J. Neurochem. (2009) 109, 879–888.J. Neurochem. (2009) 109, 879–888.AbstractThe ability of alumin... more J. Neurochem. (2009) 109, 879–888.J. Neurochem. (2009) 109, 879–888.AbstractThe ability of aluminium to affect the oxidant status of specific areas of the brain (cerebellum, ventral midbrain, cortex, hippocampus, striatum) was investigated in rats intraperitoneally treated with aluminium chloride (10 mg Al3+/kg/day) for 10 days. The potential of aluminium to act as an etiological factor in Parkinson’s disease (PD) was assessed by studying its ability to increase oxidative stress in ventral midbrain and striatum and the striatal dopaminergic neurodegeneration induced by 6-hydroxydopamine in an experimental model of PD. The results showed that aluminium caused an increase in oxidative stress (TBARS, protein carbonyl content, and protein thiol content) for most of the brain regions studied, which was accompanied by a decrease in the activity of some antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase). However, studies in vitro confirmed the inability of aluminium to affect the activity of those enzymes. The reported effects exhibited a regional-selective behaviour for all the cerebral structures studied. Aluminium also enhanced the ability of 6-hydroxydopamine to cause oxidative stress and neurodegeneration in the dopaminergic system, which confirms its potential as a risk factor in the development of PD.The ability of aluminium to affect the oxidant status of specific areas of the brain (cerebellum, ventral midbrain, cortex, hippocampus, striatum) was investigated in rats intraperitoneally treated with aluminium chloride (10 mg Al3+/kg/day) for 10 days. The potential of aluminium to act as an etiological factor in Parkinson’s disease (PD) was assessed by studying its ability to increase oxidative stress in ventral midbrain and striatum and the striatal dopaminergic neurodegeneration induced by 6-hydroxydopamine in an experimental model of PD. The results showed that aluminium caused an increase in oxidative stress (TBARS, protein carbonyl content, and protein thiol content) for most of the brain regions studied, which was accompanied by a decrease in the activity of some antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase). However, studies in vitro confirmed the inability of aluminium to affect the activity of those enzymes. The reported effects exhibited a regional-selective behaviour for all the cerebral structures studied. Aluminium also enhanced the ability of 6-hydroxydopamine to cause oxidative stress and neurodegeneration in the dopaminergic system, which confirms its potential as a risk factor in the development of PD.
This work explores the potential of the MARCH-INSIDE methodology to seek a QSAR for MAO-A inhibit... more This work explores the potential of the MARCH-INSIDE methodology to seek a QSAR for MAO-A inhibitors from a heterogeneous series of compounds. A Markov model was used to quickly calculate the molecular electron delocalization, polarizability, refractivity, and n-octanol/water partition coefficients for a series of 1406 active/nonactive compounds. LDA was subsequently used to fit a classification function. The model showed 92.8% and 91.8% global accuracy and predictability in training and validation studies. This QSAR model was validated through a virtual screening of a series of coumarin derivatives. The 15 selected compounds were prepared and evaluated as in vitro MAO-A inhibitors. The theoretical prediction was compared with the experimental results and the model correctly predicted 13 compounds with only two mistakes on compounds with activities very close to the cutoff point established for the model. Consequently, this method represents a useful tool for the "in silico" screening of MAO-A inhibitors.
A precise and reproducible high-performance liquid chromatographic method for the determination o... more A precise and reproducible high-performance liquid chromatographic method for the determination of pentylenetetrazol in serum and brain tissue is described. The procedure employs reversed-phase chromatography, monitoring the eluant at 202 nm. Quantification is based on peak-height ratio of the drug to the internal standard (p-methylphenobarbital). A linear response is obtained to 100 micrograms/ml (serum) or micrograms/g (brain tissue). Within-day and between-day precision are smaller than 5%, and analytical recovery is greater than 95%. Numerous drugs tested do not interfere with the assay. The method has been used to investigate the kinetics of pentylenetetrazol distribution in serum and in discrete areas of rat brain.
