NF-κB signaling through both canonical and non-canonical pathways plays a central role in immune ... more NF-κB signaling through both canonical and non-canonical pathways plays a central role in immune responses and inflammation. NF-κB–inducing kinase (NIK) stabilization is a key step in activation of the non-canonical pathway and its dysregulation implicated in various hematologic malignancies. The tumor suppressor, p53, is an established cellular gatekeeper of proliferation. Abnormalities of the TP53 gene have been detected in more than half of all human cancers. While the non-canonical NF-κB and p53 pathways have been explored for several decades, no studies to date have documented potential cross-talk between these two cancer-related mechanisms. Here, we demonstrate that p53 negatively regulates NIK in an miRNA-dependent manner. Overexpression of p53 decreased the levels of NIK, leading to inhibition of the non-canonical NF-κB pathway. Conversely, its knockdown led to increased levels of NIK, IKKα phosphorylation, and p100 processing. Additionally, miR-34b induced by nutlin-3 direc...
Acute myeloid leukemia (AML) is a biologically heterogeneous disease of the hematopoietic system ... more Acute myeloid leukemia (AML) is a biologically heterogeneous disease of the hematopoietic system characterized by a clonal accumulation of immature blast cells in bone marrow. We used a proteomic approach based on two-dimensional electrophoresis and mass spectrometry to search for biomarkers related to the complete remission (CR) state of AML patients. We detected one AML-related protein, which was identified as the B-cell translocation gene 1 (BTG1) protein that belongs to anti-proliferative protein family. In the CR state of AML-M2 and M3 patients (by French-American-British subtype classification), the BTG1 protein was upregulated in bone marrow mononuclear cells. It was also expressed robustly in normal bone marrow mononuclear cells. In addition, the BTG1 levels in AML-M2 patients in a non-remission state after therapy did not increase as they did before therapy. Overexpression of BTG1 mRNA was also observed in the CR state of all-trans-retinoic acid (ATRA)-treated AML-M3 patients and ATRA-treated HL-60 cells. Taken together, these results suggest that BTG1 may play a role in the differentiation process of myeloid cells and can therefore be used as a potential treatment-related biomarker for monitoring the remission status of AML-M2 and M3 patients.
Proceedings of the National Academy of Sciences, 2006
The ureide pathway, which produces ureides from uric acid, is an essential purine catabolic proce... more The ureide pathway, which produces ureides from uric acid, is an essential purine catabolic process for storing and transporting the nitrogen fixed in leguminous plants and some bacteria. PucM from Bacillus subtilis was recently characterized and found to catalyze the second reaction of the pathway, hydrolyzing 5-hydroxyisourate (HIU), a product of uricase in the first step. PucM has 121 amino acid residues and shows high sequence similarity to the functionally unrelated protein transthyretin (TTR), a thyroid hormone-binding protein. Therefore, PucM belongs to the TTR-related proteins (TRP) family. The crystal structures of PucM at 2.0 Å and its complexes with the substrate analogs 8-azaxanthine and 5,6-diaminouracil reveal that even with their overall structure similarity, homotetrameric PucM and TTR are completely different, both in their electrostatic potential and in the size of the active sites located at the dimeric interface. Nevertheless, the absolutely conserved residues ac...
Apoptosis signal-regulating kinase 1 (ASK1), a member of the MAP kinase kinase kinase, is activat... more Apoptosis signal-regulating kinase 1 (ASK1), a member of the MAP kinase kinase kinase, is activated by several death stimuli and is tightly regulated by several mechanisms such as interactions with regulatory proteins and post-translational modifications. Here, we report that dual-specificity phosphatase 13A (DUSP13A) functions as a novel regulator of ASK1. DUSP13A interacts with the N-terminal domain of ASK1 and induces ASK1-mediated apoptosis through the activation of caspase-3. DUSP13A enhances ASK1 kinase activity and thus its downstream factors. Small interfering RNA (siRNA) analyses show that knock-down of DUSP13A in human neuroblastoma SK-N-SH cells reduces ASK1 kinase activity. The phosphatase activity of DUSP13A is not required for the regulation of ASK1. This regulatory action of DSUP13 on ASK1 activity involves competition with Akt1, a negative regulator of ASK1, for binding to ASK1. Taken together, this study provides novel insights into the role of DUSP13A in the precise regulation of ASK1.
