International Journal of Applied Geospatial Research, 2019
Coastline change and human activities in shoreline zones are two factors indicating the vulnerabi... more Coastline change and human activities in shoreline zones are two factors indicating the vulnerability and the quality of a coastal environment. In this article, coastline evolution and spatiotemporal differences on coastal touristic infrastructure are presented as two case studies. Both case studies have increasing interest among scientists monitoring sensitive coastal areas, and for stakeholders evolved in the tourist industry. The study is twofold: monitors the shoreline evolution and examines how the shoreline behavior affects the seasonal anthropogenic touristic infrastructure. Shoreline detection methodology integrates unmanned aerial systems (UAS) or high-resolution satellite images for data acquisition, and geographic object-based image analysis (GEOBIA) for the shoreline recognition and the infrastructure change detection. The methodology used produced robust results in the aspect of mapping and detecting coastline changes, coastal erosion and the human pressure due to speci...
Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017)
Coastline change and marine litter concentration in shoreline zones are two different emerging pr... more Coastline change and marine litter concentration in shoreline zones are two different emerging problems indicating the vulnerability as well as the quality of a coastal environment. Both problems present spatiotemporal changes due to weather and anthropogenic factors. Traditionally spatiotemporal changes in coastal environments are monitored using high-resolution satellite images and manned surveys. The last years, Unmanned Aerial Systems (UAS) are used as additional tool for monitoring environmental phenomena in sensitive coastal areas. In this study, two different case studies for mapping emerging coastal phenomena i.e. coastline changes and marine litter in Lesvos island, are presented. Both phenomena have increasing interest among scientists monitoring sensitive coastal areas. This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. The followed UAS-SfM methodology produces very detailed orthophoto maps. This high resolution spatial information is used for mapping and detecting primarily, marine litter on coastal and underwater zones and secondly, coastline changes and coastal erosion. More specific the produced orthophoto maps analyzed through GIS and with the use of the appropriate cartographic techniques the objective environmental parameters were mapped. Results showed that UAS-SfM pipeline produces geoinformation with high accuracy and spatial resolution that helps scientists to map with confidence environmental changes that take place in shoreline zones.
International Journal of Applied Geospatial Research
Coastline change and human activities in shoreline zones are two factors indicating the vulnerabi... more Coastline change and human activities in shoreline zones are two factors indicating the vulnerability and the quality of a coastal environment. In this article, coastline evolution and spatiotemporal differences on coastal touristic infrastructure are presented as two case studies. Both case studies have increasing interest among scientists monitoring sensitive coastal areas, and for stakeholders evolved in the tourist industry. The study is twofold: monitors the shoreline evolution and examines how the shoreline behavior affects the seasonal anthropogenic touristic infrastructure. Shoreline detection methodology integrates unmanned aerial systems (UAS) or high-resolution satellite images for data acquisition, and geographic object-based image analysis (GEOBIA) for the shoreline recognition and the infrastructure change detection. The methodology used produced robust results in the aspect of mapping and detecting coastline changes, coastal erosion and the human pressure due to speci...
Unmanned aerial systems (UAS) are widely used in the acquisition of high-resolution information i... more Unmanned aerial systems (UAS) are widely used in the acquisition of high-resolution information in the marine environment. Although the potential applications of UAS in marine habitat mapping are constantly increasing, many limitations need to be overcome—most of which are related to the prevalent environmental conditions—to reach efficient UAS surveys. The knowledge of the UAS limitations in marine data acquisition and the examination of the optimal flight conditions led to the development of the UASea toolbox. This study presents the UASea, a data acquisition toolbox that is developed for efficient UAS surveys in the marine environment. The UASea uses weather forecast data (i.e., wind speed, cloud cover, precipitation probability, etc.) and adaptive thresholds in a ruleset that calculates the optimal flight times in a day for the acquisition of reliable marine imagery using UAS in a given day. The toolbox provides hourly positive and negative suggestions, based on optimal or non-o...
Marine conservation and management require detailed and accurate habitat mapping, which is usuall... more Marine conservation and management require detailed and accurate habitat mapping, which is usually produced by collecting data using remote sensing methods. In recent years, unmanned aerial systems (UAS) are used for marine data acquisition, as they provide detailed and reliable information through very high-resolution orthophoto-maps. However, as for all remotely sensed data, it is important to study and understand the accuracy and reliability of the produced maps. In this study, the effect of different environmental conditions on the quality of UAS orthophoto-maps was examined through a positional and thematic accuracy assessment. Selected objects on the orthophoto-maps were also assessed as to their position, shape, and extent. The accuracy assessment results showed significant errors in the different maps and objects. The accuracy of the classified images varied between 2.1% and 27%. Seagrasses were under-classified, while the mixed substrate class was overclassified when enviro...
Aerial surveys in coastal areas using Unmanned Aerial Vehicles (UAVs) present many limitations. H... more Aerial surveys in coastal areas using Unmanned Aerial Vehicles (UAVs) present many limitations. However, the need for detailed and accurate information in a marine environment has made UAVs very popular. The aim of this paper is to present a protocol which summarizes the parameters that affect the reliability of the data acquisition process over the marine environment using Unmanned Aerial Systems (UAS). The proposed UAS Data Acquisition Protocol consists of three main categories: (i) Morphology of the study area, (ii) Environmental conditions, (iii) Flight parameters. These categories include the parameters prevailing in the study area during a UAV mission and affect the quality of marine data. Furthermore, a UAS toolbox, which combines forecast weather data values with predefined thresholds and calculates the optimal flight window times in a day, was developed. The UAS toolbox was tested in two case studies with data acquisition over a coastal study area. The first UAS survey was ...
