Pertussis is a severe respiratory disease mainly caused by Bordetella pertussis. Despite wide glo... more Pertussis is a severe respiratory disease mainly caused by Bordetella pertussis. Despite wide global vaccination coverage with efficacious pertussis vaccines, it remains one of the least well-controlled vaccine-preventable diseases, illustrating the shortcomings of the current vaccines. We have developed the live attenuated nasal pertussis vaccine BPZE1, currently undergoing clinical evaluation in human phase 2 trials. We have previously shown that in mice, BPZE1 provides strong and long-lasting protection against B. pertussis challenge by inducing potent Ab and T cell responses as well as secretory IgA and IL-17–producing resident memory T lymphocytes in the nasal cavity. In this study, we show that BPZE1 induces protection in mice against B. pertussis within days after vaccination, at a time when Ab and T cell responses were not detectable. Early protection was independent of T and B cell responses, as demonstrated by the use of SCID mice. Instead, it was due to TLR4-dependent sig...
As a tribute to Louis Pasteur on the occasion of the 200th anniversary of his birth, this article... more As a tribute to Louis Pasteur on the occasion of the 200th anniversary of his birth, this article summarizes the main contributions of scientists from Pasteur Institutes to the current knowledge of toxins produced by Bordetella pertussis. The article therefore focuses on publications authored by researchers from Pasteur Institutes and is not intended as a systematic review of B. pertussis toxins. Besides identifying B. pertussis as the causative agent of whooping cough, Pasteurians have made several major contributions with respect to the structure–function relationship of the Bordetella lipo-oligosaccharide, adenylyl cyclase toxin and pertussis toxin. In addition to contributing to the understanding of these toxins’ mechanisms at the molecular and cellular levels and their role in pathogenesis, scientists at Pasteur Institutes have also exploited potential applications of the gathered knowledge of these toxins. These applications range from the development of novel tools to study p...
Live attenuated vaccines often have beneficial non-specific effects, protecting against heterolog... more Live attenuated vaccines often have beneficial non-specific effects, protecting against heterologous infectious and non-infectious diseases. We have developed a live attenuated pertussis vaccine, named BPZE1, currently in advanced clinical development. Here, we examined the prophylactic and therapeutic potential of its pertactin-deficient derivative BPZE1P in a mouse model of house dust mite (HDM)-induced allergic airway inflammation (AAI). BPZE1P was given nasally either before or after sensitization with HDM, followed by HDM challenge, or between two challenge episodes. Vaccination prior to sensitization reduced resistance in the airways, the numbers of infiltrating eosinophils and the concentrations of proinflammatory cytokines, such as IL-1α, IL-1β and IL-33, in the lungs but had no effect on Th2 cytokine levels. BPZE1P also protected when delivered after sensitization or between two challenge episodes. However, in this case the levels of Th2 cytokines in the lung were decreased...
The bacillus Calmette–Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been ... more The bacillus Calmette–Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-...
Besides the typical whooping cough syndrome, infection with Bordetella pertussis or immunization ... more Besides the typical whooping cough syndrome, infection with Bordetella pertussis or immunization with whole-cell vaccines can result in a wide variety of physiological manifestations, including leukocytosis, hyper-insulinemia, and histamine sensitization, as well as protection against disease. Initially believed to be associated with different molecular entities, decades of research have provided the demonstration that these activities are all due to a single molecule today referred to as pertussis toxin. The three-dimensional structure and molecular mechanisms of pertussis toxin action, as well as its role in protective immunity have been uncovered in the last 50 years. In this article, we review the history of pertussis toxin, including the paradigm shift that occurred in the 1980s which established the pertussis toxin as a single molecule. We describe the role molecular biology played in the understanding of pertussis toxin action, its role as a molecular tool in cell biology and...
BackgroundCurrent vaccination strategies against pertussis are sub-optimal. Optimal protection ag... more BackgroundCurrent vaccination strategies against pertussis are sub-optimal. Optimal protection against Bordetella pertussis, the causative agent of pertussis, likely requires mucosal immunity. Current pertussis vaccines consist of inactivated whole B. pertussis cells or purified antigens thereof, combined with diphtheria and tetanus toxoids. Although they are highly protective against severe pertussis disease, they fail to elicit mucosal immunity. Compared to natural infection, immune responses following immunization are short-lived and fail to prevent bacterial colonization of the upper respiratory tract. To overcome these shortcomings, efforts have been made for decades, and continue to be made, toward the development of mucosal vaccines against pertussis.ObjectivesIn this review we systematically analyzed published literature on protection conferred by mucosal immunization against pertussis. Immune responses mounted by these vaccines are summarized.MethodThe PubMed Library databa...
