The presently-disclosed subject matter includes isolated polypeptides that comprise a butyrylchol... more The presently-disclosed subject matter includes isolated polypeptides that comprise a butyrylcholinestrase (BChE) polypeptide and a second polypeptide. The BChE polypeptide as well as the second polypeptide can be variants and/or fragments thereof. The presently-disclosed subject matter also includes a pharmaceutical composition that comprises the present isolated polypeptide and a suitable pharmaceutical carrier. Further still, methods are provided for treating cocaine-induced conditions, and comprise administering the isolated polypeptide and/or pharmaceutical compositions thereof to an individual
Proceedings of the National Academy of Sciences of the United States of America, Jan 28, 2015
Cocaine abuse is a world-wide public health and social problem without a US Food and Drug Adminis... more Cocaine abuse is a world-wide public health and social problem without a US Food and Drug Administration-approved medication. An ideal anticocaine medication would accelerate cocaine metabolism, producing biologically inactive metabolites by administration of an efficient cocaine-specific exogenous enzyme. Our recent studies have led to the discovery of the desirable, highly efficient cocaine hydrolases (CocHs) that can efficiently detoxify and inactivate cocaine without affecting normal functions of the CNS. Preclinical and clinical data have demonstrated that these CocHs are safe for use in humans and are effective for accelerating cocaine metabolism. However, the actual therapeutic use of a CocH in cocaine addiction treatment is limited by its short biological half-life (e.g., 8 h or shorter in rats). Here we demonstrate a novel CocH form, a catalytic antibody analog, which is a fragment crystallizable (Fc)-fused CocH dimer (CocH-Fc) constructed by using CocH to replace the Fab r...
Mouse butyrylcholinesterase (mBChE) and an mBChE-based cocaine hydrolase (mCocH, i.e. the A199S/S... more Mouse butyrylcholinesterase (mBChE) and an mBChE-based cocaine hydrolase (mCocH, i.e. the A199S/S227A/S287G/A328W/Y332G mutant) have been characterized for their catalytic activities against cocaine, i.e. naturally occurring (-)-cocaine, in comparison with the corresponding human BChE (hBChE) and an hBChE-based cocaine hydrolase (hCocH, i.e. the A199S/F227A/S287G/A328W/Y332G mutant). It has been demonstrated that mCocH and hCocH have improved the catalytic efficiency of mBChE and hBChE against (-)-cocaine by ~8- and ~2000-fold respectively, although the catalytic efficiencies of mCocH and hCocH against other substrates, including acetylcholine (ACh) and butyrylthiocholine (BTC), are close to those of the corresponding wild-type enzymes mBChE and hBChE. According to the kinetic data, the catalytic efficiency (kcat/KM) of mBChE against (-)-cocaine is comparable with that of hBChE, but the catalytic efficiency of mCocH against (-)-cocaine is remarkably lower than that of hCocH by ~250-...
Cocaine is a widely abused drug without an FDA (Food and Drug Administration)-approved medication... more Cocaine is a widely abused drug without an FDA (Food and Drug Administration)-approved medication. It has been recognized that an ideal anti-cocaine medication would accelerate cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e. human BChE (butyrylcholinesterase)-catalysed hydrolysis. However, the native human BChE has a low catalytic activity against cocaine. We recently designed and discovered a BChE mutant (A199S/F227A/S287G/A328W/Y332G) with a high catalytic activity (kcat=5700 min−1, Km=3.1 μM) specifically for cocaine, and the mutant was proven effective in protecting mice from acute cocaine toxicity of a lethal dose of cocaine (180 mg/kg of body weight, LD100). Further characterization in animal models requires establishment of a high-efficiency stable cell line for the BChE mutant production at a relatively larger scale. It has been extremely challenging to develop a high-efficiency stable cell ...
The presently-disclosed subject matter includes isolated polypeptides that comprise a butyrylchol... more The presently-disclosed subject matter includes isolated polypeptides that comprise a butyrylcholinestrase (BChE) polypeptide and a second polypeptide. The BChE polypeptide as well as the second polypeptide can be variants and/or fragments thereof. The presently-disclosed subject matter also includes a pharmaceutical composition that comprises the present isolated polypeptide and a suitable pharmaceutical carrier. Further still, methods are provided for treating cocaine-induced conditions, and comprise administering the isolated polypeptide and/or pharmaceutical compositions thereof to an individual
Proceedings of the National Academy of Sciences of the United States of America, Jan 28, 2015
Cocaine abuse is a world-wide public health and social problem without a US Food and Drug Adminis... more Cocaine abuse is a world-wide public health and social problem without a US Food and Drug Administration-approved medication. An ideal anticocaine medication would accelerate cocaine metabolism, producing biologically inactive metabolites by administration of an efficient cocaine-specific exogenous enzyme. Our recent studies have led to the discovery of the desirable, highly efficient cocaine hydrolases (CocHs) that can efficiently detoxify and inactivate cocaine without affecting normal functions of the CNS. Preclinical and clinical data have demonstrated that these CocHs are safe for use in humans and are effective for accelerating cocaine metabolism. However, the actual therapeutic use of a CocH in cocaine addiction treatment is limited by its short biological half-life (e.g., 8 h or shorter in rats). Here we demonstrate a novel CocH form, a catalytic antibody analog, which is a fragment crystallizable (Fc)-fused CocH dimer (CocH-Fc) constructed by using CocH to replace the Fab r...
Mouse butyrylcholinesterase (mBChE) and an mBChE-based cocaine hydrolase (mCocH, i.e. the A199S/S... more Mouse butyrylcholinesterase (mBChE) and an mBChE-based cocaine hydrolase (mCocH, i.e. the A199S/S227A/S287G/A328W/Y332G mutant) have been characterized for their catalytic activities against cocaine, i.e. naturally occurring (-)-cocaine, in comparison with the corresponding human BChE (hBChE) and an hBChE-based cocaine hydrolase (hCocH, i.e. the A199S/F227A/S287G/A328W/Y332G mutant). It has been demonstrated that mCocH and hCocH have improved the catalytic efficiency of mBChE and hBChE against (-)-cocaine by ~8- and ~2000-fold respectively, although the catalytic efficiencies of mCocH and hCocH against other substrates, including acetylcholine (ACh) and butyrylthiocholine (BTC), are close to those of the corresponding wild-type enzymes mBChE and hBChE. According to the kinetic data, the catalytic efficiency (kcat/KM) of mBChE against (-)-cocaine is comparable with that of hBChE, but the catalytic efficiency of mCocH against (-)-cocaine is remarkably lower than that of hCocH by ~250-...
Cocaine is a widely abused drug without an FDA (Food and Drug Administration)-approved medication... more Cocaine is a widely abused drug without an FDA (Food and Drug Administration)-approved medication. It has been recognized that an ideal anti-cocaine medication would accelerate cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e. human BChE (butyrylcholinesterase)-catalysed hydrolysis. However, the native human BChE has a low catalytic activity against cocaine. We recently designed and discovered a BChE mutant (A199S/F227A/S287G/A328W/Y332G) with a high catalytic activity (kcat=5700 min−1, Km=3.1 μM) specifically for cocaine, and the mutant was proven effective in protecting mice from acute cocaine toxicity of a lethal dose of cocaine (180 mg/kg of body weight, LD100). Further characterization in animal models requires establishment of a high-efficiency stable cell line for the BChE mutant production at a relatively larger scale. It has been extremely challenging to develop a high-efficiency stable cell ...
Uploads
Papers by Liu Xue