In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D la... more In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the curr...
Introduction Layered thin-film structures are used in microelectronic, opto-electronic, flat pane... more Introduction Layered thin-film structures are used in microelectronic, opto-electronic, flat panel display, and electronic packaging technologies. A few examples are given below. Very large-scale integration (VLSI) of circuits on computer chips are made of multilayers of interconnects of thin metal films patterned into submicron-wide lines and vias. Semiconductor transistor devices rely on the growth of epitaxial thin layers on semiconductor substrates, such as the growth of a thin layer of p -type Si on a substrate of n +-type Si [1–3]. The gate of the transistor device is formed by the growth of a thin layer of oxide on the semiconductor. Solid-state lasers are made by sandwiching thin layers of light-emitting semiconductors between layers of a different semiconductor. In electronic and optical systems, the active device elements lie within the top few microns of the surface; this is the province of thin-film technology. Thin films bridge the gap between monolayer (or nanoscale structures) and bulk structures. They span thicknesses ranging from a few nanometers to a few microns. This book deals with the science of processing and reliability of thin films as they apply to electronic technology and devices [4]. To begin, this chapter describes the application of thin films to modern advanced technologies with examples.
... The results were analyzed by the statistical model of Weibull distribution function [W. Weibu... more ... The results were analyzed by the statistical model of Weibull distribution function [W. Weibull, ASME ... failure process at the interface and to predict the characteristic lifetime of solder joints as a ... Helfen, A. Myagotin, P. Pernot, M. Di Michiel, P. Mikulik, A. Berthold, and T. Baumbach ...
On a silicon chip, thin-film under-bump metallization (UBM) is needed to join the solder bump to ... more On a silicon chip, thin-film under-bump metallization (UBM) is needed to join the solder bump to the Al or Cu wiring on the chip and also to control the size of the solder bump. This is because the oxide on a free Al surface prevents the wetting of molten solder. On the ...
In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D la... more In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the curr...
Introduction Layered thin-film structures are used in microelectronic, opto-electronic, flat pane... more Introduction Layered thin-film structures are used in microelectronic, opto-electronic, flat panel display, and electronic packaging technologies. A few examples are given below. Very large-scale integration (VLSI) of circuits on computer chips are made of multilayers of interconnects of thin metal films patterned into submicron-wide lines and vias. Semiconductor transistor devices rely on the growth of epitaxial thin layers on semiconductor substrates, such as the growth of a thin layer of p -type Si on a substrate of n +-type Si [1–3]. The gate of the transistor device is formed by the growth of a thin layer of oxide on the semiconductor. Solid-state lasers are made by sandwiching thin layers of light-emitting semiconductors between layers of a different semiconductor. In electronic and optical systems, the active device elements lie within the top few microns of the surface; this is the province of thin-film technology. Thin films bridge the gap between monolayer (or nanoscale structures) and bulk structures. They span thicknesses ranging from a few nanometers to a few microns. This book deals with the science of processing and reliability of thin films as they apply to electronic technology and devices [4]. To begin, this chapter describes the application of thin films to modern advanced technologies with examples.
... The results were analyzed by the statistical model of Weibull distribution function [W. Weibu... more ... The results were analyzed by the statistical model of Weibull distribution function [W. Weibull, ASME ... failure process at the interface and to predict the characteristic lifetime of solder joints as a ... Helfen, A. Myagotin, P. Pernot, M. Di Michiel, P. Mikulik, A. Berthold, and T. Baumbach ...
On a silicon chip, thin-film under-bump metallization (UBM) is needed to join the solder bump to ... more On a silicon chip, thin-film under-bump metallization (UBM) is needed to join the solder bump to the Al or Cu wiring on the chip and also to control the size of the solder bump. This is because the oxide on a free Al surface prevents the wetting of molten solder. On the ...
Uploads
Papers by King-Ning Tu