Journal of Tissue Engineering and Regenerative Medicine, Apr 18, 2012
A potential application of human embryonic stem cells (hESCs) and induced pluripotent stem cells ... more A potential application of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is the generation of retinal pigmented epithelium (RPE) to treat age-related macular degeneration (AMD), a common but incurable retinal disease. RPE cells derived from hESCs (hESC-RPEs) and iPSCs (iPSC-RPEs) express essential RPE markers and can rescue visual function in animal models. However, standard differentiation protocols yield RPE cells at low frequency, especially from iPSC lines, and the common use of Matrigel and xenogeneic feeder cells is not compatible with clinical applications. The extracellular matrix (ECM) can affect differentiation, and therefore changes in ECM composition may improve the frequency of stem cell-RPE differentiation. We selected several purified ECM proteins and substrates, based on the in vivo RPE ECM environment, and tested their ability to support iPSC-RPE differentiation and maintenance. iPSCs differentiated on nearly all tested substrates developed pigmented regions, with Matrigel and mouse laminin-111 supporting the highest pigmentation frequencies. Although iPSC-RPEs cultured on the majority of the tested substrates expressed key RPE genes, only six substrates supported development of confluent monolayers with normal RPE morphology, including Matrigel and mouse laminin-111. iPSCs differentiated on mouse laminin-111 produced iPSC-RPEs expressing RPE proteins, and hESCs differentiated on mouse laminin-111 resulted in high yields of functional hESC-RPEs. This identification of key ECM proteins may assist with future scaffold designs and provide peptide sequences for use in synthetic, xeno-free, GMP-compliant generation of RPE from human pluripotent stem cells relevant to clinical translation.
Diabetic retinopathy is a common complication of long-term diabetes and that could lead to vision... more Diabetic retinopathy is a common complication of long-term diabetes and that could lead to vision loss. Unfortunately, early diabetic retinopathy remains poorly understood. There is no effective way to prevent or treat early diabetic retinopathy until patients develop later stages of diabetic retinopathy. Elevated acellular capillary density is considered a reliable quantitative trait present in the early development of retinopathy. Hence, in this study, we interrogated whole retinal vascular transcriptomic changes via a Nile rat model to better understand the early pathogenesis of diabetic retinopathy. We uncovered the complexity of associations between acellular capillary density and the joint factors of blood glucose, diet, and sex, which was modeled through a Bayesian network. Using segmented regressions, we have identified different gene expression patterns and enriched Gene Ontology (GO) terms associated with acellular capillary density increasing. We developed a random forest...
The death of the retinal pigment epithelium (RPE) induces the leading cause of blindness in the e... more The death of the retinal pigment epithelium (RPE) induces the leading cause of blindness in the elderly: age‐related macular degeneration (AMD). Human embryonic stem cells (hESCs) have the potential to generate a limitless source of RPE for cellular therapies, but the current methods of both spontaneous and directed differentiation are time consuming and relatively inefficient. This study aims to develop an efficient protocol that derives RPE from hESCs and induced pluripotent stem cells (iPSCs) in 14 days. Applying defined factors at critical points during the differentiation result in ~ 80% of the cells expressing RPE markers at the end of two weeks. This protocol expedites the development of RPE from pluripotent stem cells, which is useful for generating therapeutic cells and investigating maturation of RPE in vitro.
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have advanced our ability ... more Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have advanced our ability to study the basic function of the heart and model cardiac diseases. Due to the complexities in stem cell culture and differentiation protocols, many researchers source their hiPSC-CMs from collaborators or commercial biobanks. Generally, the field has assumed the health of frozen cardiomyocytes is unchanged if the cells adhere to the substrate and commence beating. However, very few have investigated the effects of cryopreservation on hiPSC-CM's functional and transcriptional health at the cellular and molecular level. Here we review methods and challenges associated with cryopreservation, and examine the effects of cryopreservation on the functionality (contractility and calcium handling) and transcriptome of hiPSC-CMs from six healthy stem cell lines. Utilizing protein patterning methods to template physiological cell aspect ratios (7:1, length:width) in conjunction with polyacrylamide (PA) hydrogels, we measured changes in force generation and calcium handling of single hiPSC-CMs. We observed that cryopreservation altered the functionality and transcriptome of hiPSC-CMs towards larger sizes and contractile force as assessed by increased spread area and volume, single cell traction force microscopy and delayed calcium dynamics. hiPSC-CMs are broadly used for basic science research, regenerative medicine, and testing biological therapeutics. This study informs the design of experiments utilizing hiPSC-CMs to avoid confounding functional changes due to cryopreservation with other treatments.