The unilateral and intrastriatal injection of 6-hydroxydopamine is commonly used to provide a par... more The unilateral and intrastriatal injection of 6-hydroxydopamine is commonly used to provide a partial lesion model of Parkinson’s disease in the investigation of the molecular mechanisms involved in its pathogenesis and to assess new neuroprotective treatments. Its capacity to induce neurodegeneration has been related to its ability to undergo autoxidation in the presence of oxygen and consequently to generate oxidative stress. The aim of the present study was to investigate the time course of brain oxidative damage induced by 6-hydroxydopamine (6 μg in 5 μl of sterile saline containing 0.2% ascorbic acid) injection in the right striatum of the rat. The results of this study show that the indices of both lipid peroxidation (TBARS) and protein oxidation (carbonyl and free thiol contents) increase simultaneously in the ipsilateral striatum and ventral midbrain, reaching a peak value at 48-h post-injection for both TBARS and protein carbonyl content, and at 24 h for protein free thiol content. A lower but significant increase was also observed in the contralateral side (striatum and ventral midbrain). The indices of oxidative stress returned to values close to those found in controls at 7-day post-injection. These data show that the oxidative stress is a possible triggering factor for the neurodegenerative process and the retrograde neurodegeneration observed after 1-week post-injection is a consequence of the cell damage caused during the first days post-injection. The optimal time to assess brain indices of oxidative stress in this model is 48-h post-injection.
Abstract: 6-Hydroxydopamine (6-OHDA) is a dopaminergic neurotoxin putatively involved in the path... more Abstract: 6-Hydroxydopamine (6-OHDA) is a dopaminergic neurotoxin putatively involved in the pathogenesis of Parkinson's disease (PD). Its neurotoxicity has been related to the production of reactive oxygen species. In this study we examine the effects of the antioxidants ascorbic acid (AA), glutathione (GSH), cysteine (CySH), and N-acetyl-CySH (NAC) on the autoxidation and neurotoxicity of 6-OHDA. In vitro, the autoxidation of 6-OHDA proceeds rapidly with the formation of H2O2 and with the participation of the H2O2 produced in the reaction. The presence of AA induced a reduction in the consumption of O2 during the autoxidation of 6-OHDA and a negligible presence of the p-quinone, which demonstrates the efficiency of AA to act as a redox cycling agent. The presence of GSH, CySH, and NAC produced a significant reduction in the autoxidation of 6-OHDA. In vivo, the presence of sulfhydryl antioxidants protected against neuronal degeneration in the striatum, which was particularly remarkable in the case of CySH and was attributed to its capacity to remove the H2O2 produced in the autoxidation of 6-OHDA. These results corroborate the involvement of oxidative stress as the major mechanism in the neurotoxicity of 6-OHDA and the putative role of CySH as a scavenger in relation to PD.
There is growing evidence indicating that oxidative stress is a key contributor to the pathogenes... more There is growing evidence indicating that oxidative stress is a key contributor to the pathogenesis and progression of Parkinson's disease. The brain, and particularly the basal ganglia, possesses a local rennin-angiotensin system. Angiotensin activates NAD(P)H-dependent oxidases, which are a major intracellular source of superoxide, and angiotensin converting enzyme inhibitors (ACEIs) have shown antioxidant properties. We treated mice with MPTP and the ACEI captopril to study the possible neuroprotective and antioxidant effects of the latter on the dopaminergic system. Pre-treatment with captopril induced a significant reduction in the MPTP-induced loss of dopaminergic neurons in the substantia nigra and a significant reduction in the loss of dopaminergic terminals in the striatum. Furthermore, captopril reduced the MPTP-induced increase in the levels of major oxidative stress indicators (i.e. lipid peroxidation and protein oxidation) in the ventral midbrain and the striatum. Captopril did not reduce striatal MPP(+) levels, MAO-B activity or dopamine transporter activity, which may reduce MPTP neurotoxicity. Our results suggest that angiotensin-converting enzyme inhibitors may be useful for treatment of Parkinson's disease, and that further investigation should focus on the neuroprotective capacity of these compounds.
