Detection of R. solani with TPIA was highly sensitive. The colour intensity of TPIA reflected dis... more Detection of R. solani with TPIA was highly sensitive. The colour intensity of TPIA reflected disease severity and allowed a semi-quantitat ive analysis of fungus concentrations in tissues (Fig. 2). In cases of a strong TPIA signal in the centre of the tap root, no fungal mycelium nor DNA could be shown in microscope sections nor in specific PCR-analyses, respectively (Fig. 3). Disease severity after inoculation was sugar beet genotype specific with no significant interaction between genotype and isolate (Fig. 4). Disease severity was higher with barley inoculu min isolate If Z002 than with liquid inoculation.
Root and crown rot is the major soil-borne fungal disease in sugar beet. In Europe, the disease i... more Root and crown rot is the major soil-borne fungal disease in sugar beet. In Europe, the disease is mainly caused by the anastomosis group (AG) 2-2IIIB of the basidiomycete Rhizoctonia solani (Kuhn). No chemical fungicide to control the disease has been registered in Europe. Therefore, agronomic measures must be optimized to keep the disease severity below an economic damage threshold and to minimize white sugar yield losses. R. solani AG 2-2IIIB infects many other crops besides sugar beet, including maize, where it causes root rot. Sugar beet and maize are frequently grown in the same crop rotation. The proportion of cultivated maize in several European sugar beet growing areas is expected to rise due to a projected increase in demand for renewable resources over the next few years. Although the susceptibility to and tolerance of the disease varies among cultivars in both crops, little is known about the effects of cultivar susceptibility in the pre-crop on a subsequent susceptible crop. The cultivation of R. solani-resistant maize genotypes in rotation with resistant sugar beet might therefore be a useful tool in an integrated control strategy against R. solani, eliminating the need to restrict the desired crop rotation for phytosanitary reasons. A crop rotation experiment with artificially inoculated R. solani was conducted in the field to investigate the pre-crop effects of maize cultivars which differed in their susceptibility to R. solani on a susceptible sugar beet cultivar. We hypothesized that the maize genotype would influence the inoculum potential and performance of a susceptible sugar beet genotype grown after a maize pre-crop, and that this would correlate with the susceptibility of the maize genotype. The results demonstrate that the susceptibility of maize genotypes is consistent over a period of years and that cultivated maize genotypes influenced the inoculum potential measured as disease severity in sugar beet. However, disease severity in sugar beet did not correlate with the disease susceptibility of the genotype of the maize pre-crop. Possible reasons for this missing relationship might be differences in the quality of maize residues for the saprophytic survival of the pathogen or a genotype-specific alteration of the antagonistic microbial community. However, our findings showed that in the presence of maize- and sugar beet-pathogenic R. solani, the most favourable maize cultivar for a crop rotation cannot be determined solely on the basis of its resistance level against Rhizoctonia root rot.
Resistance to photosystem II inhibitors-triazines (atrazine) and triazinones (metamitron, metribu... more Resistance to photosystem II inhibitors-triazines (atrazine) and triazinones (metamitron, metribuzin)-in Chenopodium album L. is caused by the serine 264 to glycine mutation in the D1 protein. This mutation has been detected in C. album collections from Belgium with unsatisfactory metamitron efficacy in the field and was confirmed in greenhouse resistance bioassays. Incomplete herbicide efficacy in practice can also be caused by reduced uptake due to environmental conditions. Hence, for reliable differentiation and resistance identification, a rapid method for mutation detection in the target gene psbA is required. Dose-response curves obtained in herbicide greenhouse assays with metamitron-resistant and -susceptible reference biotypes showed that a dose of 2 L ha(-1) metamitron was suitable for discrimination. A psbA PCR-RFLP was developed, based on the presence of a FspBI restriction enzyme recognition site, covering D1 codon 264 in susceptible genotypes. A paper-based DNA extraction allowed direct processing of leaf samples already in the field. In order to detect the mutation even in mixed seed samples, a nested PCR-RFLP was also developed. The method allows exhaustive surveys screening C. album leaf or seed samples for the occurrence of the D1 Ser264Gly mutation to confirm or disprove metamitron resistance in the case of unsatisfactory control.