Summary Cell-based therapies face challenges, including poor cell survival, immune rejection, and... more Summary Cell-based therapies face challenges, including poor cell survival, immune rejection, and integration into pathologic tissue. We conducted an open-label phase 1/2a clinical trial to assess the safety and preliminary efficacy of a subretinal implant consisting of a polarized monolayer of allogeneic human embryonic stem cell-derived retinal pigmented epithelium (RPE) cells in subjects with geographic atrophy (GA) secondary to dry age-related macular degeneration. Postmortem histology from one subject with very advanced disease shows the presence of donor RPE cells 2 years after implantation by immunoreactivity for RPE65 and donor-specific human leukocyte antigen (HLA) class I molecules. Markers of RPE cell polarity and phagocytosis suggest donor RPE function. Further histologic examination demonstrated CD34+ structures beneath the implant and CD4+, CD68+, and FoxP3+ cells in the tissue. Despite significant donor-host HLA mismatch, no clinical signs of retinitis, vitreitis, vasculitis, choroiditis, or serologic immune response were detected in the deceased subject or any other subject in the study. Subretinally implanted, HLA-mismatched donor RPE cells survive, express functional markers, and do not elicit clinically detectable intraocular inflammation or serologic immune responses even without long-term immunosuppression.
The Nile rat (Avicanthis niloticus) is an important animal model for biomedical research, includi... more The Nile rat (Avicanthis niloticus) is an important animal model for biomedical research, including the study of diurnal rhythms and type 2 diabetes. Here, we report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3,613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including those that affect genes associated with type 2 diabetes and metabolic dysfunctions. These include 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse. Our findings reflect the exceptional level of genomic detail present in this assembly, which will greatly expand the potential of the Nile rat as a model organism for genetic studies.
Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years ... more Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw. Thawed cells exhibit ≥ 95% viability, have morphology, pigmentation, and gene expression characteristic of mature RPE cells, and secrete the neuroprotective protein, pigment epithelium-derived factor (PEDF). Stability under liquid nitrogen (LN2) storage has been confirmed through one year. REPS were adm...
Retinal pigment epithelium (RPE) dysfunction and loss are a hallmark of non-neovascular age-relat... more Retinal pigment epithelium (RPE) dysfunction and loss are a hallmark of non-neovascular age-related macular degeneration (NNAMD). Without the RPE, a majority of overlying photoreceptors ultimately degenerate, leading to severe, progressive vision loss. Clinical and histological studies suggest that RPE replacement strategies may delay disease progression or restore vision. A prospective, interventional, U.S. Food and Drug Administration-cleared, phase 1/2a study is being conducted to assess the safety and efficacy of a composite subretinal implant in subjects with advanced NNAMD. The composite implant, termed the California Project to Cure Blindness-Retinal Pigment Epithelium 1 (CPCB-RPE1), consists of a polarized monolayer of human embryonic stem cell-derived RPE (hESC-RPE) on an ultrathin, synthetic parylene substrate designed to mimic Bruch's membrane. We report an interim analysis of the phase 1 cohort consisting of five subjects. Four of five subjects enrolled in the study ...
National Eye Institute recently issued a new Strategic Plan outlining priority research areas for... more National Eye Institute recently issued a new Strategic Plan outlining priority research areas for the next 5 years. Starting cell source for deriving stem cell lines is as an area with gaps and opportunities for making progress in regenerative medicine, a key area of emphasis within the NEI Strategic Plan. There is a critical need to understand how starting cell source affects the cell therapy product and what specific manufacturing capabilities and quality control standards are required for autologous vs allogeneic stem cell sources. With the goal of addressing some of these questions, in discussion with the community-at-large, NEI hosted a Town Hall at the Association for Research in Vision and Ophthalmology annual meeting in May 2022. This session leveraged recent clinical advances in autologous and allogeneic RPE replacement strategies to develop guidance for upcoming cell therapies for photoreceptors, retinal ganglion cells, and other ocular cell types. Our focus on stem cell-b...
The death of the retinal pigmented epithelium (RPE) induces the leading cause of blindness in the... more The death of the retinal pigmented epithelium (RPE) induces the leading cause of blindness in the elderly, a disease called age-related macular degeneration (AMD). Human embryonic stem cells (hESCs) have the potential to generate a limitless source of RPE for cellular therapies, but spontaneous differentiation methods require several months to produce mature cells. In 2013, a novel directed-differentiation protocol described efficient derivation of RPE in 14 days using nicotinamide as a key-inducing agent in the chemical cocktail. This study investigates the hypothesis that nicotinamide expedites RPE-derivation by inhibiting poly(ADP-ribose) polymerase-1 (PARP-1) during the neuralization component of differentiation. 3-aminobenzamide (3-ABA), a non-hydrolyzable nicotinamide analogue and PARP-1 inhibitor, was tested in place of nicotinamide. Gene expression analysis by qPCR, morphological assessment, and pigment quantification demonstrate that 3-ABA affects differentiation during the first 4 days of differ...
