Architectural energetics is a methodology that translates architectural objects into a quantitati... more Architectural energetics is a methodology that translates architectural objects into a quantitative time-labor equivalent, from which information about past societies, labor organizations, or political relations can be inferred. Preceding such study, the volume of every architectural structure must be determined. This is usually done by in situ measurements and computing of volume by mathematical formulae or using UAV-based photogrammetry processed into digital surface model. However, both of these methods are impracticable in the case of buried or semi-buried monuments where the only remaining option is direct excavation. Hence, we introduce a new method for the determination of volumetric information based on the electrical resistivity tomography (ERT) geophysical method. We conducted our study at defensive lines (ramparts/ditches) within two hillforts of different ages, constructed from different building materials, in the Czech Republic. ERT surveys performed in 3D can different...
Abstract Mineral magnetic properties are sensitive indicators for evaluating environmental change... more Abstract Mineral magnetic properties are sensitive indicators for evaluating environmental changes, including environmental pressure caused by atmospherically deposited anthropogenic magnetic particles. The most commonly and easily measured magnetic parameter of soils is magnetic susceptibility, which reflects the combined ferromagnetic minerals of lithogenic, pedogenic, and anthropogenic origins. In volcanic soils rich in ferrimagnetic minerals, unfortunately, contributions of pedogenic and anthropogenic origins are masked by the lithogenic contribution. More study is therefore needed of soils developed on highly magnetic lithologies. This work aimed to determine links between magnetic susceptibility and concentration of potentially toxic elements derived from anthropogenic activities in soil (Aluandic Andosols) developed from highly magnetic parent material in a locality where contamination is not expected. The approach is based on relationships between magnetic properties and geochemical signatures of the investigated soils. Magnetic properties are represented by mass-specific magnetic susceptibility (χ) and frequency-dependent magnetic susceptibility (χFD%). Geochemical signatures are represented by concentrations of the elements Fe, Si, Ti, Zr, Sr, Al, Nb, Mn, Ca, Rb, K, P, Zn, S, Pb, Cr, V, Ni, Cu, and As; pH in H2O; soil organic carbon content; and granulometry. Soil contamination was evaluated using two indexes: enrichment factor and geo-accumulation index. Our findings show that χFD% correlates with presence of the toxic elements S and Pb, derived from human activities, while χ exhibits strong correlation with elements Al, Ti, V, and Fe, reflecting natural origin of parent material. In case of soils with well-developed humus horizon, χFD% can be used as a proxy parameter for identifying anthropogenic influence. Our findings are beneficial also for archaeologists using magnetic susceptibility of soils as a link to chemical signatures of past settlement activities.
Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of... more Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of v...
Magnetic properties of environmental samples can serve as fast and relatively cheap proxy method ... more Magnetic properties of environmental samples can serve as fast and relatively cheap proxy method to investigate occurrence of iron oxides. These methods are very sensitive in detecting strongly magnetic compounds such as magnetite and maghemite and can reveal concentration and assess grain-size distribution of these minerals. This information can be significant in estimating e.g. the source of pollutants, monitoring pollution load, or investigating seasonal and climatic effects. We studied magnetic properties of PM1, PM2.5 and PM10, collected over 32-48 hours in a small settlement in south Bohemia during heating and non-heating season. The site is rather remote, with negligible traffic and industrial contributions to air pollution. Thus, the suggested seasonal effect should be dominantly due to local (domestic) heating, burning wood or coal. In our contribution we show typical differences in PMx concentration, which is much higher in the winter (heating) sample, accompanied by SEM a...
Several studies confirm that soil magnetometry can serve as proxy of industrial immisions as well... more Several studies confirm that soil magnetometry can serve as proxy of industrial immisions as well as heavy-metal contamination. The important assumption for magnetic mapping of contaminated soils is that atmospherically deposited particulate matter, including the ferrimagnetic phase, accumulates in the top soil horizons and remains there over long period. Only if this is true, large areas can be reliably mapped
Pedogenic magnetic fraction in soils is attributed to fine-grained particles, i.e. superparamagne... more Pedogenic magnetic fraction in soils is attributed to fine-grained particles, i.e. superparamagnetic grains. In the case of a strongly magnetic geogenic fraction, pedogenic magnetic contribution is hard to detect. To the best of our knowledge, detailed research into the masking of pedogenic superparamagnetic grains and quantification of this effect has not yet been carried out. The principal aim of our research is to quantify the influence of coarse-grained ferrimagnetic fraction on the detection of the superparamagnetic grains. In order to describe the masking phenomenon, volume and frequency-dependent magnetic susceptibility were determined on a set of laboratory prepared samples composed of natural substances: a diamagnetic quartz matrix, detrital coarse-grained ferrimagnetic crystals from alkaline and ultra-alkaline igneous rocks, and superparamagnetic soil concretions formed in the Haplic Cambisol. Mineralogy, concentration, type and grain size of the tested material were descr...
