This version has all of the data and code to reproduce the manuscript as it appears in its second... more This version has all of the data and code to reproduce the manuscript as it appears in its second revision
Multiple research and management partners collaboratively developed a multiscale approach for ass... more Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geom...
Background/Question/Methods Restoration of cheatgrass dominated rangelands depends on controlling... more Background/Question/Methods Restoration of cheatgrass dominated rangelands depends on controlling cheatgrass while simultaneously providing conditions necessary for native species establishment. Growth and reproduction of cheatgrass is highly responsive to available soil nitrogen (N), and decreasing soil N levels may decrease the competitive ability of cheatgrass. Burning volatilizes some N, but can result in an immediate increase in NH4 and longer-term increase in NO3. Higher N availability increases cheatgrass growth and N content and, consequently, N loss when cheatgrass is repeatedly burned. We asked if repeated burning of a cheatgrass dominated ecosystem would deplete litter and soil N and consequently, cheatgrass N content, density and biomass. We used a factorial, blocked experiment in two cheatgrass dominated sites in north-central Nevada. Factors included two litter treatments (litter removed and litter intact) and four burn treatments (unburned, burned only, burned and see...
Background/Question/Methods Restoration of sagebrush ecosystems dominated by cheatgrass depends o... more Background/Question/Methods Restoration of sagebrush ecosystems dominated by cheatgrass depends on both controlling the invader and providing the conditions for native species establishment. Reducing available soil nitrogen (N) decreases cheatgrass growth and reproduction and native species opportunities for establishment. A mechanism for decreasing plant available N is repeated burning. Fire causes a loss of N by volatilization from burned plant material, but increases NH4 in the short-term and NO3 in the long-term. Increased available N results in greater cheatgrass growth, but is accompanied by higher cheatgrass N content and greater ecosystem N loss when burned in subsequent years. We hypothesized that repeated burning would decrease available N and lower establishment, growth and reproduction of cheatgrass. We conducted a repeated burning experiment in north-central Nevada on two Wyoming big sagebrush sites that are dominated by cheatgrass with some annual forbs. We used a comp...
Restoration of abandoned agricultural lands to create resilient ecosystems in arid and semi-arid ... more Restoration of abandoned agricultural lands to create resilient ecosystems in arid and semi-arid ecosystems typically requires seeding or transplanting native species, improving plant–soil–water relations, and controlling invasive species. We asked if improving water relations via irrigation or surface mulch would result in negative tradeoffs between native species establishment and invasive species competition. We examined the effects of sprinkler irrigation and straw mulch on native seed mixtures planted in two consecutive years in an abandoned agricultural field in a cold desert shrubland in southwestern Nevada, USA. Restoration effects differed among years because of contingency effects of growing season conditions. Precipitation was low during the first year and seeded plant density and biomass increased in response to irrigation. Precipitation was relatively high during the second year, seeded plant densities and biomass were generally high, and irrigation had inconsistent eff...
This version has all of the data and code to reproduce the manuscript as it appears in its second... more This version has all of the data and code to reproduce the manuscript as it appears in its second revision
Multiple research and management partners collaboratively developed a multiscale approach for ass... more Multiple research and management partners collaboratively developed a multiscale approach for assessing the geomorphic sensitivity of streams and ecological resilience of riparian and meadow ecosystems in upland watersheds of the Great Basin to disturbances and management actions. The approach builds on long-term work by the partners on the responses of these systems to disturbances and management actions. At the core of the assessments is information on past and present watershed and stream channel characteristics, geomorphic and hydrologic processes, and riparian and meadow vegetation. In this report, we describe the approach used to delineate Great Basin mountain ranges and the watersheds within them, and the data that are available for the individual watersheds. We also describe the resulting database and the data sources. Furthermore, we summarize information on the characteristics of the regions and watersheds within the regions and the implications of the assessments for geom...
Background/Question/Methods Restoration of cheatgrass dominated rangelands depends on controlling... more Background/Question/Methods Restoration of cheatgrass dominated rangelands depends on controlling cheatgrass while simultaneously providing conditions necessary for native species establishment. Growth and reproduction of cheatgrass is highly responsive to available soil nitrogen (N), and decreasing soil N levels may decrease the competitive ability of cheatgrass. Burning volatilizes some N, but can result in an immediate increase in NH4 and longer-term increase in NO3. Higher N availability increases cheatgrass growth and N content and, consequently, N loss when cheatgrass is repeatedly burned. We asked if repeated burning of a cheatgrass dominated ecosystem would deplete litter and soil N and consequently, cheatgrass N content, density and biomass. We used a factorial, blocked experiment in two cheatgrass dominated sites in north-central Nevada. Factors included two litter treatments (litter removed and litter intact) and four burn treatments (unburned, burned only, burned and see...
Background/Question/Methods Restoration of sagebrush ecosystems dominated by cheatgrass depends o... more Background/Question/Methods Restoration of sagebrush ecosystems dominated by cheatgrass depends on both controlling the invader and providing the conditions for native species establishment. Reducing available soil nitrogen (N) decreases cheatgrass growth and reproduction and native species opportunities for establishment. A mechanism for decreasing plant available N is repeated burning. Fire causes a loss of N by volatilization from burned plant material, but increases NH4 in the short-term and NO3 in the long-term. Increased available N results in greater cheatgrass growth, but is accompanied by higher cheatgrass N content and greater ecosystem N loss when burned in subsequent years. We hypothesized that repeated burning would decrease available N and lower establishment, growth and reproduction of cheatgrass. We conducted a repeated burning experiment in north-central Nevada on two Wyoming big sagebrush sites that are dominated by cheatgrass with some annual forbs. We used a comp...
Restoration of abandoned agricultural lands to create resilient ecosystems in arid and semi-arid ... more Restoration of abandoned agricultural lands to create resilient ecosystems in arid and semi-arid ecosystems typically requires seeding or transplanting native species, improving plant–soil–water relations, and controlling invasive species. We asked if improving water relations via irrigation or surface mulch would result in negative tradeoffs between native species establishment and invasive species competition. We examined the effects of sprinkler irrigation and straw mulch on native seed mixtures planted in two consecutive years in an abandoned agricultural field in a cold desert shrubland in southwestern Nevada, USA. Restoration effects differed among years because of contingency effects of growing season conditions. Precipitation was low during the first year and seeded plant density and biomass increased in response to irrigation. Precipitation was relatively high during the second year, seeded plant densities and biomass were generally high, and irrigation had inconsistent eff...
Uploads
Papers by David Board