Journal of Tissue Engineering and Regenerative Medicine, Apr 18, 2012
A potential application of human embryonic stem cells (hESCs) and induced pluripotent stem cells ... more A potential application of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is the generation of retinal pigmented epithelium (RPE) to treat age-related macular degeneration (AMD), a common but incurable retinal disease. RPE cells derived from hESCs (hESC-RPEs) and iPSCs (iPSC-RPEs) express essential RPE markers and can rescue visual function in animal models. However, standard differentiation protocols yield RPE cells at low frequency, especially from iPSC lines, and the common use of Matrigel and xenogeneic feeder cells is not compatible with clinical applications. The extracellular matrix (ECM) can affect differentiation, and therefore changes in ECM composition may improve the frequency of stem cell-RPE differentiation. We selected several purified ECM proteins and substrates, based on the in vivo RPE ECM environment, and tested their ability to support iPSC-RPE differentiation and maintenance. iPSCs differentiated on nearly all tested substrates developed pigmented regions, with Matrigel and mouse laminin-111 supporting the highest pigmentation frequencies. Although iPSC-RPEs cultured on the majority of the tested substrates expressed key RPE genes, only six substrates supported development of confluent monolayers with normal RPE morphology, including Matrigel and mouse laminin-111. iPSCs differentiated on mouse laminin-111 produced iPSC-RPEs expressing RPE proteins, and hESCs differentiated on mouse laminin-111 resulted in high yields of functional hESC-RPEs. This identification of key ECM proteins may assist with future scaffold designs and provide peptide sequences for use in synthetic, xeno-free, GMP-compliant generation of RPE from human pluripotent stem cells relevant to clinical translation.
Diabetic retinopathy is a common complication of long-term diabetes and that could lead to vision... more Diabetic retinopathy is a common complication of long-term diabetes and that could lead to vision loss. Unfortunately, early diabetic retinopathy remains poorly understood. There is no effective way to prevent or treat early diabetic retinopathy until patients develop later stages of diabetic retinopathy. Elevated acellular capillary density is considered a reliable quantitative trait present in the early development of retinopathy. Hence, in this study, we interrogated whole retinal vascular transcriptomic changes via a Nile rat model to better understand the early pathogenesis of diabetic retinopathy. We uncovered the complexity of associations between acellular capillary density and the joint factors of blood glucose, diet, and sex, which was modeled through a Bayesian network. Using segmented regressions, we have identified different gene expression patterns and enriched Gene Ontology (GO) terms associated with acellular capillary density increasing. We developed a random forest...
The death of the retinal pigment epithelium (RPE) induces the leading cause of blindness in the e... more The death of the retinal pigment epithelium (RPE) induces the leading cause of blindness in the elderly: age‐related macular degeneration (AMD). Human embryonic stem cells (hESCs) have the potential to generate a limitless source of RPE for cellular therapies, but the current methods of both spontaneous and directed differentiation are time consuming and relatively inefficient. This study aims to develop an efficient protocol that derives RPE from hESCs and induced pluripotent stem cells (iPSCs) in 14 days. Applying defined factors at critical points during the differentiation result in ~ 80% of the cells expressing RPE markers at the end of two weeks. This protocol expedites the development of RPE from pluripotent stem cells, which is useful for generating therapeutic cells and investigating maturation of RPE in vitro.
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have advanced our ability ... more Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have advanced our ability to study the basic function of the heart and model cardiac diseases. Due to the complexities in stem cell culture and differentiation protocols, many researchers source their hiPSC-CMs from collaborators or commercial biobanks. Generally, the field has assumed the health of frozen cardiomyocytes is unchanged if the cells adhere to the substrate and commence beating. However, very few have investigated the effects of cryopreservation on hiPSC-CM's functional and transcriptional health at the cellular and molecular level. Here we review methods and challenges associated with cryopreservation, and examine the effects of cryopreservation on the functionality (contractility and calcium handling) and transcriptome of hiPSC-CMs from six healthy stem cell lines. Utilizing protein patterning methods to template physiological cell aspect ratios (7:1, length:width) in conjunction with polyacrylamide (PA) hydrogels, we measured changes in force generation and calcium handling of single hiPSC-CMs. We observed that cryopreservation altered the functionality and transcriptome of hiPSC-CMs towards larger sizes and contractile force as assessed by increased spread area and volume, single cell traction force microscopy and delayed calcium dynamics. hiPSC-CMs are broadly used for basic science research, regenerative medicine, and testing biological therapeutics. This study informs the design of experiments utilizing hiPSC-CMs to avoid confounding functional changes due to cryopreservation with other treatments.