Adipocyte differentiation can be regulated by the combined activity of protein tyrosine kinases (... more Adipocyte differentiation can be regulated by the combined activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). In particular, PTPs act as key regulators in differentiation-associated signaling pathways. We recently found that receptor-type PTPμ (RPTPμ) expression is markedly increased during the adipogenic differentiation of 3T3-L1 preadipocytes and mesenchymal stem cells. Here, we investigate the functional roles of RPTPμ and the mechanism of its involvement in the regulation of signal transduction during adipogenesis of 3T3-L1 cells. Depletion of endogenous RPTPμ by RNA interference significantly inhibited adipogenic differentiation, whereas RPTPμ overexpression led to an increase in adipogenic differentiation. Ectopic expression of p120 catenin suppressed adipocyte differentiation, and the decrease in adipogenesis by p120 catenin was recovered by introducing RPTPμ. Moreover, RPTPμ induced a decrease in the cytoplasmic p120 catenin expression by r...
HD (Huntington's disease) is a devastating neurodegenerative genetic disorder caused by abnor... more HD (Huntington's disease) is a devastating neurodegenerative genetic disorder caused by abnormal expansion of CAG repeats in the HTT (huntingtin) gene. We have recently established two iPSC (induced pluripotent stem cell) lines derived from a HD patient carrying 72 CAG repeats (HD-iPSC). In order to understand the proteomic profiles of HD-iPSCs, we have performed comparative proteomic analysis among normal hESCs (human embryonic stem cells; H9), iPSCs (551-8) and HD-iPSCs at undifferentiated stages, and identified 26 up- and down-regulated proteins. Interestingly, these differentially expressed proteins are known to be involved in different biological processes, such as oxidative stress, programmed cell death and cellular oxygen-associated proteins. Among them, we found that oxidative stress-related proteins, such as SOD1 (superoxide dismutase 1) and Prx (peroxiredoxin) families are particularly affected in HD-iPSCs, implying that HD-iPSCs are highly susceptible to oxidative str...
Genetic mutations such as single nucleotide polymorphisms (SNP) are known as one of the most comm... more Genetic mutations such as single nucleotide polymorphisms (SNP) are known as one of the most common forms which related to various genetic disorders and cancers. Among of the methods developed for efficient detection of such SNP, polymerase chain reaction (PCR) methods are widely used worldwide for its cost and viable advantages. However, the technique to discriminate small amounts of SNP mixed in abundant normal DNA is incomplete due to intrinsic technical problems of PCR such as amplification occurring even in 3’mismatched cases because of high enzyme activity of DNA polymerases. To overcome the issue, specifically designed PCR platform, STexS (SNP typing with excellent specificity) using double stranded oligonucleotides was implemented as a means to emphasize the amplification of SNP templates by decreasing unwanted amplification of 3’mismatched DNA copies. In this study, the results indicate several EGFR mutations were easily detected specifically utilizing the STexS platform. F...
Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of polyco... more Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of polycomb repressive complex 2 (PRC2), regulates genes involved in cell lineage and differentiation through methylating lysine 27 on histone H3 (H3K27me3). Recurrent gain-of-function mutations of EZH2 have been identified in various cancer types, in particular, diffuse large B-cell lymphoma (DLBCL), through large-scale genome-wide association studies and EZH2 depletion or pharmacological inhibition has been shown to exert an antiproliferative effect on cancer cells, both in vitro and in vivo. In the current study, a combination of pomalidomide and GSK126 synergistically inhibited the growth of EZH2 gain-of-function mutant Diffuse large B-cell lymphoma (DLBCL) cells. Furthermore, this synergistic effect appeared to be dependent on cereblon (CRBN), a cellular receptor of pomalidomide, but not degradation of IKAROS family zinc finger 1 (IKZF1) or IKAROS family zinc finger 3 (IKZF3). RNA sequencing...
