In this article, we present the use of micron-sized lipid domains, patterned onto planar substrat... more In this article, we present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy. The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated distearoylphosphatidylcholine:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either cholera toxin B subunit or tetanus toxin C fragment. Binding was assayed on planar substrates by total internal reflection fluorescence microscopy down to 100 pM concentration for cholera toxin subunit B and 10 nM for tetanus toxin fragment C. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is influenced by the microenvironment of the SLB and the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions.
A new method for on-chip sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of ... more A new method for on-chip sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of proteins is reported. Miniaturization of SDS-PAGE has attracted significant attention because it offers rapid analysis times, excellent resolution, high throughput, and the potential for integration and automation, as compared to conventional counterparts. The presented on-chip SDS-PAGE technique employed photolithographically patterned, cross-linked gels fabricated in situ in <20 min. The effects of sieving gel composition on the migration properties of fluorescently labeled protein standards (ranging in molecular weight from 14.2 to 66 kDa) were quantified, as was the ability of the gels to function as a sieving matrix for biologically relevant species. Ferguson analysis was employed to calculate retardation coefficients and free solution mobilities. In conjunction with fluorescence imaging, the on-chip SDS-PAGE separation mechanism was evaluated in terms of separation performance indexes, as well as limiting behaviors (i.e., free solution mobility, exclusion characteristics). The photolithographically fabricated gels employed for on-chip SDS-PAGE allowed rapid (<30 s) separations of proteins in short separation lengths (4 mm) with efficiencies as high as 4.41 x 10(5) plates/m. The on-chip SDS-PAGE separations were approximately 100 times faster than conventional slab gel SDS-PAGE (60 min) and occurred in a fraction of the separation length required by slab gels. The migration behavior of protein standards correlated well with molecular weight and allowed molecular weight determination for interleukin-2, fibroblast growth factor, insulin-like growth factor, and tetanus toxin C-fragment.
Laser-patterning of nanoporous membranes at the junction of a cross channel in a microchip is use... more Laser-patterning of nanoporous membranes at the junction of a cross channel in a microchip is used to integrate protein concentration with an electrokinetic injection scheme. Upon application of voltage, linear electrophoretic concentration of charged proteins is achieved at the membrane surface because buffer ions can easily pass through the membrane while proteins larger than the molecular weight cutoff of the membrane (>5700) are retained. Simple buffer systems can be used, and the concentration results constitute outward evidence that the uniformity of buffer ion concentration is maintained throughout the process. Local and spatially averaged concentration are increased by 4 and 2 orders of magnitude, respectively, upon injection with moderate voltages (70-150 V) and concentration times (100 s). The degree of concentration is limited only by the solubility limit of the proteins. The porous polymer membrane can be used repeatedly as long as care is taken to avoid protein precipitation.
Gangliosides, glycosphingolipids present in the membranes of neuronal and other cells, are natura... more Gangliosides, glycosphingolipids present in the membranes of neuronal and other cells, are natural receptors for a number of bacterial toxins and viruses whose sensitive detection is of interest in clinical medicine as well as in biological warfare or terrorism incidents. Liposomes containing gangliosides mimic cells that are invaded by bacterial toxins and can be used as sensitive probes for detecting these toxins. We discuss detection of three bacterial toxins-tetanus, botulinum, and cholera toxins using ganglioside-bearing liposomes. Tetanus and botulinum toxins selectively bind gangliosides of the G1b series, namely, GT1b, GD1b, and GQ1b; and cholera toxin binds GM1 very specifically. Unilamellar liposomes containing GT1b or GM1 as one of the constituent lipids were prepared by extrusion through polycarbonate membranes. To impart signal generation capability to these liposomes, fluorophore-labeled lipids were incorporated in the bilayer of liposomes. The fluorescent liposomes, containing both a marker (rhodamine) and a receptor (GT1b or GM1) in the bilayer, were used in sandwich fluoroimmunoassays for tetanus, botulinum, and cholera toxins and as low as 1 nM of each toxin could be detected. The apparent dissociation constants of liposome-toxin complexes were in 10(-8) M range, indicating strong binding. This is the first report on detection of tetanus and botulinum toxins based on specific recognition by gangliosides. The fluorescent liposomes are attractive as immunoreagents for another reason as well--they provide enormous signal amplification for each binding event as each liposome contains up to 22,000 rhodamine molecules. The present approach using receptors incorporated in bilayers of liposomes offers a unique solution to employ water-insoluble receptors, such as glycolipids and membrane proteins, for sensitive detection of toxins and other clinically important biomolecules.
