La Biochimica mi appassiona. Sono impegnato ad aggiornare non pochi capitoli della biochimica.There is evidence that neurodegenerative diseases such as multiple sclerosis (MS) and Alzheimer’s can be triggered by impaired myelin lipid metabolism. First, it is necessary to clarify the biosynthesis of myelinlipids, where it is thought that galactose sugar favoursconstruction of the myelin sheath. This role would bein line with the large amount of galactose – not freebut condensed with glucose in the abundant lactosedisaccharide – present in mammalian milk which isessential for the manufacture of myelin, which in manymammals is practically absent at birth. The preliminaryresults obtained with a regular intake of galactosehave proved to be beneficial in counteracting theadvancement of the disease both in patients with MSand Alzheimer’s disease.
Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 gene... more Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells. FA cellular phenotype is characterized by alterations in red-ox state, mitochondrial functionality and energy metabolism as reported in the past however a clear picture of the altered biochemical phenotype in FA is still elusive and the final biochemical defect(s) still unknown. Here we report an analysis of the respiratory fluxes in FANCA primary fibroblasts, lymphocytes and lymphoblasts. FANCA mutants show defective respiration through Complex I, diminished ATP production and metabolic sufferance with an increased AMP/ATP ratio. Respiration in FANCC mutants is normal. Treatment with N-acetyl-cysteine (NAC) restores oxygen consumption to normal level. Defective respiration in FANCA mutants appear correlated with the FA pro-oxidative phenotype which is consistent with the altered morphology of FANCA mitochondria. Electron microscopy measures indeed show profound alterations in mitochondrial ultrastructure and shape.
Polyphosphoinositide-specific phosphodiesterase (phospholipase C) activity against phosphatidylin... more Polyphosphoinositide-specific phosphodiesterase (phospholipase C) activity against phosphatidylinositol 4,5-bisphosphate has been examined in disrupted bovine retinal rod outer segments. The enzyme was strictly modulated by free calcium ion concentration and maximally activated at 10(-5) M Ca2+ (91 +/- 4 nmoles phosphatidylinositol 4,5-bisphosphate hydrolyzed/min/mg of protein). Guanine nucleotides did not affect in vitro phospholipase C activity either in the presence or absence of light, carbachol or epinephrine. The pH optimum at 10(-5) M Ca2+ in the presence of sodium deoxycholate was 6.5. The enzyme of bovine rod outer segments was concluded to be indirectly regulated by the phototransduction events.
Active Ca2+ transport was measured in microsomal vesicles prepared from bovine retinae and was co... more Active Ca2+ transport was measured in microsomal vesicles prepared from bovine retinae and was compared with that in disk membranes of the photoreceptor cells of the same retina. The 45Ca uptake was dependent on the presence of Mg(2+)-ATP and was inhibited by vanadate or when GTP substituted for ATP. The dependence of calcium uptake on the external free Ca2+ concentration gave a KM = 13 microM or a KM = 0.1 microM for disks and microsomal vesicles, respectively. A phosphorylated intermediate (E-P) of Ca(2+)-ATPase of about 100 kDa was isolated in microsomal vesicles. The E-P formation was strongly inhibited by thapsigargin and partially by 2,5-di-(-butyl)benzohydroquinone. Digestion of disks or microsomes with calpain had no effect on the phosphorylated intermediate, while digestion with trypsin produced two fragments of approximately 55 kDa and 35 kDa. These results suggest that bovine retinal microsomes contain a calcium pump belonging to the SERCA family.
