The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in ... more The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in the nervous system where they act as neurotransmitters and neuromodulators. Their respective preferred receptors are NK1, NK2, and NK3 receptors. The presence of substance P in nociceptive primary afferent neurons, electrophysiological studies showing that it activated neurons in the dorsal horn of the spinal cord, and behavioral studies in animals, supported the concept that substance P was an important transmitter in the nociceptive pathway. It was therefore surprising that non-peptide NK1 receptor antagonists were ineffective as analgesics in clinical pain conditions. Nevertheless, the discovery that NK1 receptor antagonists had antidepressant activity led to renewed interest in these antagonists. It is disappointing that clinical trials of MK869 (aprepitant) for depression were suspended. The future of NK1 receptor antagonists as antidepressant drugs will depend on the outcome of cli...
The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in ... more The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in the nervous system where they act as neurotransmitters and neuromodulators. Their respective preferred receptors are NK1, NK2, and NK3 receptors. The presence of substance P in nociceptive primary afferent neurons, electrophysiological studies showing that it activated neurons in the dorsal horn of the spinal cord, and behavioral studies in animals, supported the concept that substance P was an important transmitter in the nociceptive pathway. It was therefore surprising that non-peptide NK1 receptor antagonists were ineffective as analgesics in clinical pain conditions. Nevertheless, the discovery that NK1 receptor antagonists had antidepressant activity led to renewed interest in these antagonists. It is disappointing that clinical trials of MK869 (aprepitant) for depression were suspended. The future of NK1 receptor antagonists as antidepressant drugs will depend on the outcome of clinical trials with other NK1 receptor antagonists. NK1 receptor antagonists were also found to be effective antiemetics, and aprepitant has recently become available for the treatment of chemotherapy induced emesis. Although less is known of the potential of NK2 and NK3 receptor antagonists, recent trials of NK3 receptor antagonists have shown efficacy in schizophrenia. The discovery of a new family of tachykinins, the hemokinins and endokinins, which acts on NK1 receptors and has potent effects on immune cells, has implications for the clinical use of NK1 receptor antagonists. Thus specific therapeutic strategies may be required to enable NK1 receptor antagonists to be introduced for treatment of neuropsychiatric disorders.
The effects of subchronic subcutaneous treatment with tachykinin receptor antagonists over nine d... more The effects of subchronic subcutaneous treatment with tachykinin receptor antagonists over nine days on the repeated mild stress response induced by daily subcutaneous injections and on the severe acute stress induced by morphine withdrawal were investigated in guinea-pigs. The NK(1) receptor antagonist, L733,060, 0.25mg/kg, significantly increased locomotor activity of guinea-pigs compared with animals subjected to repeated injection of the inactive enantiomer, but inhibited Fos-like immunoreactivity (Fos-LI) in the hypothalamus. In animals subjected to the acute severe stress of naltrexone-induced morphine withdrawal, treatment with the NK(1) antagonist, L733,060, produced reductions in Fos-LI in the spinal dorsal horn, whereas those treated with the NK(3) antagonist, SSR146,977, 0.3mg/kg, had reduced Fos-LI in the dorsal horn, adrenal medulla, nucleus accumbens, ventral tegmental area and periaqueductal grey. Those animals treated with both NK(1) and NK(3) antagonists also had reduced Fos-LI in the amygdala and paraventricular nucleus of the thalamus. It was concluded that the NK(1) antagonist reduced the hypothalamic response to mild stress but the NK(3) antagonist was more effective in reducing the severe stress response to morphine withdrawal. Furthermore, combination of NK(1) and NK(3) antagonists was more effective than either antagonist in reducing the Fos-LI response to morphine withdrawal.
The effects on locomotor activity and plasma catecholamines of substance P, 0.5 nmol, injected in... more The effects on locomotor activity and plasma catecholamines of substance P, 0.5 nmol, injected into each lateral ventricle (i.c.v.), or 1 nmol, injected into the cisterna magna of conscious guinea-pigs, were investigated. Locomotor activity was measured in cages fitted with an infra-red photocell and detector, and plasma catecholamines, were measured by HPLC with electrochemical detection. Substance P, given intraventricularly or into the cisterna magna, produced increased locomotor activity and a pattern of behavioural activity which mimicked the opiate withdrawal response, found in previous studies in this species. Levels of NA and AD in plasma were also significantly elevated after injection of substance P. These effects of substance P were relatively long-lasting, since they were present up to 1 hr after injection. The results show that the effects of centrally administered substance P in guinea-pigs are similar to those in rats. Furthermore, the results support the suggestion that substance P might be the mediator of the opiate withdrawal response in the central nervous system as has been proposed for the enteric nervous system.