A new series of 3-, 4-, 7-polysubstituted coumarins have been designed and evaluated for their mo... more A new series of 3-, 4-, 7-polysubstituted coumarins have been designed and evaluated for their monoamine oxidase A and monoamine oxidase B (MAO-A and MAO-B) inhibitory potency. Substituents at position 7 consisted of a bridge of different physicochemical nature linking a phenyl ring to the coumarin scaffold. Structure-affinity and structure-selectivity relationships, derived through CoMFA-GOLPE and docking studies, revealed the key physicochemical interactions responsible for the observed MAO-B and MAO-A inhibitory potency and suggested the main structural determinants for high selectivity toward one of the two enzymatic isoforms. The predictive power of our models was proved with the design of a new inhibitor demonstrating an outstanding MAO-B affinity (pIC50 = 8.29) and the highest MAO-B selectivity (DeltapIC50 = 3.39) within the entire series of ligands examined herein.
A number of condensed azines, mostly belonging to the families of indeno-fused pyridazines (1), p... more A number of condensed azines, mostly belonging to the families of indeno-fused pyridazines (1), pyrimidines (2, 3), and 1,2,4-triazines (4, 5), were synthesized and evaluated in vitro as monoamine oxidase (MAO) A and B inhibitors. Most of them showed higher inhibition potency toward MAO-B, the most effective one being 3-(3-nitrophenyl)-9H-indeno[1,2-e] [1,2,4]triazin-9-one (4c), which displayed an IC50 value of 80 nM and proved to be 10-fold more potent than its [2,1-e] fusion isomer 5. Replacing the 3-phenyl group of the known indeno[1,2-c]pyridazin-5-one MAO-B inhibitors with a flexible phenoxymethyl group enhanced the inhibitory potency. The inhibition data highlighted the importance of the aza-heterocyclic scaffold in affecting the MAO isoform selectivity. The 3-phenyl derivatives with type 1, 4, and 5 scaffolds were inhibitors of MAO-B with little or no MAO-A effect, whereas 2- or 3-phenyl derivatives of type 2 and 3 pyrimidine-containing fusion isomers inhibited both isoenzymes with a structure-dependent preference toward MAO-A.
J. Neurochem. (2009) 109, 879–888.J. Neurochem. (2009) 109, 879–888.AbstractThe ability of alumin... more J. Neurochem. (2009) 109, 879–888.J. Neurochem. (2009) 109, 879–888.AbstractThe ability of aluminium to affect the oxidant status of specific areas of the brain (cerebellum, ventral midbrain, cortex, hippocampus, striatum) was investigated in rats intraperitoneally treated with aluminium chloride (10 mg Al3+/kg/day) for 10 days. The potential of aluminium to act as an etiological factor in Parkinson’s disease (PD) was assessed by studying its ability to increase oxidative stress in ventral midbrain and striatum and the striatal dopaminergic neurodegeneration induced by 6-hydroxydopamine in an experimental model of PD. The results showed that aluminium caused an increase in oxidative stress (TBARS, protein carbonyl content, and protein thiol content) for most of the brain regions studied, which was accompanied by a decrease in the activity of some antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase). However, studies in vitro confirmed the inability of aluminium to affect the activity of those enzymes. The reported effects exhibited a regional-selective behaviour for all the cerebral structures studied. Aluminium also enhanced the ability of 6-hydroxydopamine to cause oxidative stress and neurodegeneration in the dopaminergic system, which confirms its potential as a risk factor in the development of PD.The ability of aluminium to affect the oxidant status of specific areas of the brain (cerebellum, ventral midbrain, cortex, hippocampus, striatum) was investigated in rats intraperitoneally treated with aluminium chloride (10 mg Al3+/kg/day) for 10 days. The potential of aluminium to act as an etiological factor in Parkinson’s disease (PD) was assessed by studying its ability to increase oxidative stress in ventral midbrain and striatum and the striatal dopaminergic neurodegeneration induced by 6-hydroxydopamine in an experimental model of PD. The results showed that aluminium caused an increase in oxidative stress (TBARS, protein carbonyl content, and protein thiol content) for most of the brain regions studied, which was accompanied by a decrease in the activity of some antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase). However, studies in vitro confirmed the inability of aluminium to affect the activity of those enzymes. The reported effects exhibited a regional-selective behaviour for all the cerebral structures studied. Aluminium also enhanced the ability of 6-hydroxydopamine to cause oxidative stress and neurodegeneration in the dopaminergic system, which confirms its potential as a risk factor in the development of PD.