The process of cellular respiration occurs for energy production through catabolic reactions, gen... more The process of cellular respiration occurs for energy production through catabolic reactions, generally with glucose as the first process step. In the present work, we introduce a novel concept for understanding this process, based on our conclusion that glucose metabolism is coupled to the pentose phosphate pathway (PPP) and extra-mitochondrial oxidative phosphorylation in a closed-loop process. According to the current standard model of glycolysis, glucose is first converted to glucose 6-phosphate (glucose 6-P) and then to fructose 6-phosphate, glyceraldehyde 3-phosphate and pyruvate, which then enters the Krebs cycle in the mitochondria. However, it is more likely that the pyruvate will be converted to lactate. In the PPP, glucose 6-P is branched off from glycolysis and used to produce NADPH and ribulose 5-phosphate (ribulose 5-P). Ribulose 5-P can be converted to fructose 6-P and glyceraldehyde 3-P. In our view, a circular process can take place in which the ribulose 5-P produced by the PPP enters the glycolysis pathway and is then retrogradely converted to glucose 6-P. This process is repeated several times until the complete degradation of glucose 6-P. The role of mitochondria in this process is to degrade lipids by beta-oxidation and produce acetyl-CoA; the function of producing ATP appears to be only secondary. This proposed new concept of cellular bioenergetics allows the resolution of some previously unresolved controversies related to cellular respiration and provides a deeper understanding of metabolic processes in the cell, including new insights into the Warburg effect.
Biochemical and Biophysical Research Communications, Aug 1, 1989
Proteins of purified rod outer segments from toad retina were analysed by electrophoresis on poly... more Proteins of purified rod outer segments from toad retina were analysed by electrophoresis on polyacrylamide gel containing sodium dodecyl sulfate. The binding of proteins with calmodulin and with guanosine triphosphate was studied by electroblotting the proteins resolved by electrophoresis onto nitrocellulose sheets and by incubating the blots with labelled ligands. The results indicate that rod outer segments from toad retina contain nine proteins which bind to calmodulin and one protein, different from transducin, that binds to guanosine triphosphate.
Damaged RBC drawn from favic patients during acute hemolysis showed marked alterations in their t... more Damaged RBC drawn from favic patients during acute hemolysis showed marked alterations in their two major proteolytic systems. Cytosolic procalpain (i.e., the proenzyme species of Ca2+-activated neutral proteinase, or calpain) had considerably lower activity than in matched RBC from asymptomatic G6PD-deficient subjects. The total RBC activity of the three acid endopeptidases that are normally membrane-bound was not reduced in favism, but its subcellular distribution was mostly cytosolic, suggesting quantitative release from membranes. Changes in procalpain activity are the result of both autoxidation of divicine and of the intracellular elevation of Ca2+ that is found in favism. Changes in acid endopeptidase activity are the consequence of perturbed Ca2+ homeostasis. Overall, the picture shows a marked impairment of the RBC proteolytic machinery that in turn may worsen cellular damage.
Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 gene... more Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells. FA cellular phenotype is characterized by alterations in red-ox state, mitochondrial functionality and energy metabolism as reported in the past however a clear picture of the altered biochemical phenotype in FA is still elusive and the final biochemical defect(s) still unknown. Here we report an analysis of the respiratory fluxes in FANCA primary fibroblasts, lymphocytes and lymphoblasts. FANCA mutants show defective respiration through Complex I, diminished ATP production and metabolic sufferance with an increased AMP/ATP ratio. Respiration in FANCC mutants is normal. Treatment with N-acetyl-cysteine (NAC) restores oxygen consumption to normal level. Defective respiration in FANCA mutants appear correlated with the FA pro-oxidative phenotype which is consistent with the altered morphology of FANCA mitochondria. Electron microscopy measures indeed show profound alterations in mitochondrial ultrastructure and shape.
Polyphosphoinositide-specific phosphodiesterase (phospholipase C) activity against phosphatidylin... more Polyphosphoinositide-specific phosphodiesterase (phospholipase C) activity against phosphatidylinositol 4,5-bisphosphate has been examined in disrupted bovine retinal rod outer segments. The enzyme was strictly modulated by free calcium ion concentration and maximally activated at 10(-5) M Ca2+ (91 +/- 4 nmoles phosphatidylinositol 4,5-bisphosphate hydrolyzed/min/mg of protein). Guanine nucleotides did not affect in vitro phospholipase C activity either in the presence or absence of light, carbachol or epinephrine. The pH optimum at 10(-5) M Ca2+ in the presence of sodium deoxycholate was 6.5. The enzyme of bovine rod outer segments was concluded to be indirectly regulated by the phototransduction events.