Duration of vaccine-induced immunity plays a key role in the epidemiology and in the pattern of t... more Duration of vaccine-induced immunity plays a key role in the epidemiology and in the pattern of transmission of a vaccine-preventable disease. In the case of whooping cough, its re-emergence has been attributed, at least partly, to the waning of immunity conferred by current pertussis vaccines. We have recently developed a highly attenuated live vaccine, named BPZE1, which has been shown to be safe and to induce strong protective immunity against Bordetella pertussis infection in mice. In this study, we evaluated the long-term immunogenicity and protective efficacy induced by a single intranasal dose of BPZE1. Up to 1 year after immunization, BPZE1 showed significantly higher efficacy to protect adult and infant mice against B. pertussis infection than two administrations of an acellular pertussis vaccine (aPV). ong-term immunity B. pertussis-specific antibodies were induced by live BPZE1 and by aPV, with increasing amounts during the first 6 months post-immunization before a progre...
Studies on protein–protein interactions (PPI) can be helpful for the annotation of unknown protei... more Studies on protein–protein interactions (PPI) can be helpful for the annotation of unknown protein functions and for the understanding of cellular processes, such as specific virulence mechanisms developed by bacterial pathogens. In that context, several methods have been extensively used in recent years for the characterization of Mycobacterium tuberculosis PPI to further decipher tuberculosis (TB) pathogenesis. This review aims at compiling the most striking results based on in vivo methods (yeast and bacterial two-hybrid systems, protein complementation assays) for the specific study of PPI in mycobacteria. Moreover, newly developed methods, such as in-cell native mass resonance and proximity-dependent biotinylation identification, will have a deep impact on future mycobacterial research, as they are able to perform dynamic (transient interactions) and integrative (multiprotein complexes) analyses.
Although homologous recombination is a major mechanism for DNA rearrangement in most living organ... more Although homologous recombination is a major mechanism for DNA rearrangement in most living organisms, it has been difficult to detect in slowly growing mycobacteria by a classical suicide vector approach. Among the possible reasons for this are the low levels of transformation efficiency, the relatively high levels of illegitimate recombination, and the peculiar nature of the recA gene in slowly growing mycobacteria. In this report, we present an efficient homologous recombination system for these organisms based on the use of replicative plasmids which facilitates the detection of rare recombination events, because the proportions of recombined molecules increase over time. Intraplasmid homologous recombination in Mycobacterium smegmatis and Mycobacterium bovis BCG was easily selected by the reconstitution of an interrupted kanamycin resistance gene. Chromosomal integration via homologous recombination was selected by the expression of the kanamycin resistance gene under the contr...
BPZE1 is a live attenuated pertussis vaccine that successfully completed a phase 1 safety trial. ... more BPZE1 is a live attenuated pertussis vaccine that successfully completed a phase 1 safety trial. This article describes the induction of unconventional suppressor T cells-producing ADO by MDDCs exposed to BPZE1 (BPZE1-DC) through distinct ectoenzymatic pathways that limit the damaging effect of inflammation. BPZE1-DC induces CD4(+) and CD8(+) T lymphocytes to express 2 sets of ectoenzymes generating ADO: 1 set is part of the conventional CD39/CD73 pathway, which uses ATP as substrate, whereas the other is part of the CD38/CD203a/CD73 pathway and metabolizes NAD(+). The contribution of the ADO-generating ectoenzymes in the regulatory response was shown by: 1) selective inhibition of the enzymatic activities of CD39, CD73, and CD38; 2) the ability of suppressor T cells to convert exogenously added ATP and NAD(+) to ADO; and 3) a positive correlation between ectoenzyme expression, ADO levels, and suppression abilities. Thus, T lymphocytes activated by BPZE1-DC shift to a suppressor sta...