This work explores the potential of the MARCH-INSIDE methodology to seek a QSAR for MAO-A inhibit... more This work explores the potential of the MARCH-INSIDE methodology to seek a QSAR for MAO-A inhibitors from a heterogeneous series of compounds. A Markov model was used to quickly calculate the molecular electron delocalization, polarizability, refractivity, and n-octanol/water partition coefficients for a series of 1406 active/nonactive compounds. LDA was subsequently used to fit a classification function. The model showed 92.8% and 91.8% global accuracy and predictability in training and validation studies. This QSAR model was validated through a virtual screening of a series of coumarin derivatives. The 15 selected compounds were prepared and evaluated as in vitro MAO-A inhibitors. The theoretical prediction was compared with the experimental results and the model correctly predicted 13 compounds with only two mistakes on compounds with activities very close to the cutoff point established for the model. Consequently, this method represents a useful tool for the "in silico" screening of MAO-A inhibitors.
A precise and reproducible high-performance liquid chromatographic method for the determination o... more A precise and reproducible high-performance liquid chromatographic method for the determination of pentylenetetrazol in serum and brain tissue is described. The procedure employs reversed-phase chromatography, monitoring the eluant at 202 nm. Quantification is based on peak-height ratio of the drug to the internal standard (p-methylphenobarbital). A linear response is obtained to 100 micrograms/ml (serum) or micrograms/g (brain tissue). Within-day and between-day precision are smaller than 5%, and analytical recovery is greater than 95%. Numerous drugs tested do not interfere with the assay. The method has been used to investigate the kinetics of pentylenetetrazol distribution in serum and in discrete areas of rat brain.
The unilateral and intrastriatal injection of 6-hydroxydopamine is commonly used to provide a par... more The unilateral and intrastriatal injection of 6-hydroxydopamine is commonly used to provide a partial lesion model of Parkinson’s disease in the investigation of the molecular mechanisms involved in its pathogenesis and to assess new neuroprotective treatments. Its capacity to induce neurodegeneration has been related to its ability to undergo autoxidation in the presence of oxygen and consequently to generate oxidative stress. The aim of the present study was to investigate the time course of brain oxidative damage induced by 6-hydroxydopamine (6 μg in 5 μl of sterile saline containing 0.2% ascorbic acid) injection in the right striatum of the rat. The results of this study show that the indices of both lipid peroxidation (TBARS) and protein oxidation (carbonyl and free thiol contents) increase simultaneously in the ipsilateral striatum and ventral midbrain, reaching a peak value at 48-h post-injection for both TBARS and protein carbonyl content, and at 24 h for protein free thiol content. A lower but significant increase was also observed in the contralateral side (striatum and ventral midbrain). The indices of oxidative stress returned to values close to those found in controls at 7-day post-injection. These data show that the oxidative stress is a possible triggering factor for the neurodegenerative process and the retrograde neurodegeneration observed after 1-week post-injection is a consequence of the cell damage caused during the first days post-injection. The optimal time to assess brain indices of oxidative stress in this model is 48-h post-injection.
Abstract: 6-Hydroxydopamine (6-OHDA) is a dopaminergic neurotoxin putatively involved in the path... more Abstract: 6-Hydroxydopamine (6-OHDA) is a dopaminergic neurotoxin putatively involved in the pathogenesis of Parkinson's disease (PD). Its neurotoxicity has been related to the production of reactive oxygen species. In this study we examine the effects of the antioxidants ascorbic acid (AA), glutathione (GSH), cysteine (CySH), and N-acetyl-CySH (NAC) on the autoxidation and neurotoxicity of 6-OHDA. In vitro, the autoxidation of 6-OHDA proceeds rapidly with the formation of H2O2 and with the participation of the H2O2 produced in the reaction. The presence of AA induced a reduction in the consumption of O2 during the autoxidation of 6-OHDA and a negligible presence of the p-quinone, which demonstrates the efficiency of AA to act as a redox cycling agent. The presence of GSH, CySH, and NAC produced a significant reduction in the autoxidation of 6-OHDA. In vivo, the presence of sulfhydryl antioxidants protected against neuronal degeneration in the striatum, which was particularly remarkable in the case of CySH and was attributed to its capacity to remove the H2O2 produced in the autoxidation of 6-OHDA. These results corroborate the involvement of oxidative stress as the major mechanism in the neurotoxicity of 6-OHDA and the putative role of CySH as a scavenger in relation to PD.