Active Ca2+ transport was measured in microsomal vesicles prepared from bovine retinae and was co... more Active Ca2+ transport was measured in microsomal vesicles prepared from bovine retinae and was compared with that in disk membranes of the photoreceptor cells of the same retina. The 45Ca uptake was dependent on the presence of Mg(2+)-ATP and was inhibited by vanadate or when GTP substituted for ATP. The dependence of calcium uptake on the external free Ca2+ concentration gave a KM = 13 microM or a KM = 0.1 microM for disks and microsomal vesicles, respectively. A phosphorylated intermediate (E-P) of Ca(2+)-ATPase of about 100 kDa was isolated in microsomal vesicles. The E-P formation was strongly inhibited by thapsigargin and partially by 2,5-di-(-butyl)benzohydroquinone. Digestion of disks or microsomes with calpain had no effect on the phosphorylated intermediate, while digestion with trypsin produced two fragments of approximately 55 kDa and 35 kDa. These results suggest that bovine retinal microsomes contain a calcium pump belonging to the SERCA family.
The process of cellular respiration occurs for energy production through catabolic reactions, gen... more The process of cellular respiration occurs for energy production through catabolic reactions, generally with glucose as the first process step. In the present work, we introduce a novel concept for understanding this process, based on our conclusion that glucose metabolism is coupled to the pentose phosphate pathway (PPP) and extra-mitochondrial oxidative phosphorylation in a closed-loop process. According to the current standard model of glycolysis, glucose is first converted to glucose 6-phosphate (glucose 6-P) and then to fructose 6-phosphate, glyceraldehyde 3-phosphate and pyruvate, which then enters the Krebs cycle in the mitochondria. However, it is more likely that the pyruvate will be converted to lactate. In the PPP, glucose 6-P is branched off from glycolysis and used to produce NADPH and ribulose 5-phosphate (ribulose 5-P). Ribulose 5-P can be converted to fructose 6-P and glyceraldehyde 3-P. In our view, a circular process can take place in which the ribulose 5-P produced by the PPP enters the glycolysis pathway and is then retrogradely converted to glucose 6-P. This process is repeated several times until the complete degradation of glucose 6-P. The role of mitochondria in this process is to degrade lipids by beta-oxidation and produce acetyl-CoA; the function of producing ATP appears to be only secondary. This proposed new concept of cellular bioenergetics allows the resolution of some previously unresolved controversies related to cellular respiration and provides a deeper understanding of metabolic processes in the cell, including new insights into the Warburg effect.
Biochemical and Biophysical Research Communications, Aug 1, 1989
Proteins of purified rod outer segments from toad retina were analysed by electrophoresis on poly... more Proteins of purified rod outer segments from toad retina were analysed by electrophoresis on polyacrylamide gel containing sodium dodecyl sulfate. The binding of proteins with calmodulin and with guanosine triphosphate was studied by electroblotting the proteins resolved by electrophoresis onto nitrocellulose sheets and by incubating the blots with labelled ligands. The results indicate that rod outer segments from toad retina contain nine proteins which bind to calmodulin and one protein, different from transducin, that binds to guanosine triphosphate.
Damaged RBC drawn from favic patients during acute hemolysis showed marked alterations in their t... more Damaged RBC drawn from favic patients during acute hemolysis showed marked alterations in their two major proteolytic systems. Cytosolic procalpain (i.e., the proenzyme species of Ca2+-activated neutral proteinase, or calpain) had considerably lower activity than in matched RBC from asymptomatic G6PD-deficient subjects. The total RBC activity of the three acid endopeptidases that are normally membrane-bound was not reduced in favism, but its subcellular distribution was mostly cytosolic, suggesting quantitative release from membranes. Changes in procalpain activity are the result of both autoxidation of divicine and of the intracellular elevation of Ca2+ that is found in favism. Changes in acid endopeptidase activity are the consequence of perturbed Ca2+ homeostasis. Overall, the picture shows a marked impairment of the RBC proteolytic machinery that in turn may worsen cellular damage.
Uploads
Papers by Alessandro Morelli