced by combining together the
output results of the texture- and intensity-based segmentation.

In order to segregate the different regions, a primary visual inspection is done to
identify the number of distinct textural regions. This is followed by the texture-based
segmentation algorithm as defined in section 4.1. After this, a broad estimation of the
number of intensity regions is made which is followed by intensity-based segmenta-
tion, elaborated in section 4.2. Since the user has a primary notion regarding the type
and location of different regions, he/she will select two of the interim results, one from
texture-based segmentation and the other from intensity-based segmentation encom-
passing a common region (rough land, smooth land or water) and will combine them
together by taking a pixel by pixel intersection of each of the textural regions with all
the intensity-based segmented regions. This approach is equivalent to the condition
that a pixel is classified in a particular region if and only if it has both its intensity as
well as its textural characteristics similar. This procedure is repeated for all the regions.

Alternatively, each of the interim results of texture-based segmentation is combined
with all the results of intensity-based segmentation. Different regions can be retrieved
from the results so produced by training the algorithm based on the mean intensity of
various regions existing in the image. The training sets so obtained would be sensor
and scene specific.

Other combinations of the interim results yield crass outputs. This has also been
verified in the next section (figure 9).

5. Results and discussion

In this section, we evaluate the performance of the proposed algorithm. First of all,
we present the utility of DSWSE by presenting a quantitative as well as a qualitative
assessment of the results based on various parameters. This is followed by a depic-
tion of the utility of calculating the coefficient matrices without downsampling. These
two parts of the analysis are implemented over synthetic texture images. After this,
a tabular presentation of the results with other synthetic images is given. Following
this, the utility of NMAC is shown using a synthetic image to which noise was added.
The testing is then relayed to qualitative evaluation of the results of this segmentation
approach over SAR images made available by the ScanEx Research and Development
Center. These data have been acquired using TerraSAR-X technology developed by
DLR, German Aerospace Center (Buckreuss et al. 2003). The images are that of
Nordlinger Ries in the Swabian Jura.
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Texture information methodology for SAR images 4165

In the first part, we present the efficacy of the textural-based segmentation algo-
rithm built over DSWSE and un-downsampled coefficient matrices. For this, we have
taken a synthetic image consisting of two different texture regions as shown in figure
4(a). Three different operations are done on this image:

(i) A fixed window size of 30 × 30 is chosen for calculating the variance matrix
from the un-downsampled coefficient matrices. The segmentation result for
this operation is shown in figure 4(b).

(ii) Window sizes are determined for the coefficient matrices obtained from the
DSWSE method. The computed histogram for only the low-pass component
is shown in figure 4(c). The calculated windows are used to obtain the cor-
responding variance matrices from downsampled coefficient matrices. The
result is given in figure 4(d).

(iii) Window sizes are determined for the coefficient matrices obtained from the
DSWSE method. In contrast to the above description, this window is used
for calculating the variance matrix from the un-downsampled coefficient
matrices. The corresponding result is shown in figure 4(e).

It can be easily observed that the result in the third case is markedly better than
both the output obtained with the fixed window size and that obtained with the
downsampled coefficient matrices.

Moving on to the quantitative analysis of the results, we first define the parameters
used for the assessment. Performance analysis is based on two figures of merit: the
sensitivity index (ρ) (Anbeek et al. 2005) and the similarity index (τ ) (Zijdenbos et al.
1994). For calculating these figures of merit, we first find the True Positive (tI), True
Negative (tII), False Positive (fI) and False Negative (fII) parameters for the results.
Pixels classified in the correct region are referred to as true, else false. The pixels that
are observed to be classified into a particular region are termed as positive while those
that are not, are called negatives.

Given the above four parameters, the sensitivity, ρ, is given as

ρ = tI

tI + fII
(22)

and the similarity index, τ , is given by

τ = 2tI

S + R
(23)

where S refers to the observed segmentation while R refers to the correct results.
The calculated values of the above parameters for the results of the synthetic image

in figure 4(a) are shown in table 1. The results with the estimated window show con-
siderable improvement for both parameters. Table 2 shows the statistical results for
three different synthetic images as shown in figure 5(a), (b) and (c). The results for the
same are shown in figure 5(d), (e) and (f ). Figure 6 shows how the NMAC technique
removes the pixel level noise and also introduces smoothing of the boundary between
the segmented regions.

Figure 7(a) shows a real SAR image of Nordlinger Ries in the Swabian Jura. The
image consists of a wide variation in texture, from farmlands to inhabited areas. In
addition to this, the smooth region (farmlands) of the image also shows local intensity
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(a) (b)

(c)

(d) (e)
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Figure 4. (a) Synthetic test image, (b) segmentation result with fixed window size 30 × 30 over
un-downsampled coefficient matrices, (c) histogram of the gradient of variance of low-frequency
coefficient matrix for first test image, (d) result of segmentation with evaluated window size over
downsampled coefficient matrices and (e) segmentation result with evaluated windows size over
un-downsampled coefficient matrices.
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Texture information methodology for SAR images 4167

Table 1. Comparison of the results of the segmentation of the test image obtained
from the three operations explained above.