Although dual-specificity phosphatase 5 (DUSP5), which inactivates extracellular signal-regulated... more Although dual-specificity phosphatase 5 (DUSP5), which inactivates extracellular signal-regulated kinase (ERK), suppresses tumors in several types of cancer, its functional roles remain largely unknown. Here, we show that DUSP5 is induced during lipopolysaccharide (LPS)-mediated inflammation and inhibits nuclear factor-κB (NF-κB) activity. DUSP5 mRNA and protein expression increased transiently in LPS-stimulated RAW 264.7 cells and then returned to basal levels. DUSP5 overexpression in RAW 264.7 cells suppressed the production of pro-inflammatory tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), whereas knockdown of DUSP5 increased their expression. Investigation of two major inflammatory signaling pathways, mitogen-activated protein kinase (MAPK) and NF-κB, using activator protein-1 (AP-1) and NF-κB reporter plasmids, respectively, showed that NF-κB transcription activity was downregulated by DUSP5 in a phosphatase activity-independent manner whereas AP-1 activity was i...
MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression... more MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression. For example, miRNAs repress gene expression by recruiting the miRNA-induced silencing complex (miRISC), a ribonucleoprotein complex that contains miRNA-engaged Argonaute (Ago) and the scaffold protein GW182. Recently, ubiquitin protein ligase E3 component N-recognin 5 (UBR5) has been identified as a component of miRISC. UBR5 directly interacts with GW182 proteins and participates in miRNA silencing by recruiting downstream effectors, such as the translation regulator DEAD-box helicase 6 (DDX6) and transducer of ERBB2.1/2 (Tob1/2), to the Ago-GW182 complex. However, the regulation of miRISC-associated UBR5 remain largely elusive. In the present study, we show that UBR5 down-regulates the levels of TNF receptor-associated factor 3 (TRAF3), a key component of toll-like receptor signaling, via the miRNA pathway. We further demonstrate that p90 ribosomal S6 kinase (p90RSK) is an upstream re...
NF-κB signaling through both canonical and non-canonical pathways plays a central role in immune ... more NF-κB signaling through both canonical and non-canonical pathways plays a central role in immune responses and inflammation. NF-κB–inducing kinase (NIK) stabilization is a key step in activation of the non-canonical pathway and its dysregulation implicated in various hematologic malignancies. The tumor suppressor, p53, is an established cellular gatekeeper of proliferation. Abnormalities of the TP53 gene have been detected in more than half of all human cancers. While the non-canonical NF-κB and p53 pathways have been explored for several decades, no studies to date have documented potential cross-talk between these two cancer-related mechanisms. Here, we demonstrate that p53 negatively regulates NIK in an miRNA-dependent manner. Overexpression of p53 decreased the levels of NIK, leading to inhibition of the non-canonical NF-κB pathway. Conversely, its knockdown led to increased levels of NIK, IKKα phosphorylation, and p100 processing. Additionally, miR-34b induced by nutlin-3 direc...
Acute myeloid leukemia (AML) is a biologically heterogeneous disease of the hematopoietic system ... more Acute myeloid leukemia (AML) is a biologically heterogeneous disease of the hematopoietic system characterized by a clonal accumulation of immature blast cells in bone marrow. We used a proteomic approach based on two-dimensional electrophoresis and mass spectrometry to search for biomarkers related to the complete remission (CR) state of AML patients. We detected one AML-related protein, which was identified as the B-cell translocation gene 1 (BTG1) protein that belongs to anti-proliferative protein family. In the CR state of AML-M2 and M3 patients (by French-American-British subtype classification), the BTG1 protein was upregulated in bone marrow mononuclear cells. It was also expressed robustly in normal bone marrow mononuclear cells. In addition, the BTG1 levels in AML-M2 patients in a non-remission state after therapy did not increase as they did before therapy. Overexpression of BTG1 mRNA was also observed in the CR state of all-trans-retinoic acid (ATRA)-treated AML-M3 patients and ATRA-treated HL-60 cells. Taken together, these results suggest that BTG1 may play a role in the differentiation process of myeloid cells and can therefore be used as a potential treatment-related biomarker for monitoring the remission status of AML-M2 and M3 patients.