The potential of integration of functions in microfluidic chips is demonstrated by implementing o... more The potential of integration of functions in microfluidic chips is demonstrated by implementing on-chip preconcentration of proteins prior to on-chip protein sizing by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Two polymeric elements-a thin (approximately 50 microm) size exclusion membrane for preconcentration and a longer (approximately cm) porous monolith for protein sizing-were fabricated in situ using photopolymerization. Contiguous placement of the two polymeric elements in the channels of a microchip enabled simple and zero dead volume integration of the preconcentration with SDS-PAGE. The size exclusion membrane was polymerized in the injection channel using a shaped laser beam, and the sizing monolith was cast by photolithography using a mask and UV lamp. Proteins injected electrophoretically were trapped on the upstream side of the size exclusion membrane (MW cutoff approximately 10 kDa) and eluted off the membrane by reversing the electric field. Subsequently, the concentrated proteins were separated in a cross-linked polyacrylamide monolith that was patterned contiguous to the size exclusion membrane. The extent of protein preconcentration is easily tuned by varying the voltage during injection or by controlling the sample volume loaded. Electric fields applied across the nanoporous membrane resulted in a concentration polarization effect evidenced by decreasing current over time and irreproducible migration of proteins during sizing. To minimize the concentration polarization effect, sieving gels were polymerized only on the separation side of the membrane, and an alternate electrical current path was employed, bypassing the membrane, for most of the elution and separation steps. Electrophoretically sweeping a fixed sample volume against the membrane yields preconcentration factors that are independent of protein mobility. The volume sweeping method also avoids biased protein loading from concentration polarization and sample matrix variations. Mobilities of the concentrated proteins were log-linear with respect to molecular weight, demonstrating the suitability of this approach for protein sizing. Proteins were concentrated rapidly (<5 min) over 1000-fold followed by high-resolution separation in the sieving monolith. Proteins with concentrations as low as 50 fM were detectable with 30 min of preconcentration time. The integrated preconcentration-sizing approach facilitates analysis of low-abundant proteins that cannot be otherwise detected. Moreover, the integrated preconcentration-analysis approach employing in situ formation of photopatterned polymeric elements provides a generic, inexpensive, and versatile method to integrate functions at chip level and can be extended to lowering of detection limits for other applications such as DNA analysis and clinical diagnostics.
A microfabricated glass chip containing fluidic channels filled with polymer monolith has been de... more A microfabricated glass chip containing fluidic channels filled with polymer monolith has been developed for reversed-phase electrochromatography. Acrylate-based porous polymer monoliths were cast in the channels by photopolymerization to serve as a robust and uniform stationary phase. UV light-initiated polymerization allows for patterning of polymer stationary phase in the microchip, analogous to photolithography, using a mask and a UV lamp for optimal design of injection, separation, and detection manifolds. The monoliths are cast in situ in less than 10 min, are very reproducible with respect to separation characteristics, and allow easy manipulation of separation parameters such as charge, hydrophobicity, and pore size. Moreover, the solvent used to cast the polymer enables electroosmotic flow, allowing the separation channel to be conditioned without need for high-pressure pumps. The microchip was used for separation of bioactive peptides and amino acids labeled with a fluorogenic dye (naphthalene-2,3-dicarboxaldehyde) followed by laser-induced fluorescence detection using a Kr+ ion laser. The microchip-based separations were fast (six peptides in 45 s), efficient (up to 600,000 plates/m), and outperformed the capillary-based separations in both speed and efficiency. We have also developed a method for complete removal of polymer from the channels by thermal incineration to regenerate the glass chips.
Porous silica materials made by low-temperature sol−gel process are promising host matrixes for e... more Porous silica materials made by low-temperature sol−gel process are promising host matrixes for encapsulation of biomolecules. To date, researchers have focused on sol−gel routes using alkoxides such as tetramethyl orthosilicate (TMOS) and tetraethyl orthosilicate (TEOS) for ...