Sensitivity (ρ) Similarity index (τ )

Region 1 Region 2 Region 1 Region 2

Operation 1 0.9514 0.9958 0.9729 0.9742
Operation 2 0.9170 0.9954 0.9544 0.9578
Operation 3 0.9875 0.9973 0.9923 0.9925

Table 2. Statistical analysis of textural segmentation results for Image 1, Image 2 and
Image 3.

Sensitivity (ρ) Similarity index (τ )

Region 1 Region 2 Region 1 Region 2

Image 1 0.9890 0.9691 0.9793 0.9789
Image 2 0.9936 0.9893 0.9908 0.9918
Image 3 0.9913 0.9967 0.9940 0.9940

variations. Evidently, the image is fit to be classified primarily into four regions: the
inhabited area and three distinct type of farmlands.

Figure 7(b) and (c) shows the result of texture-based segmentation as defined in sec-
tion 4.1 with two clusters. Figure 7(d–f ) shows the result of segmentation based upon
intensity described in section 4.2. The final result so obtained after combining the
above results using the procedure defined in section 4.3 is shown in figure 8(b–e). This
example shows the effectiveness of the current algorithm over individual techniques of
intensity and texture-based segmentation.

Figure 9 shows one of the outputs of the combination of non-corresponding
interim results. A small number of pixels are covered under it, containing exiguous
information.

The results depict the utility of using the approach of parallel segmentation based
on intensity and texture.

The algorithm has also been tested upon airborne SAR images (Sharma et al. 2008)
of flood inflicted areas near the Kosi River in Bihar, India. The images have been pro-
vided by the Indian Space Research Organization (ISRO) which has also appreciated
the results. However, because of the airborne nature of the images, these are classified
in nature and hence are not to be reproduced in this correspondence.

6. Conclusion

We have devised a new scheme to segment SAR images. A high level of accuracy
has been achieved with synthetic test images. The outputs obtained over real SAR
images, facilitated by ScanEx, have also been found to be particularly encouraging.
We begin by evaluating the coefficient matrices for the image using wavelet analy-
sis. This is followed by an innovative technique of window size estimation, DSWSE.
Variance matrices are generated by sliding the windows over the corresponding coef-
ficient matrices and then taking the average. These variance matrices are segmented
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4168 P. K. Singh et al.

(b)

(a)

(c) (d)

(e) (f)

Figure 5. (a) Synthetic image 1, (b) synthetic image 2, (c) synthetic image 3, (d) result of tex-
tural segmentation for Image 1, (e) result of textural segmentation for Image 2 and (f ) result of
textural segmentation for Image 3.
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Texture information methodology for SAR images 4169

(a) (b) (c)

Figure 6. (a) Synthetic image, (b) result without NMAC and (c) smoothed result with NMAC.

(a) (b)

(c) (d)

(e) (f)

Figure 7. (a) SAR image 1, (b) texture-based segmented region 1, (c) texture-based segmented
region 2, (d) intensity-based segmented region 1, (e) intensity-based segmented region 2 and
(f ) intensity-based segmented region 3.
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4170 P. K. Singh et al.

(a)

(b) (c)

(d) (e)

Figure 8. The results with the proposed algorithm: (a) SAR image 1, (b) inhabited area, (c)
first farmland area, (d) second farmland area and (e) third farmland area.

using MFCM to yield texture-based classified results. For intensity-based segmenta-
tion, the original image is diffused using the SRAD technique followed by application
of MFCM. This is followed by a unique method of end correction which levels the
boundaries between two regions and also removes most of the pixel level noise. The
results from the two parallel approaches are intersected to yield the final output.

Quantitative testing of the proposed technique of DSWSE and usage of un-
downsampled coefficient matrices has shown considerable enhancement in the accu-
racy of results. Also, the application of NMAC has been found to be quite efficient in
improving the region boundaries and in removing the pixel level noise as predicted.
Qualitative testing on actual SAR images clearly depicts the efficacy of this approach
in real world applications. Thus, this algorithm is quite apt for practical purposes. The
algorithm takes an average time of 5 minutes to segment a SAR image of dimensions
1130×1834 on MatlabTM version 7.3 on a Pentium-4 2.1 GHz machine. The maximum
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Texture information methodology for SAR images 4171

Figure 9. Output of the combination of non-corresponding interim results.

time is taken by the fuzzy algorithm that takes into account the spatial consideration.
The overall time taken by the algorithm can be reduced by implementing the code on
some low-level language like C/Python.

7. Limitations and future work

The main limitation of the proposed algorithm is that it is not fully automatic. The
number of textural clusters needs to be perceived by the user and fed to the algorithm.
Similarly the choice of the size of the sliding window for the DSWSE algorithm was
found experimentally.

Future work on this algorithm will consist of steps to make it fully automatic,
thereby limiting human intervention to a minimum level.
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