Summary Cell-based therapies face challenges, including poor cell survival, immune rejection, and... more Summary Cell-based therapies face challenges, including poor cell survival, immune rejection, and integration into pathologic tissue. We conducted an open-label phase 1/2a clinical trial to assess the safety and preliminary efficacy of a subretinal implant consisting of a polarized monolayer of allogeneic human embryonic stem cell-derived retinal pigmented epithelium (RPE) cells in subjects with geographic atrophy (GA) secondary to dry age-related macular degeneration. Postmortem histology from one subject with very advanced disease shows the presence of donor RPE cells 2 years after implantation by immunoreactivity for RPE65 and donor-specific human leukocyte antigen (HLA) class I molecules. Markers of RPE cell polarity and phagocytosis suggest donor RPE function. Further histologic examination demonstrated CD34+ structures beneath the implant and CD4+, CD68+, and FoxP3+ cells in the tissue. Despite significant donor-host HLA mismatch, no clinical signs of retinitis, vitreitis, vasculitis, choroiditis, or serologic immune response were detected in the deceased subject or any other subject in the study. Subretinally implanted, HLA-mismatched donor RPE cells survive, express functional markers, and do not elicit clinically detectable intraocular inflammation or serologic immune responses even without long-term immunosuppression.
The Nile rat (Avicanthis niloticus) is an important animal model for biomedical research, includi... more The Nile rat (Avicanthis niloticus) is an important animal model for biomedical research, including the study of diurnal rhythms and type 2 diabetes. Here, we report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3,613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including those that affect genes associated with type 2 diabetes and metabolic dysfunctions. These include 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse. Our findings reflect the exceptional level of genomic detail present in this assembly, which will greatly expand the potential of the Nile rat as a model organism for genetic studies.
Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years ... more Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw. Thawed cells exhibit ≥ 95% viability, have morphology, pigmentation, and gene expression characteristic of mature RPE cells, and secrete the neuroprotective protein, pigment epithelium-derived factor (PEDF). Stability under liquid nitrogen (LN2) storage has been confirmed through one year. REPS were adm...
Retinal pigment epithelium (RPE) dysfunction and loss are a hallmark of non-neovascular age-relat... more Retinal pigment epithelium (RPE) dysfunction and loss are a hallmark of non-neovascular age-related macular degeneration (NNAMD). Without the RPE, a majority of overlying photoreceptors ultimately degenerate, leading to severe, progressive vision loss. Clinical and histological studies suggest that RPE replacement strategies may delay disease progression or restore vision. A prospective, interventional, U.S. Food and Drug Administration-cleared, phase 1/2a study is being conducted to assess the safety and efficacy of a composite subretinal implant in subjects with advanced NNAMD. The composite implant, termed the California Project to Cure Blindness-Retinal Pigment Epithelium 1 (CPCB-RPE1), consists of a polarized monolayer of human embryonic stem cell-derived RPE (hESC-RPE) on an ultrathin, synthetic parylene substrate designed to mimic Bruch's membrane. We report an interim analysis of the phase 1 cohort consisting of five subjects. Four of five subjects enrolled in the study ...
National Eye Institute recently issued a new Strategic Plan outlining priority research areas for... more National Eye Institute recently issued a new Strategic Plan outlining priority research areas for the next 5 years. Starting cell source for deriving stem cell lines is as an area with gaps and opportunities for making progress in regenerative medicine, a key area of emphasis within the NEI Strategic Plan. There is a critical need to understand how starting cell source affects the cell therapy product and what specific manufacturing capabilities and quality control standards are required for autologous vs allogeneic stem cell sources. With the goal of addressing some of these questions, in discussion with the community-at-large, NEI hosted a Town Hall at the Association for Research in Vision and Ophthalmology annual meeting in May 2022. This session leveraged recent clinical advances in autologous and allogeneic RPE replacement strategies to develop guidance for upcoming cell therapies for photoreceptors, retinal ganglion cells, and other ocular cell types. Our focus on stem cell-b...
The death of the retinal pigmented epithelium (RPE) induces the leading cause of blindness in the... more The death of the retinal pigmented epithelium (RPE) induces the leading cause of blindness in the elderly, a disease called age-related macular degeneration (AMD). Human embryonic stem cells (hESCs) have the potential to generate a limitless source of RPE for cellular therapies, but spontaneous differentiation methods require several months to produce mature cells. In 2013, a novel directed-differentiation protocol described efficient derivation of RPE in 14 days using nicotinamide as a key-inducing agent in the chemical cocktail. This study investigates the hypothesis that nicotinamide expedites RPE-derivation by inhibiting poly(ADP-ribose) polymerase-1 (PARP-1) during the neuralization component of differentiation. 3-aminobenzamide (3-ABA), a non-hydrolyzable nicotinamide analogue and PARP-1 inhibitor, was tested in place of nicotinamide. Gene expression analysis by qPCR, morphological assessment, and pigment quantification demonstrate that 3-ABA affects differentiation during the first 4 days of differ...
Uploads
Papers by Dennis Clegg