Pertussis is a severe respiratory disease mainly caused by Bordetella pertussis. Despite wide glo... more Pertussis is a severe respiratory disease mainly caused by Bordetella pertussis. Despite wide global vaccination coverage with efficacious pertussis vaccines, it remains one of the least well-controlled vaccine-preventable diseases, illustrating the shortcomings of the current vaccines. We have developed the live attenuated nasal pertussis vaccine BPZE1, currently undergoing clinical evaluation in human phase 2 trials. We have previously shown that in mice, BPZE1 provides strong and long-lasting protection against B. pertussis challenge by inducing potent Ab and T cell responses as well as secretory IgA and IL-17–producing resident memory T lymphocytes in the nasal cavity. In this study, we show that BPZE1 induces protection in mice against B. pertussis within days after vaccination, at a time when Ab and T cell responses were not detectable. Early protection was independent of T and B cell responses, as demonstrated by the use of SCID mice. Instead, it was due to TLR4-dependent sig...
As a tribute to Louis Pasteur on the occasion of the 200th anniversary of his birth, this article... more As a tribute to Louis Pasteur on the occasion of the 200th anniversary of his birth, this article summarizes the main contributions of scientists from Pasteur Institutes to the current knowledge of toxins produced by Bordetella pertussis. The article therefore focuses on publications authored by researchers from Pasteur Institutes and is not intended as a systematic review of B. pertussis toxins. Besides identifying B. pertussis as the causative agent of whooping cough, Pasteurians have made several major contributions with respect to the structure–function relationship of the Bordetella lipo-oligosaccharide, adenylyl cyclase toxin and pertussis toxin. In addition to contributing to the understanding of these toxins’ mechanisms at the molecular and cellular levels and their role in pathogenesis, scientists at Pasteur Institutes have also exploited potential applications of the gathered knowledge of these toxins. These applications range from the development of novel tools to study p...
Live attenuated vaccines often have beneficial non-specific effects, protecting against heterolog... more Live attenuated vaccines often have beneficial non-specific effects, protecting against heterologous infectious and non-infectious diseases. We have developed a live attenuated pertussis vaccine, named BPZE1, currently in advanced clinical development. Here, we examined the prophylactic and therapeutic potential of its pertactin-deficient derivative BPZE1P in a mouse model of house dust mite (HDM)-induced allergic airway inflammation (AAI). BPZE1P was given nasally either before or after sensitization with HDM, followed by HDM challenge, or between two challenge episodes. Vaccination prior to sensitization reduced resistance in the airways, the numbers of infiltrating eosinophils and the concentrations of proinflammatory cytokines, such as IL-1α, IL-1β and IL-33, in the lungs but had no effect on Th2 cytokine levels. BPZE1P also protected when delivered after sensitization or between two challenge episodes. However, in this case the levels of Th2 cytokines in the lung were decreased...
The bacillus Calmette–Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been ... more The bacillus Calmette–Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-...
Besides the typical whooping cough syndrome, infection with Bordetella pertussis or immunization ... more Besides the typical whooping cough syndrome, infection with Bordetella pertussis or immunization with whole-cell vaccines can result in a wide variety of physiological manifestations, including leukocytosis, hyper-insulinemia, and histamine sensitization, as well as protection against disease. Initially believed to be associated with different molecular entities, decades of research have provided the demonstration that these activities are all due to a single molecule today referred to as pertussis toxin. The three-dimensional structure and molecular mechanisms of pertussis toxin action, as well as its role in protective immunity have been uncovered in the last 50 years. In this article, we review the history of pertussis toxin, including the paradigm shift that occurred in the 1980s which established the pertussis toxin as a single molecule. We describe the role molecular biology played in the understanding of pertussis toxin action, its role as a molecular tool in cell biology and...
BackgroundCurrent vaccination strategies against pertussis are sub-optimal. Optimal protection ag... more BackgroundCurrent vaccination strategies against pertussis are sub-optimal. Optimal protection against Bordetella pertussis, the causative agent of pertussis, likely requires mucosal immunity. Current pertussis vaccines consist of inactivated whole B. pertussis cells or purified antigens thereof, combined with diphtheria and tetanus toxoids. Although they are highly protective against severe pertussis disease, they fail to elicit mucosal immunity. Compared to natural infection, immune responses following immunization are short-lived and fail to prevent bacterial colonization of the upper respiratory tract. To overcome these shortcomings, efforts have been made for decades, and continue to be made, toward the development of mucosal vaccines against pertussis.ObjectivesIn this review we systematically analyzed published literature on protection conferred by mucosal immunization against pertussis. Immune responses mounted by these vaccines are summarized.MethodThe PubMed Library databa...