International Journal of Applied Geospatial Research, 2019
Coastline change and human activities in shoreline zones are two factors indicating the vulnerabi... more Coastline change and human activities in shoreline zones are two factors indicating the vulnerability and the quality of a coastal environment. In this article, coastline evolution and spatiotemporal differences on coastal touristic infrastructure are presented as two case studies. Both case studies have increasing interest among scientists monitoring sensitive coastal areas, and for stakeholders evolved in the tourist industry. The study is twofold: monitors the shoreline evolution and examines how the shoreline behavior affects the seasonal anthropogenic touristic infrastructure. Shoreline detection methodology integrates unmanned aerial systems (UAS) or high-resolution satellite images for data acquisition, and geographic object-based image analysis (GEOBIA) for the shoreline recognition and the infrastructure change detection. The methodology used produced robust results in the aspect of mapping and detecting coastline changes, coastal erosion and the human pressure due to speci...
Fifth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2017)
Coastline change and marine litter concentration in shoreline zones are two different emerging pr... more Coastline change and marine litter concentration in shoreline zones are two different emerging problems indicating the vulnerability as well as the quality of a coastal environment. Both problems present spatiotemporal changes due to weather and anthropogenic factors. Traditionally spatiotemporal changes in coastal environments are monitored using high-resolution satellite images and manned surveys. The last years, Unmanned Aerial Systems (UAS) are used as additional tool for monitoring environmental phenomena in sensitive coastal areas. In this study, two different case studies for mapping emerging coastal phenomena i.e. coastline changes and marine litter in Lesvos island, are presented. Both phenomena have increasing interest among scientists monitoring sensitive coastal areas. This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. The followed UAS-SfM methodology produces very detailed orthophoto maps. This high resolution spatial information is used for mapping and detecting primarily, marine litter on coastal and underwater zones and secondly, coastline changes and coastal erosion. More specific the produced orthophoto maps analyzed through GIS and with the use of the appropriate cartographic techniques the objective environmental parameters were mapped. Results showed that UAS-SfM pipeline produces geoinformation with high accuracy and spatial resolution that helps scientists to map with confidence environmental changes that take place in shoreline zones.
International Journal of Applied Geospatial Research
Coastline change and human activities in shoreline zones are two factors indicating the vulnerabi... more Coastline change and human activities in shoreline zones are two factors indicating the vulnerability and the quality of a coastal environment. In this article, coastline evolution and spatiotemporal differences on coastal touristic infrastructure are presented as two case studies. Both case studies have increasing interest among scientists monitoring sensitive coastal areas, and for stakeholders evolved in the tourist industry. The study is twofold: monitors the shoreline evolution and examines how the shoreline behavior affects the seasonal anthropogenic touristic infrastructure. Shoreline detection methodology integrates unmanned aerial systems (UAS) or high-resolution satellite images for data acquisition, and geographic object-based image analysis (GEOBIA) for the shoreline recognition and the infrastructure change detection. The methodology used produced robust results in the aspect of mapping and detecting coastline changes, coastal erosion and the human pressure due to speci...
Unmanned aerial systems (UAS) are widely used in the acquisition of high-resolution information i... more Unmanned aerial systems (UAS) are widely used in the acquisition of high-resolution information in the marine environment. Although the potential applications of UAS in marine habitat mapping are constantly increasing, many limitations need to be overcome—most of which are related to the prevalent environmental conditions—to reach efficient UAS surveys. The knowledge of the UAS limitations in marine data acquisition and the examination of the optimal flight conditions led to the development of the UASea toolbox. This study presents the UASea, a data acquisition toolbox that is developed for efficient UAS surveys in the marine environment. The UASea uses weather forecast data (i.e., wind speed, cloud cover, precipitation probability, etc.) and adaptive thresholds in a ruleset that calculates the optimal flight times in a day for the acquisition of reliable marine imagery using UAS in a given day. The toolbox provides hourly positive and negative suggestions, based on optimal or non-o...
Marine conservation and management require detailed and accurate habitat mapping, which is usuall... more Marine conservation and management require detailed and accurate habitat mapping, which is usually produced by collecting data using remote sensing methods. In recent years, unmanned aerial systems (UAS) are used for marine data acquisition, as they provide detailed and reliable information through very high-resolution orthophoto-maps. However, as for all remotely sensed data, it is important to study and understand the accuracy and reliability of the produced maps. In this study, the effect of different environmental conditions on the quality of UAS orthophoto-maps was examined through a positional and thematic accuracy assessment. Selected objects on the orthophoto-maps were also assessed as to their position, shape, and extent. The accuracy assessment results showed significant errors in the different maps and objects. The accuracy of the classified images varied between 2.1% and 27%. Seagrasses were under-classified, while the mixed substrate class was overclassified when enviro...
Aerial surveys in coastal areas using Unmanned Aerial Vehicles (UAVs) present many limitations. H... more Aerial surveys in coastal areas using Unmanned Aerial Vehicles (UAVs) present many limitations. However, the need for detailed and accurate information in a marine environment has made UAVs very popular. The aim of this paper is to present a protocol which summarizes the parameters that affect the reliability of the data acquisition process over the marine environment using Unmanned Aerial Systems (UAS). The proposed UAS Data Acquisition Protocol consists of three main categories: (i) Morphology of the study area, (ii) Environmental conditions, (iii) Flight parameters. These categories include the parameters prevailing in the study area during a UAV mission and affect the quality of marine data. Furthermore, a UAS toolbox, which combines forecast weather data values with predefined thresholds and calculates the optimal flight window times in a day, was developed. The UAS toolbox was tested in two case studies with data acquisition over a coastal study area. The first UAS survey was ...
Uploads
Papers by Michaela Doukari