The electrical conductivity of a series of pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic ... more The electrical conductivity of a series of pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids, functionalized with a nitrile (cyano) group at the end of an alkyl chain attached to the cation, was studied in the temperature range between 173 K and 393 K. The glass formation of the ionic liquids is influenced by the length of the alkyl spacer separating the nitrile function from the pyrrolidinium ring. The electrical conductivity and the viscosity do not show a monotonic dependence on the alkyl spacer length, but rather an odd-even effect. An explanation for this behavior is given, including the potential energy landscape picture for the glass transition.
A detailed study has been performed for mixtures of octyloxycyanobiphenyl (8OCB) and nonyloxycyan... more A detailed study has been performed for mixtures of octyloxycyanobiphenyl (8OCB) and nonyloxycyanobiphenyl (9OCB) liquid crystals and nine of their mixtures by means of high-resolution adiabatic scanning calorimetry. The isotropic to nematic transitions are weakly first order with latent heat values in the range usually encountered for this transition in other liquid crystals. With the exception of pure 8OCB, for which only an upper limit of 1.8Jkg-1 for the latent heat could be established, finite latent heats have been obtained for the nematic to smectic- A transition of all the mixtures and of pure 9OCB. The concentration dependence of their latent heats could be well fitted with a crossover function consistent with a mean-field free-energy expression that has a nonzero cubic term induced by the Halperin-Lubensky-Ma (HLM) coupling between the smectic- A order parameter and the orientational director fluctuations. Clearly first-order transitions with measurable latent heats are found for mole fractions of 9OCB in the mixtures where the effective critical exponent for the specific-heat capacity has substantially lower values than the tricritical one (0.5). This is qualitatively different from what has been observed so far in other liquid-crystal systems and yields strong experimental evidence from a calorimetric experiment for the HLM coupling between the smectic- A order parameter and the director orientation fluctuations.
Phase change materials (PCMs) are substances exhibiting phase transitions with large latent heats... more Phase change materials (PCMs) are substances exhibiting phase transitions with large latent heats that can be used as thermal storage materials with a large energy storage capacity in a relatively narrow temperature range. In many practical applications the solid–liquid phase change is used. For applications accurate knowledge of different thermal parameters has to be available. In particular, the temperature dependence of the enthalpy around the phase transition has to be known with good accuracy. Usually, the phase transitions of PCMs are investigated with differential scanning calorimetry (DSC) at fast dynamic scanning rates resulting in the effective heat capacity from which the (total) heat of transition can be determined. Here we present adiabatic scanning calorimetry (ASC) as an alternative approach to arrive simultaneously at the equilibrium enthalpy curve and at the heat capacity. The applicability of ASC is illustrated with measurements on paraffin-based PCMs and on a salt hydrate PCM.
The large critical anomaly in the isobaric heat capacity Cp,x(T) of the binary mixture nitrometha... more The large critical anomaly in the isobaric heat capacity Cp,x(T) of the binary mixture nitromethane + 3-pentanol is measured using high-resolution adiabatic scanning calorimetry. The unique features of this technique provided an alternative approach to the study of the critical behavior of Cp,x(T), providing further Cp,x(T) related quantities from which valuable information could be extracted. Our data are in full agreement with the predictions of the Modern Theory of Critical Phenomena; specifically, 3D-Ising model values for the critical exponent α and the universal amplitude ratio values of the leading critical amplitudes, as well as for the first correction-to-scaling ones, provide the optimum fits to represent the experimental data. Evidence for the need of higher-order terms, i.e., first correction-to-scaling term, is given. The large value of the coefficient E for the linear temperature dependence of the background obtained is ascribed to a possible contribution of the regular linear background term, of a higher-order asymmetry term, and of the second correction-to-scaling term. Internal consistency of Cp,x(T) and its related quantities is successfully checked.
The phase transition behaviour of the chiral liquid crystal CE6 doped with spherical surface-func... more The phase transition behaviour of the chiral liquid crystal CE6 doped with spherical surface-functionalised CdSe nanoparticles has been examined by means of high-resolution adiabatic scanning calorimetry and polarising microscopy. The addition of nanoparticles results in an essentially stabilised blue phase III. The phase diagram is displayed upon heating and cooling and the enthalpy changes involved in the conversion between the blue phases are determined. The dispersion of functionalised nanoparticles is prominent for the stabilisation of blue phase III, which is potentially useful for applications, especially if applied on liquid crystals that exhibit blue phases close to room temperature.