There is growing evidence indicating that oxidative stress is a key contributor to the pathogenes... more There is growing evidence indicating that oxidative stress is a key contributor to the pathogenesis and progression of Parkinson's disease. The brain, and particularly the basal ganglia, possesses a local rennin-angiotensin system. Angiotensin activates NAD(P)H-dependent oxidases, which are a major intracellular source of superoxide, and angiotensin converting enzyme inhibitors (ACEIs) have shown antioxidant properties. We treated mice with MPTP and the ACEI captopril to study the possible neuroprotective and antioxidant effects of the latter on the dopaminergic system. Pre-treatment with captopril induced a significant reduction in the MPTP-induced loss of dopaminergic neurons in the substantia nigra and a significant reduction in the loss of dopaminergic terminals in the striatum. Furthermore, captopril reduced the MPTP-induced increase in the levels of major oxidative stress indicators (i.e. lipid peroxidation and protein oxidation) in the ventral midbrain and the striatum. Captopril did not reduce striatal MPP(+) levels, MAO-B activity or dopamine transporter activity, which may reduce MPTP neurotoxicity. Our results suggest that angiotensin-converting enzyme inhibitors may be useful for treatment of Parkinson's disease, and that further investigation should focus on the neuroprotective capacity of these compounds.
A new series of 3-, 4-, 7-polysubstituted coumarins have been designed and evaluated for their mo... more A new series of 3-, 4-, 7-polysubstituted coumarins have been designed and evaluated for their monoamine oxidase A and monoamine oxidase B (MAO-A and MAO-B) inhibitory potency. Substituents at position 7 consisted of a bridge of different physicochemical nature linking a phenyl ring to the coumarin scaffold. Structure-affinity and structure-selectivity relationships, derived through CoMFA-GOLPE and docking studies, revealed the key physicochemical interactions responsible for the observed MAO-B and MAO-A inhibitory potency and suggested the main structural determinants for high selectivity toward one of the two enzymatic isoforms. The predictive power of our models was proved with the design of a new inhibitor demonstrating an outstanding MAO-B affinity (pIC50 = 8.29) and the highest MAO-B selectivity (DeltapIC50 = 3.39) within the entire series of ligands examined herein.
A number of condensed azines, mostly belonging to the families of indeno-fused pyridazines (1), p... more A number of condensed azines, mostly belonging to the families of indeno-fused pyridazines (1), pyrimidines (2, 3), and 1,2,4-triazines (4, 5), were synthesized and evaluated in vitro as monoamine oxidase (MAO) A and B inhibitors. Most of them showed higher inhibition potency toward MAO-B, the most effective one being 3-(3-nitrophenyl)-9H-indeno[1,2-e] [1,2,4]triazin-9-one (4c), which displayed an IC50 value of 80 nM and proved to be 10-fold more potent than its [2,1-e] fusion isomer 5. Replacing the 3-phenyl group of the known indeno[1,2-c]pyridazin-5-one MAO-B inhibitors with a flexible phenoxymethyl group enhanced the inhibitory potency. The inhibition data highlighted the importance of the aza-heterocyclic scaffold in affecting the MAO isoform selectivity. The 3-phenyl derivatives with type 1, 4, and 5 scaffolds were inhibitors of MAO-B with little or no MAO-A effect, whereas 2- or 3-phenyl derivatives of type 2 and 3 pyrimidine-containing fusion isomers inhibited both isoenzymes with a structure-dependent preference toward MAO-A.
Uploads
Papers by Estefanía Méndez