Dielectrophoresis (DEP), a nonlinear electrokinetic transport mechanism, can be used to concentra... more Dielectrophoresis (DEP), a nonlinear electrokinetic transport mechanism, can be used to concentrate and sort cells, viruses, and particles. To date, microfabricated DEP-based devices have typically used embedded metal electrodes to apply spatially nonuniform, time-varying (AC) electric fields. We have developed an alternative method in which arrays of insulating posts in a channel of a microchip produce the spatially nonuniform fields needed for DEP. Electrodes may be located remotely, allowing operation of the device down to zero frequency (DC) without excessive problems of electrolysis. Applying a sufficiently large electric field across an insulating-post array produces two flow regimes through a competition between electrokinetic flow (combined electrophoresis and electroosmosis) and dielectrophoresis. "Streaming DEP" is observed when DEP dominates diffusion but is overcome by electrokinetic flow. Particles concentrated by DEP forces in areas of electric field extrema travel electrokinetically down the array in flowing streams. In an array of posts, dielectrophoretic forcing within repeated rows adds coherently to produce flowing streams of highly concentrated and rarefied particles. We demonstrate that this reinforcement is a strong function of alignment of the array with respect to the applied electric field and that the particle concentrations can be "enhanced" or "depleted" along columns of posts, enabling a novel class of continuous-flow, selective particle filter/concentrator devices. To our knowledge, this is the first observation of streaming dielectrophoresis. The second regime is "trapping DEP," in which DEP forces dominate over both diffusion and electrokinetic flow, reversibly immobilizing particles on the insulating posts, enabling inexpensive and embedded batch filter/concentrator devices. Devices can be biased electrically to manipulate particles selectively by varying the field strength to vary the relative magnitudes of electrokinetic flow and DEP. Post shapes are contoured easily to control electric field gradients and, hence, DEP behavior. Simple simulations based on similitude of fluid flow and electric field that solve the Laplace equation to obtain fluid velocity have also been developed to predict the dielectrophoretic behavior in an array of posts. These simulations are in excellent agreement with the experimental observations and provide insight into electrokinetic behavior to enable design of dielectrophoretic concentrators and sorters.
Improved surgical techniques have contributed to a better outcome in kidney transplantation, and ... more Improved surgical techniques have contributed to a better outcome in kidney transplantation, and graft failure secondary to technical complications is unusual. We describe a surgical complication secondary to a rare and unexpected vascular anomaly in a pediatric renal transplant that resulted in considerable morbidity. Our patient had a persistent sciatic artery as a dominant source of blood supply to the lower limb. Ligation of this vessel during anastomosis with the transplant kidney vasculature led to severe ischemic damage to the leg. This vascular malformation, if undetected, can lead to serious complications. We present a review of the literature regarding this malformation and its management with regard to renal transplantation.
In this article, we present the use of micron-sized lipid domains, patterned onto planar substrat... more In this article, we present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy. The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated distearoylphosphatidylcholine:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either cholera toxin B subunit or tetanus toxin C fragment. Binding was assayed on planar substrates by total internal reflection fluorescence microscopy down to 100 pM concentration for cholera toxin subunit B and 10 nM for tetanus toxin fragment C. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is influenced by the microenvironment of the SLB and the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions.
A new method for on-chip sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of ... more A new method for on-chip sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of proteins is reported. Miniaturization of SDS-PAGE has attracted significant attention because it offers rapid analysis times, excellent resolution, high throughput, and the potential for integration and automation, as compared to conventional counterparts. The presented on-chip SDS-PAGE technique employed photolithographically patterned, cross-linked gels fabricated in situ in <20 min. The effects of sieving gel composition on the migration properties of fluorescently labeled protein standards (ranging in molecular weight from 14.2 to 66 kDa) were quantified, as was the ability of the gels to function as a sieving matrix for biologically relevant species. Ferguson analysis was employed to calculate retardation coefficients and free solution mobilities. In conjunction with fluorescence imaging, the on-chip SDS-PAGE separation mechanism was evaluated in terms of separation performance indexes, as well as limiting behaviors (i.e., free solution mobility, exclusion characteristics). The photolithographically fabricated gels employed for on-chip SDS-PAGE allowed rapid (<30 s) separations of proteins in short separation lengths (4 mm) with efficiencies as high as 4.41 x 10(5) plates/m. The on-chip SDS-PAGE separations were approximately 100 times faster than conventional slab gel SDS-PAGE (60 min) and occurred in a fraction of the separation length required by slab gels. The migration behavior of protein standards correlated well with molecular weight and allowed molecular weight determination for interleukin-2, fibroblast growth factor, insulin-like growth factor, and tetanus toxin C-fragment.
