One of the common tasks in clinical natural language processing is medical entity linking (MEL) w... more One of the common tasks in clinical natural language processing is medical entity linking (MEL) which involves mention detection followed by linking the mention to an entity in a knowledge base. One reason that MEL has not been solved is due to a problem that occurs in language where ambiguous texts can be resolved to several named entities. This problem is exacerbated when processing text found in electronic health records. Recent work has shown that deep learning models based on transformers outperform previous methods on linking at higher rates of performance. We introduce NeighBERT, a custom pre-training technique which extends BERT \citep{devlin-etal-2019-bert} by encoding how entities are related within a knowledge graph. This technique adds relational context that has been traditionally missing in original BERT, helping resolve the ambiguity found in clinical text. In our experiments, NeighBERT improves the precision, recall and F1-score of the state of the art by 1--3 points...
One of the common tasks in clinical natural language processing is medical entity linking (MEL) w... more One of the common tasks in clinical natural language processing is medical entity linking (MEL) which involves mention detection followed by linking the mention to an entity in a knowledge base. One reason that MEL has not been solved is due to a problem that occurs in language where ambiguous texts can be resolved to several named entities. This problem is exacerbated when processing text found in electronic health records. Recent work has shown that deep learning models based on transformers outperform previous methods on linking at higher rates of performance. We introduce NeighBERT, a custom pre-training technique which extends BERT \citep{devlin-etal-2019-bert} by encoding how entities are related within a knowledge graph. This technique adds relational context that has been traditionally missing in original BERT, helping resolve the ambiguity found in clinical text. In our experiments, NeighBERT improves the precision, recall and F1-score of the state of the art by 1--3 points...
Uploads
Papers by John Felix Ortega