Proceedings of the National Academy of Sciences, 2006
The ureide pathway, which produces ureides from uric acid, is an essential purine catabolic proce... more The ureide pathway, which produces ureides from uric acid, is an essential purine catabolic process for storing and transporting the nitrogen fixed in leguminous plants and some bacteria. PucM from Bacillus subtilis was recently characterized and found to catalyze the second reaction of the pathway, hydrolyzing 5-hydroxyisourate (HIU), a product of uricase in the first step. PucM has 121 amino acid residues and shows high sequence similarity to the functionally unrelated protein transthyretin (TTR), a thyroid hormone-binding protein. Therefore, PucM belongs to the TTR-related proteins (TRP) family. The crystal structures of PucM at 2.0 Å and its complexes with the substrate analogs 8-azaxanthine and 5,6-diaminouracil reveal that even with their overall structure similarity, homotetrameric PucM and TTR are completely different, both in their electrostatic potential and in the size of the active sites located at the dimeric interface. Nevertheless, the absolutely conserved residues ac...
Apoptosis signal-regulating kinase 1 (ASK1), a member of the MAP kinase kinase kinase, is activat... more Apoptosis signal-regulating kinase 1 (ASK1), a member of the MAP kinase kinase kinase, is activated by several death stimuli and is tightly regulated by several mechanisms such as interactions with regulatory proteins and post-translational modifications. Here, we report that dual-specificity phosphatase 13A (DUSP13A) functions as a novel regulator of ASK1. DUSP13A interacts with the N-terminal domain of ASK1 and induces ASK1-mediated apoptosis through the activation of caspase-3. DUSP13A enhances ASK1 kinase activity and thus its downstream factors. Small interfering RNA (siRNA) analyses show that knock-down of DUSP13A in human neuroblastoma SK-N-SH cells reduces ASK1 kinase activity. The phosphatase activity of DUSP13A is not required for the regulation of ASK1. This regulatory action of DSUP13 on ASK1 activity involves competition with Akt1, a negative regulator of ASK1, for binding to ASK1. Taken together, this study provides novel insights into the role of DUSP13A in the precise regulation of ASK1.
Adipocyte differentiation can be regulated by the combined activity of protein tyrosine kinases (... more Adipocyte differentiation can be regulated by the combined activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). In particular, PTPs act as key regulators in differentiation-associated signaling pathways. We recently found that receptor-type PTPμ (RPTPμ) expression is markedly increased during the adipogenic differentiation of 3T3-L1 preadipocytes and mesenchymal stem cells. Here, we investigate the functional roles of RPTPμ and the mechanism of its involvement in the regulation of signal transduction during adipogenesis of 3T3-L1 cells. Depletion of endogenous RPTPμ by RNA interference significantly inhibited adipogenic differentiation, whereas RPTPμ overexpression led to an increase in adipogenic differentiation. Ectopic expression of p120 catenin suppressed adipocyte differentiation, and the decrease in adipogenesis by p120 catenin was recovered by introducing RPTPμ. Moreover, RPTPμ induced a decrease in the cytoplasmic p120 catenin expression by r...
HD (Huntington's disease) is a devastating neurodegenerative genetic disorder caused by abnor... more HD (Huntington's disease) is a devastating neurodegenerative genetic disorder caused by abnormal expansion of CAG repeats in the HTT (huntingtin) gene. We have recently established two iPSC (induced pluripotent stem cell) lines derived from a HD patient carrying 72 CAG repeats (HD-iPSC). In order to understand the proteomic profiles of HD-iPSCs, we have performed comparative proteomic analysis among normal hESCs (human embryonic stem cells; H9), iPSCs (551-8) and HD-iPSCs at undifferentiated stages, and identified 26 up- and down-regulated proteins. Interestingly, these differentially expressed proteins are known to be involved in different biological processes, such as oxidative stress, programmed cell death and cellular oxygen-associated proteins. Among them, we found that oxidative stress-related proteins, such as SOD1 (superoxide dismutase 1) and Prx (peroxiredoxin) families are particularly affected in HD-iPSCs, implying that HD-iPSCs are highly susceptible to oxidative str...
