Physica E: Low-dimensional Systems and Nanostructures, 1998
Coupled double quantum dots and quantum dot superlattices are formed by utilizing the strain of a... more Coupled double quantum dots and quantum dot superlattices are formed by utilizing the strain of an InP island on top of a near-surface multi-quantum-well structure. The number and composition of the quantum wells together with the thickness of the barrier separating the quantum wells are varied to investigate the coupling of the wave functions of the carriers confined in separate
Proceedings of SPIE - The International Society for Optical Engineering
n recent years, experimental work has shown that significant luminescence enhancement can be obta... more n recent years, experimental work has shown that significant luminescence enhancement can be obtained from quantum-well (QW) light-emitting diodes (LEDs) by using metallic grating, which diffracts efficiently optical modes and resonances trapped in these structures and converts surface plasmon (SP) modes into radiative modes. We employ a powerful simulation tool to provide a deep insight into the physics of plasmonic enhancement and present guidelines on how to optimize light-extraction in III-nitride LED structures incorporating an emitting InGaN QW located in the vicinity of a grated silver surface. The model uses first-principle theory, coupling the dyadic Green’s function formalism for solving Maxwell’s equations to fluctuational electrodynamics, and employs a recursive and transparent solution method allowing the fields to be written in a closed form. We demonstrate the significant effect of the type of the periodic grating and layer structure on light-extraction efficiency by ...
Physica E: Low-dimensional Systems and Nanostructures, 1998
Coupled double quantum dots and quantum dot superlattices are formed by utilizing the strain of a... more Coupled double quantum dots and quantum dot superlattices are formed by utilizing the strain of an InP island on top of a near-surface multi-quantum-well structure. The number and composition of the quantum wells together with the thickness of the barrier separating the quantum wells are varied to investigate the coupling of the wave functions of the carriers confined in separate
Proceedings of SPIE - The International Society for Optical Engineering
n recent years, experimental work has shown that significant luminescence enhancement can be obta... more n recent years, experimental work has shown that significant luminescence enhancement can be obtained from quantum-well (QW) light-emitting diodes (LEDs) by using metallic grating, which diffracts efficiently optical modes and resonances trapped in these structures and converts surface plasmon (SP) modes into radiative modes. We employ a powerful simulation tool to provide a deep insight into the physics of plasmonic enhancement and present guidelines on how to optimize light-extraction in III-nitride LED structures incorporating an emitting InGaN QW located in the vicinity of a grated silver surface. The model uses first-principle theory, coupling the dyadic Green’s function formalism for solving Maxwell’s equations to fluctuational electrodynamics, and employs a recursive and transparent solution method allowing the fields to be written in a closed form. We demonstrate the significant effect of the type of the periodic grating and layer structure on light-extraction efficiency by ...
Uploads
Papers by Jukka Tulkki