Detection of R. solani with TPIA was highly sensitive. The colour intensity of TPIA reflected dis... more Detection of R. solani with TPIA was highly sensitive. The colour intensity of TPIA reflected disease severity and allowed a semi-quantitat ive analysis of fungus concentrations in tissues (Fig. 2). In cases of a strong TPIA signal in the centre of the tap root, no fungal mycelium nor DNA could be shown in microscope sections nor in specific PCR-analyses, respectively (Fig. 3). Disease severity after inoculation was sugar beet genotype specific with no significant interaction between genotype and isolate (Fig. 4). Disease severity was higher with barley inoculu min isolate If Z002 than with liquid inoculation.
Root and crown rot is the major soil-borne fungal disease in sugar beet. In Europe, the disease i... more Root and crown rot is the major soil-borne fungal disease in sugar beet. In Europe, the disease is mainly caused by the anastomosis group (AG) 2-2IIIB of the basidiomycete Rhizoctonia solani (Kuhn). No chemical fungicide to control the disease has been registered in Europe. Therefore, agronomic measures must be optimized to keep the disease severity below an economic damage threshold and to minimize white sugar yield losses. R. solani AG 2-2IIIB infects many other crops besides sugar beet, including maize, where it causes root rot. Sugar beet and maize are frequently grown in the same crop rotation. The proportion of cultivated maize in several European sugar beet growing areas is expected to rise due to a projected increase in demand for renewable resources over the next few years. Although the susceptibility to and tolerance of the disease varies among cultivars in both crops, little is known about the effects of cultivar susceptibility in the pre-crop on a subsequent susceptible crop. The cultivation of R. solani-resistant maize genotypes in rotation with resistant sugar beet might therefore be a useful tool in an integrated control strategy against R. solani, eliminating the need to restrict the desired crop rotation for phytosanitary reasons. A crop rotation experiment with artificially inoculated R. solani was conducted in the field to investigate the pre-crop effects of maize cultivars which differed in their susceptibility to R. solani on a susceptible sugar beet cultivar. We hypothesized that the maize genotype would influence the inoculum potential and performance of a susceptible sugar beet genotype grown after a maize pre-crop, and that this would correlate with the susceptibility of the maize genotype. The results demonstrate that the susceptibility of maize genotypes is consistent over a period of years and that cultivated maize genotypes influenced the inoculum potential measured as disease severity in sugar beet. However, disease severity in sugar beet did not correlate with the disease susceptibility of the genotype of the maize pre-crop. Possible reasons for this missing relationship might be differences in the quality of maize residues for the saprophytic survival of the pathogen or a genotype-specific alteration of the antagonistic microbial community. However, our findings showed that in the presence of maize- and sugar beet-pathogenic R. solani, the most favourable maize cultivar for a crop rotation cannot be determined solely on the basis of its resistance level against Rhizoctonia root rot.
Resistance to photosystem II inhibitors-triazines (atrazine) and triazinones (metamitron, metribu... more Resistance to photosystem II inhibitors-triazines (atrazine) and triazinones (metamitron, metribuzin)-in Chenopodium album L. is caused by the serine 264 to glycine mutation in the D1 protein. This mutation has been detected in C. album collections from Belgium with unsatisfactory metamitron efficacy in the field and was confirmed in greenhouse resistance bioassays. Incomplete herbicide efficacy in practice can also be caused by reduced uptake due to environmental conditions. Hence, for reliable differentiation and resistance identification, a rapid method for mutation detection in the target gene psbA is required. Dose-response curves obtained in herbicide greenhouse assays with metamitron-resistant and -susceptible reference biotypes showed that a dose of 2 L ha(-1) metamitron was suitable for discrimination. A psbA PCR-RFLP was developed, based on the presence of a FspBI restriction enzyme recognition site, covering D1 codon 264 in susceptible genotypes. A paper-based DNA extraction allowed direct processing of leaf samples already in the field. In order to detect the mutation even in mixed seed samples, a nested PCR-RFLP was also developed. The method allows exhaustive surveys screening C. album leaf or seed samples for the occurrence of the D1 Ser264Gly mutation to confirm or disprove metamitron resistance in the case of unsatisfactory control.
Uploads
Papers by Christian kluth