Genetic mutations such as single nucleotide polymorphisms (SNP) are known as one of the most comm... more Genetic mutations such as single nucleotide polymorphisms (SNP) are known as one of the most common forms which related to various genetic disorders and cancers. Among of the methods developed for efficient detection of such SNP, polymerase chain reaction (PCR) methods are widely used worldwide for its cost and viable advantages. However, the technique to discriminate small amounts of SNP mixed in abundant normal DNA is incomplete due to intrinsic technical problems of PCR such as amplification occurring even in 3’mismatched cases because of high enzyme activity of DNA polymerases. To overcome the issue, specifically designed PCR platform, STexS (SNP typing with excellent specificity) using double stranded oligonucleotides was implemented as a means to emphasize the amplification of SNP templates by decreasing unwanted amplification of 3’mismatched DNA copies. In this study, the results indicate several EGFR mutations were easily detected specifically utilizing the STexS platform. F...
Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of polyco... more Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of polycomb repressive complex 2 (PRC2), regulates genes involved in cell lineage and differentiation through methylating lysine 27 on histone H3 (H3K27me3). Recurrent gain-of-function mutations of EZH2 have been identified in various cancer types, in particular, diffuse large B-cell lymphoma (DLBCL), through large-scale genome-wide association studies and EZH2 depletion or pharmacological inhibition has been shown to exert an antiproliferative effect on cancer cells, both in vitro and in vivo. In the current study, a combination of pomalidomide and GSK126 synergistically inhibited the growth of EZH2 gain-of-function mutant Diffuse large B-cell lymphoma (DLBCL) cells. Furthermore, this synergistic effect appeared to be dependent on cereblon (CRBN), a cellular receptor of pomalidomide, but not degradation of IKAROS family zinc finger 1 (IKZF1) or IKAROS family zinc finger 3 (IKZF3). RNA sequencing...
Although dual-specificity phosphatase 5 (DUSP5), which inactivates extracellular signal-regulated... more Although dual-specificity phosphatase 5 (DUSP5), which inactivates extracellular signal-regulated kinase (ERK), suppresses tumors in several types of cancer, its functional roles remain largely unknown. Here, we show that DUSP5 is induced during lipopolysaccharide (LPS)-mediated inflammation and inhibits nuclear factor-κB (NF-κB) activity. DUSP5 mRNA and protein expression increased transiently in LPS-stimulated RAW 264.7 cells and then returned to basal levels. DUSP5 overexpression in RAW 264.7 cells suppressed the production of pro-inflammatory tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), whereas knockdown of DUSP5 increased their expression. Investigation of two major inflammatory signaling pathways, mitogen-activated protein kinase (MAPK) and NF-κB, using activator protein-1 (AP-1) and NF-κB reporter plasmids, respectively, showed that NF-κB transcription activity was downregulated by DUSP5 in a phosphatase activity-independent manner whereas AP-1 activity was i...
MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression... more MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression. For example, miRNAs repress gene expression by recruiting the miRNA-induced silencing complex (miRISC), a ribonucleoprotein complex that contains miRNA-engaged Argonaute (Ago) and the scaffold protein GW182. Recently, ubiquitin protein ligase E3 component N-recognin 5 (UBR5) has been identified as a component of miRISC. UBR5 directly interacts with GW182 proteins and participates in miRNA silencing by recruiting downstream effectors, such as the translation regulator DEAD-box helicase 6 (DDX6) and transducer of ERBB2.1/2 (Tob1/2), to the Ago-GW182 complex. However, the regulation of miRISC-associated UBR5 remain largely elusive. In the present study, we show that UBR5 down-regulates the levels of TNF receptor-associated factor 3 (TRAF3), a key component of toll-like receptor signaling, via the miRNA pathway. We further demonstrate that p90 ribosomal S6 kinase (p90RSK) is an upstream re...
Uploads
Papers by Byoung Park