Journal of Colloid and Interface Science, Dec 1, 2021
HYPOTHESIS It has been verified that a surface of single micro-scale structures with certain roug... more HYPOTHESIS It has been verified that a surface of single micro-scale structures with certain roughness could exhibit petal effect. That is, water drops with a contact angle larger than 150° would pin on the petal effect surface. It is conjectured that the water drop could pin on the single micro-scale roughness petal effect surface by totally infiltrating into spaces (or grooves) between micro-pillars. EXPERIMENTS An inverted optical microscopy system is synchronically applied in the process of advancing/receding contact angle (ACA/RCA) measurements to directly observe the wetting behavior of water droplets on hydrophobic patterned surfaces with regular arrays of square micro-pillars. FINDINGS A sequence of wetting behavior evolution, Wenzel → petal → pseudo-lotus → lotus, is observed on the hydrophobic patterned surfaces along with increasing surface roughness. It is interesting to observe a Cassie-Wenzel transition for water drops on a petal substrate during the ACA measurement (embedded needle method), leading to two ACAs, one before (in Cassie state) and one after the transition (in Wenzel state). Thus, the petal substrates have large contact angle hysteresis (CAH) (with both ACA and RCA in Wenzel state) to pin the water drop in Wenzel state. A Cassie-Wenzel transition is consistently observed during the evaporation process of water drops on pseudo-lotus substrates, leading to two RCAs: one in Cassie state and one in Wenzel state. The pseudo-lotus substrates have CAH (with both ACA and RCA in Cassie state) small enough to make water drops easily slide off.
The formation of the first nondisappearing cluster in CH4 + THF mixed guest clathrate hydrate nuc... more The formation of the first nondisappearing cluster in CH4 + THF mixed guest clathrate hydrate nucleation.
Journal of Colloid and Interface Science, Dec 1, 2021
HYPOTHESIS It has been verified that a surface of single micro-scale structures with certain roug... more HYPOTHESIS It has been verified that a surface of single micro-scale structures with certain roughness could exhibit petal effect. That is, water drops with a contact angle larger than 150° would pin on the petal effect surface. It is conjectured that the water drop could pin on the single micro-scale roughness petal effect surface by totally infiltrating into spaces (or grooves) between micro-pillars. EXPERIMENTS An inverted optical microscopy system is synchronically applied in the process of advancing/receding contact angle (ACA/RCA) measurements to directly observe the wetting behavior of water droplets on hydrophobic patterned surfaces with regular arrays of square micro-pillars. FINDINGS A sequence of wetting behavior evolution, Wenzel → petal → pseudo-lotus → lotus, is observed on the hydrophobic patterned surfaces along with increasing surface roughness. It is interesting to observe a Cassie-Wenzel transition for water drops on a petal substrate during the ACA measurement (embedded needle method), leading to two ACAs, one before (in Cassie state) and one after the transition (in Wenzel state). Thus, the petal substrates have large contact angle hysteresis (CAH) (with both ACA and RCA in Wenzel state) to pin the water drop in Wenzel state. A Cassie-Wenzel transition is consistently observed during the evaporation process of water drops on pseudo-lotus substrates, leading to two RCAs: one in Cassie state and one in Wenzel state. The pseudo-lotus substrates have CAH (with both ACA and RCA in Cassie state) small enough to make water drops easily slide off.
The formation of the first nondisappearing cluster in CH4 + THF mixed guest clathrate hydrate nuc... more The formation of the first nondisappearing cluster in CH4 + THF mixed guest clathrate hydrate nucleation.
Uploads
Papers by Li-Jen Chen