The following paper presents a highly efficient wireless power transfer (WPT) system for unmanned... more The following paper presents a highly efficient wireless power transfer (WPT) system for unmanned aerial vehicle (UAV) applications. The proposed system is designed as a deployable landing pad, where UAVs can be efficiently charged at distances up to 20 cm, while the UAV is landing. The operation frequency is 50 kHz. The current work presents two major contributions that help improve this aspect: a novel RX charging pad geometry and an unconventional design of a low-voltage, high-power DC–AC inverter using discrete MOSFET transistors. Both the pad’s geometry and the inverter are designed specifically for UAV applications. The input DC to output AC system efficiency peaks at approximately 95%. The peak efficiency is obtained at power transfers of 625 W. A major difference between the present design and traditionally used state-of-the-art systems is the low DC supply voltage requirement of just 24 V, compared with typical values that range from 50 up to 300 V at similar output power.
The following paper presents a highly efficient wireless power transfer (WPT) system for unmanned... more The following paper presents a highly efficient wireless power transfer (WPT) system for unmanned aerial vehicle (UAV) applications. The proposed system is designed as a deployable landing pad, where UAVs can be efficiently charged at distances up to 20 cm, while the UAV is landing. The operation frequency is 50 kHz. The current work presents two major contributions that help improve this aspect: a novel RX charging pad geometry and an unconventional design of a low-voltage, high-power DC–AC inverter using discrete MOSFET transistors. Both the pad’s geometry and the inverter are designed specifically for UAV applications. The input DC to output AC system efficiency peaks at approximately 95%. The peak efficiency is obtained at power transfers of 625 W. A major difference between the present design and traditionally used state-of-the-art systems is the low DC supply voltage requirement of just 24 V, compared with typical values that range from 50 up to 300 V at similar output power.
Uploads
Papers by Filip Rosu