Duration of vaccine-induced immunity plays a key role in the epidemiology and in the pattern of t... more Duration of vaccine-induced immunity plays a key role in the epidemiology and in the pattern of transmission of a vaccine-preventable disease. In the case of whooping cough, its re-emergence has been attributed, at least partly, to the waning of immunity conferred by current pertussis vaccines. We have recently developed a highly attenuated live vaccine, named BPZE1, which has been shown to be safe and to induce strong protective immunity against Bordetella pertussis infection in mice. In this study, we evaluated the long-term immunogenicity and protective efficacy induced by a single intranasal dose of BPZE1. Up to 1 year after immunization, BPZE1 showed significantly higher efficacy to protect adult and infant mice against B. pertussis infection than two administrations of an acellular pertussis vaccine (aPV). ong-term immunity B. pertussis-specific antibodies were induced by live BPZE1 and by aPV, with increasing amounts during the first 6 months post-immunization before a progre...
Studies on protein–protein interactions (PPI) can be helpful for the annotation of unknown protei... more Studies on protein–protein interactions (PPI) can be helpful for the annotation of unknown protein functions and for the understanding of cellular processes, such as specific virulence mechanisms developed by bacterial pathogens. In that context, several methods have been extensively used in recent years for the characterization of Mycobacterium tuberculosis PPI to further decipher tuberculosis (TB) pathogenesis. This review aims at compiling the most striking results based on in vivo methods (yeast and bacterial two-hybrid systems, protein complementation assays) for the specific study of PPI in mycobacteria. Moreover, newly developed methods, such as in-cell native mass resonance and proximity-dependent biotinylation identification, will have a deep impact on future mycobacterial research, as they are able to perform dynamic (transient interactions) and integrative (multiprotein complexes) analyses.
Although homologous recombination is a major mechanism for DNA rearrangement in most living organ... more Although homologous recombination is a major mechanism for DNA rearrangement in most living organisms, it has been difficult to detect in slowly growing mycobacteria by a classical suicide vector approach. Among the possible reasons for this are the low levels of transformation efficiency, the relatively high levels of illegitimate recombination, and the peculiar nature of the recA gene in slowly growing mycobacteria. In this report, we present an efficient homologous recombination system for these organisms based on the use of replicative plasmids which facilitates the detection of rare recombination events, because the proportions of recombined molecules increase over time. Intraplasmid homologous recombination in Mycobacterium smegmatis and Mycobacterium bovis BCG was easily selected by the reconstitution of an interrupted kanamycin resistance gene. Chromosomal integration via homologous recombination was selected by the expression of the kanamycin resistance gene under the contr...
BPZE1 is a live attenuated pertussis vaccine that successfully completed a phase 1 safety trial. ... more BPZE1 is a live attenuated pertussis vaccine that successfully completed a phase 1 safety trial. This article describes the induction of unconventional suppressor T cells-producing ADO by MDDCs exposed to BPZE1 (BPZE1-DC) through distinct ectoenzymatic pathways that limit the damaging effect of inflammation. BPZE1-DC induces CD4(+) and CD8(+) T lymphocytes to express 2 sets of ectoenzymes generating ADO: 1 set is part of the conventional CD39/CD73 pathway, which uses ATP as substrate, whereas the other is part of the CD38/CD203a/CD73 pathway and metabolizes NAD(+). The contribution of the ADO-generating ectoenzymes in the regulatory response was shown by: 1) selective inhibition of the enzymatic activities of CD39, CD73, and CD38; 2) the ability of suppressor T cells to convert exogenously added ATP and NAD(+) to ADO; and 3) a positive correlation between ectoenzyme expression, ADO levels, and suppression abilities. Thus, T lymphocytes activated by BPZE1-DC shift to a suppressor sta...
Uploads
Papers by Camille Locht