Laser-patterning of nanoporous membranes at the junction of a cross channel in a microchip is use... more Laser-patterning of nanoporous membranes at the junction of a cross channel in a microchip is used to integrate protein concentration with an electrokinetic injection scheme. Upon application of voltage, linear electrophoretic concentration of charged proteins is achieved at the membrane surface because buffer ions can easily pass through the membrane while proteins larger than the molecular weight cutoff of the membrane (>5700) are retained. Simple buffer systems can be used, and the concentration results constitute outward evidence that the uniformity of buffer ion concentration is maintained throughout the process. Local and spatially averaged concentration are increased by 4 and 2 orders of magnitude, respectively, upon injection with moderate voltages (70-150 V) and concentration times (100 s). The degree of concentration is limited only by the solubility limit of the proteins. The porous polymer membrane can be used repeatedly as long as care is taken to avoid protein precipitation.
Gangliosides, glycosphingolipids present in the membranes of neuronal and other cells, are natura... more Gangliosides, glycosphingolipids present in the membranes of neuronal and other cells, are natural receptors for a number of bacterial toxins and viruses whose sensitive detection is of interest in clinical medicine as well as in biological warfare or terrorism incidents. Liposomes containing gangliosides mimic cells that are invaded by bacterial toxins and can be used as sensitive probes for detecting these toxins. We discuss detection of three bacterial toxins-tetanus, botulinum, and cholera toxins using ganglioside-bearing liposomes. Tetanus and botulinum toxins selectively bind gangliosides of the G1b series, namely, GT1b, GD1b, and GQ1b; and cholera toxin binds GM1 very specifically. Unilamellar liposomes containing GT1b or GM1 as one of the constituent lipids were prepared by extrusion through polycarbonate membranes. To impart signal generation capability to these liposomes, fluorophore-labeled lipids were incorporated in the bilayer of liposomes. The fluorescent liposomes, containing both a marker (rhodamine) and a receptor (GT1b or GM1) in the bilayer, were used in sandwich fluoroimmunoassays for tetanus, botulinum, and cholera toxins and as low as 1 nM of each toxin could be detected. The apparent dissociation constants of liposome-toxin complexes were in 10(-8) M range, indicating strong binding. This is the first report on detection of tetanus and botulinum toxins based on specific recognition by gangliosides. The fluorescent liposomes are attractive as immunoreagents for another reason as well--they provide enormous signal amplification for each binding event as each liposome contains up to 22,000 rhodamine molecules. The present approach using receptors incorporated in bilayers of liposomes offers a unique solution to employ water-insoluble receptors, such as glycolipids and membrane proteins, for sensitive detection of toxins and other clinically important biomolecules.
The potential of integration of functions in microfluidic chips is demonstrated by implementing o... more The potential of integration of functions in microfluidic chips is demonstrated by implementing on-chip preconcentration of proteins prior to on-chip protein sizing by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Two polymeric elements-a thin (approximately 50 microm) size exclusion membrane for preconcentration and a longer (approximately cm) porous monolith for protein sizing-were fabricated in situ using photopolymerization. Contiguous placement of the two polymeric elements in the channels of a microchip enabled simple and zero dead volume integration of the preconcentration with SDS-PAGE. The size exclusion membrane was polymerized in the injection channel using a shaped laser beam, and the sizing monolith was cast by photolithography using a mask and UV lamp. Proteins injected electrophoretically were trapped on the upstream side of the size exclusion membrane (MW cutoff approximately 10 kDa) and eluted off the membrane by reversing the electric field. Subsequently, the concentrated proteins were separated in a cross-linked polyacrylamide monolith that was patterned contiguous to the size exclusion membrane. The extent of protein preconcentration is easily tuned by varying the voltage during injection or by controlling the sample volume loaded. Electric fields applied across the nanoporous membrane resulted in a concentration polarization effect evidenced by decreasing current over time and irreproducible migration of proteins during sizing. To minimize the concentration polarization effect, sieving gels were polymerized only on the separation side of the membrane, and an alternate electrical current path was employed, bypassing the membrane, for most of the elution and separation steps. Electrophoretically sweeping a fixed sample volume against the membrane yields preconcentration factors that are independent of protein mobility. The volume sweeping method also avoids biased protein loading from concentration polarization and sample matrix variations. Mobilities of the concentrated proteins were log-linear with respect to molecular weight, demonstrating the suitability of this approach for protein sizing. Proteins were concentrated rapidly (<5 min) over 1000-fold followed by high-resolution separation in the sieving monolith. Proteins with concentrations as low as 50 fM were detectable with 30 min of preconcentration time. The integrated preconcentration-sizing approach facilitates analysis of low-abundant proteins that cannot be otherwise detected. Moreover, the integrated preconcentration-analysis approach employing in situ formation of photopatterned polymeric elements provides a generic, inexpensive, and versatile method to integrate functions at chip level and can be extended to lowering of detection limits for other applications such as DNA analysis and clinical diagnostics.