The electrical conductivity of a series of pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic ... more The electrical conductivity of a series of pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids, functionalized with a nitrile (cyano) group at the end of an alkyl chain attached to the cation, was studied in the temperature range between 173 K and 393 K. The glass formation of the ionic liquids is influenced by the length of the alkyl spacer separating the nitrile function from the pyrrolidinium ring. The electrical conductivity and the viscosity do not show a monotonic dependence on the alkyl spacer length, but rather an odd-even effect. An explanation for this behavior is given, including the potential energy landscape picture for the glass transition.
A detailed study has been performed for mixtures of octyloxycyanobiphenyl (8OCB) and nonyloxycyan... more A detailed study has been performed for mixtures of octyloxycyanobiphenyl (8OCB) and nonyloxycyanobiphenyl (9OCB) liquid crystals and nine of their mixtures by means of high-resolution adiabatic scanning calorimetry. The isotropic to nematic transitions are weakly first order with latent heat values in the range usually encountered for this transition in other liquid crystals. With the exception of pure 8OCB, for which only an upper limit of 1.8Jkg-1 for the latent heat could be established, finite latent heats have been obtained for the nematic to smectic- A transition of all the mixtures and of pure 9OCB. The concentration dependence of their latent heats could be well fitted with a crossover function consistent with a mean-field free-energy expression that has a nonzero cubic term induced by the Halperin-Lubensky-Ma (HLM) coupling between the smectic- A order parameter and the orientational director fluctuations. Clearly first-order transitions with measurable latent heats are found for mole fractions of 9OCB in the mixtures where the effective critical exponent for the specific-heat capacity has substantially lower values than the tricritical one (0.5). This is qualitatively different from what has been observed so far in other liquid-crystal systems and yields strong experimental evidence from a calorimetric experiment for the HLM coupling between the smectic- A order parameter and the director orientation fluctuations.
Phase change materials (PCMs) are substances exhibiting phase transitions with large latent heats... more Phase change materials (PCMs) are substances exhibiting phase transitions with large latent heats that can be used as thermal storage materials with a large energy storage capacity in a relatively narrow temperature range. In many practical applications the solid–liquid phase change is used. For applications accurate knowledge of different thermal parameters has to be available. In particular, the temperature dependence of the enthalpy around the phase transition has to be known with good accuracy. Usually, the phase transitions of PCMs are investigated with differential scanning calorimetry (DSC) at fast dynamic scanning rates resulting in the effective heat capacity from which the (total) heat of transition can be determined. Here we present adiabatic scanning calorimetry (ASC) as an alternative approach to arrive simultaneously at the equilibrium enthalpy curve and at the heat capacity. The applicability of ASC is illustrated with measurements on paraffin-based PCMs and on a salt hydrate PCM.
The large critical anomaly in the isobaric heat capacity Cp,x(T) of the binary mixture nitrometha... more The large critical anomaly in the isobaric heat capacity Cp,x(T) of the binary mixture nitromethane + 3-pentanol is measured using high-resolution adiabatic scanning calorimetry. The unique features of this technique provided an alternative approach to the study of the critical behavior of Cp,x(T), providing further Cp,x(T) related quantities from which valuable information could be extracted. Our data are in full agreement with the predictions of the Modern Theory of Critical Phenomena; specifically, 3D-Ising model values for the critical exponent α and the universal amplitude ratio values of the leading critical amplitudes, as well as for the first correction-to-scaling ones, provide the optimum fits to represent the experimental data. Evidence for the need of higher-order terms, i.e., first correction-to-scaling term, is given. The large value of the coefficient E for the linear temperature dependence of the background obtained is ascribed to a possible contribution of the regular linear background term, of a higher-order asymmetry term, and of the second correction-to-scaling term. Internal consistency of Cp,x(T) and its related quantities is successfully checked.
The phase transition behaviour of the chiral liquid crystal CE6 doped with spherical surface-func... more The phase transition behaviour of the chiral liquid crystal CE6 doped with spherical surface-functionalised CdSe nanoparticles has been examined by means of high-resolution adiabatic scanning calorimetry and polarising microscopy. The addition of nanoparticles results in an essentially stabilised blue phase III. The phase diagram is displayed upon heating and cooling and the enthalpy changes involved in the conversion between the blue phases are determined. The dispersion of functionalised nanoparticles is prominent for the stabilisation of blue phase III, which is potentially useful for applications, especially if applied on liquid crystals that exhibit blue phases close to room temperature.
Uploads
Papers by Chandra Shekhar Pati Tripathi