Architectural energetics is a methodology that translates architectural objects into a quantitati... more Architectural energetics is a methodology that translates architectural objects into a quantitative time-labor equivalent, from which information about past societies, labor organizations, or political relations can be inferred. Preceding such study, the volume of every architectural structure must be determined. This is usually done by in situ measurements and computing of volume by mathematical formulae or using UAV-based photogrammetry processed into digital surface model. However, both of these methods are impracticable in the case of buried or semi-buried monuments where the only remaining option is direct excavation. Hence, we introduce a new method for the determination of volumetric information based on the electrical resistivity tomography (ERT) geophysical method. We conducted our study at defensive lines (ramparts/ditches) within two hillforts of different ages, constructed from different building materials, in the Czech Republic. ERT surveys performed in 3D can different...
Abstract Mineral magnetic properties are sensitive indicators for evaluating environmental change... more Abstract Mineral magnetic properties are sensitive indicators for evaluating environmental changes, including environmental pressure caused by atmospherically deposited anthropogenic magnetic particles. The most commonly and easily measured magnetic parameter of soils is magnetic susceptibility, which reflects the combined ferromagnetic minerals of lithogenic, pedogenic, and anthropogenic origins. In volcanic soils rich in ferrimagnetic minerals, unfortunately, contributions of pedogenic and anthropogenic origins are masked by the lithogenic contribution. More study is therefore needed of soils developed on highly magnetic lithologies. This work aimed to determine links between magnetic susceptibility and concentration of potentially toxic elements derived from anthropogenic activities in soil (Aluandic Andosols) developed from highly magnetic parent material in a locality where contamination is not expected. The approach is based on relationships between magnetic properties and geochemical signatures of the investigated soils. Magnetic properties are represented by mass-specific magnetic susceptibility (χ) and frequency-dependent magnetic susceptibility (χFD%). Geochemical signatures are represented by concentrations of the elements Fe, Si, Ti, Zr, Sr, Al, Nb, Mn, Ca, Rb, K, P, Zn, S, Pb, Cr, V, Ni, Cu, and As; pH in H2O; soil organic carbon content; and granulometry. Soil contamination was evaluated using two indexes: enrichment factor and geo-accumulation index. Our findings show that χFD% correlates with presence of the toxic elements S and Pb, derived from human activities, while χ exhibits strong correlation with elements Al, Ti, V, and Fe, reflecting natural origin of parent material. In case of soils with well-developed humus horizon, χFD% can be used as a proxy parameter for identifying anthropogenic influence. Our findings are beneficial also for archaeologists using magnetic susceptibility of soils as a link to chemical signatures of past settlement activities.
Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of... more Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of v...
Magnetic properties of environmental samples can serve as fast and relatively cheap proxy method ... more Magnetic properties of environmental samples can serve as fast and relatively cheap proxy method to investigate occurrence of iron oxides. These methods are very sensitive in detecting strongly magnetic compounds such as magnetite and maghemite and can reveal concentration and assess grain-size distribution of these minerals. This information can be significant in estimating e.g. the source of pollutants, monitoring pollution load, or investigating seasonal and climatic effects. We studied magnetic properties of PM1, PM2.5 and PM10, collected over 32-48 hours in a small settlement in south Bohemia during heating and non-heating season. The site is rather remote, with negligible traffic and industrial contributions to air pollution. Thus, the suggested seasonal effect should be dominantly due to local (domestic) heating, burning wood or coal. In our contribution we show typical differences in PMx concentration, which is much higher in the winter (heating) sample, accompanied by SEM a...
Several studies confirm that soil magnetometry can serve as proxy of industrial immisions as well... more Several studies confirm that soil magnetometry can serve as proxy of industrial immisions as well as heavy-metal contamination. The important assumption for magnetic mapping of contaminated soils is that atmospherically deposited particulate matter, including the ferrimagnetic phase, accumulates in the top soil horizons and remains there over long period. Only if this is true, large areas can be reliably mapped
Pedogenic magnetic fraction in soils is attributed to fine-grained particles, i.e. superparamagne... more Pedogenic magnetic fraction in soils is attributed to fine-grained particles, i.e. superparamagnetic grains. In the case of a strongly magnetic geogenic fraction, pedogenic magnetic contribution is hard to detect. To the best of our knowledge, detailed research into the masking of pedogenic superparamagnetic grains and quantification of this effect has not yet been carried out. The principal aim of our research is to quantify the influence of coarse-grained ferrimagnetic fraction on the detection of the superparamagnetic grains. In order to describe the masking phenomenon, volume and frequency-dependent magnetic susceptibility were determined on a set of laboratory prepared samples composed of natural substances: a diamagnetic quartz matrix, detrital coarse-grained ferrimagnetic crystals from alkaline and ultra-alkaline igneous rocks, and superparamagnetic soil concretions formed in the Haplic Cambisol. Mineralogy, concentration, type and grain size of the tested material were descr...
Uploads
Papers by Hana grison