A microfabricated glass chip containing fluidic channels filled with polymer monolith has been de... more A microfabricated glass chip containing fluidic channels filled with polymer monolith has been developed for reversed-phase electrochromatography. Acrylate-based porous polymer monoliths were cast in the channels by photopolymerization to serve as a robust and uniform stationary phase. UV light-initiated polymerization allows for patterning of polymer stationary phase in the microchip, analogous to photolithography, using a mask and a UV lamp for optimal design of injection, separation, and detection manifolds. The monoliths are cast in situ in less than 10 min, are very reproducible with respect to separation characteristics, and allow easy manipulation of separation parameters such as charge, hydrophobicity, and pore size. Moreover, the solvent used to cast the polymer enables electroosmotic flow, allowing the separation channel to be conditioned without need for high-pressure pumps. The microchip was used for separation of bioactive peptides and amino acids labeled with a fluorogenic dye (naphthalene-2,3-dicarboxaldehyde) followed by laser-induced fluorescence detection using a Kr+ ion laser. The microchip-based separations were fast (six peptides in 45 s), efficient (up to 600,000 plates/m), and outperformed the capillary-based separations in both speed and efficiency. We have also developed a method for complete removal of polymer from the channels by thermal incineration to regenerate the glass chips.
Porous silica materials made by low-temperature sol−gel process are promising host matrixes for e... more Porous silica materials made by low-temperature sol−gel process are promising host matrixes for encapsulation of biomolecules. To date, researchers have focused on sol−gel routes using alkoxides such as tetramethyl orthosilicate (TMOS) and tetraethyl orthosilicate (TEOS) for ...
Dielectrophoresis (DEP), a nonlinear electrokinetic transport mechanism, can be used to concentra... more Dielectrophoresis (DEP), a nonlinear electrokinetic transport mechanism, can be used to concentrate and sort cells, viruses, and particles. To date, microfabricated DEP-based devices have typically used embedded metal electrodes to apply spatially nonuniform, time-varying (AC) electric fields. We have developed an alternative method in which arrays of insulating posts in a channel of a microchip produce the spatially nonuniform fields needed for DEP. Electrodes may be located remotely, allowing operation of the device down to zero frequency (DC) without excessive problems of electrolysis. Applying a sufficiently large electric field across an insulating-post array produces two flow regimes through a competition between electrokinetic flow (combined electrophoresis and electroosmosis) and dielectrophoresis. "Streaming DEP" is observed when DEP dominates diffusion but is overcome by electrokinetic flow. Particles concentrated by DEP forces in areas of electric field extrema travel electrokinetically down the array in flowing streams. In an array of posts, dielectrophoretic forcing within repeated rows adds coherently to produce flowing streams of highly concentrated and rarefied particles. We demonstrate that this reinforcement is a strong function of alignment of the array with respect to the applied electric field and that the particle concentrations can be "enhanced" or "depleted" along columns of posts, enabling a novel class of continuous-flow, selective particle filter/concentrator devices. To our knowledge, this is the first observation of streaming dielectrophoresis. The second regime is "trapping DEP," in which DEP forces dominate over both diffusion and electrokinetic flow, reversibly immobilizing particles on the insulating posts, enabling inexpensive and embedded batch filter/concentrator devices. Devices can be biased electrically to manipulate particles selectively by varying the field strength to vary the relative magnitudes of electrokinetic flow and DEP. Post shapes are contoured easily to control electric field gradients and, hence, DEP behavior. Simple simulations based on similitude of fluid flow and electric field that solve the Laplace equation to obtain fluid velocity have also been developed to predict the dielectrophoretic behavior in an array of posts. These simulations are in excellent agreement with the experimental observations and provide insight into electrokinetic behavior to enable design of dielectrophoretic concentrators and sorters.
Improved surgical techniques have contributed to a better outcome in kidney transplantation, and ... more Improved surgical techniques have contributed to a better outcome in kidney transplantation, and graft failure secondary to technical complications is unusual. We describe a surgical complication secondary to a rare and unexpected vascular anomaly in a pediatric renal transplant that resulted in considerable morbidity. Our patient had a persistent sciatic artery as a dominant source of blood supply to the lower limb. Ligation of this vessel during anastomosis with the transplant kidney vasculature led to severe ischemic damage to the leg. This vascular malformation, if undetected, can lead to serious complications. We present a review of the literature regarding this malformation and its management with regard to renal transplantation.
Uploads
Papers by Anup Singh