There is increasing acceptance that schizophrenia is associated with a generalised disorder in co... more There is increasing acceptance that schizophrenia is associated with a generalised disorder in cortical neurodevelopment. The aim of this paper is to review the evidence that this disorder may be accounted for by abnormalities in mechanisms mediated by the main family of excitatory neuroreceptors in cortical brain systems, the N-methyl-D-aspartate (NMDA) glutamatergic receptors. The neurobiological evidence is presented for an abnormality in cortical development related to synaptic pathology in schizophrenia. The unique functions of the NMDA receptor in information processing are described, especially its role in learning and memory, and in neural plasticity and brain development. It is argued that the cellular and molecular mechanisms which underlie learning and memory also govern normal brain development. Studies examining abnormalities in glutamatergic transmission in schizophrenia are reviewed. There is a substantial literature in support of the possibility that NMDA receptor abnormalities may be involved in the neurodevelopmental predisposition to schizophrenia, as well as in symptom production. Research to determine the role of the NMDA receptor in the pathophysiology of schizophrenia is warranted and now feasible. To be successful, this research will require the application of molecular biology techniques to postmortem brain tissue studies, in addition to traditional histochemical approaches.
Dye leakage in rats, produced by intracutaneous injections of irritants into the abdominal skin, ... more Dye leakage in rats, produced by intracutaneous injections of irritants into the abdominal skin, was quantitated using the Evans blue technique of Harada et al. (1971). In control rats and in rats pretreated with indomethacin (an inhibitor of prostaglandin synthesis) concentration-response lines were obtained for 5-hydroxytryptamine, histamine, bradykinin and prostaglandin E1, bradykinin in the presence of prostaglandin E1 (10-6 M), adenosine-5'-triphosphate, compound 48/80, capsaicin and silver nitrate. In rats pretreated with indomethacin the dye leakage responses to histamine, prostaglandin E1, adenosine-5'-triphosphate and silver nitrate were significantly reduced, but no significant changes were observed in the responses to the other irritants. It is suggested that part of the action of histamine, adenosine-5'-triphosphate and prostagland in E1 is produced indirectly by releaseor stimulation of the synthesis of prostaglandins or their precursors. These results might have important implications in the understanding of the inflammatory response.
Ultrasound at frequencies between 0.75 and 3.0 MHz is widely used in the treatment of musculoskel... more Ultrasound at frequencies between 0.75 and 3.0 MHz is widely used in the treatment of musculoskeletal injuries in human and veterinary patients. The mechanisms by which ultrasound affects clinical recovery are, however, incompletely understood. At present no clear rationale has been evolved to guide the selection and use of all the factors comprising the dosage of ultrasound in treatment designed to encourage tissue healing. In the present study applications of ultrasound considered to be therapeutic caused a small but significant increase in vascular permeability in the hindpaw ankles of rats in vivo which was abolished by pre-treatment of the rats with a combination of a histamine H1-receptor antagonist and a serotonin antagonist. Histological sections from rat ankles showed that ultrasound also caused a significant increase in the number of degranulated mast cells above control values. Since mast cells contain histamine, low concentrations of which have been associated with healing, the finding that ultrasound produces mast cell degranulation and evidence of histamine release provides a new direction for investigation of the mechanism of its therapeutic action, and for determination of appropriate regimens of treatment.
Arterial blood pressure and heart rate were recorded from male Wistar rats anaesthetized with ure... more Arterial blood pressure and heart rate were recorded from male Wistar rats anaesthetized with urethane. Intravenous injection of capsaicin, 1 microgram, produced a reproducible triphasic effect on blood pressure, comprising an initial fall in blood pressure and heart rate, followed by a transient and then a sustained pressor response. The depressor response and bradycardia were abolished by vagal section. The transient pressor response was altered in shape by hexamethonium. Slow intravenous infusion of capsaicin, 50 micrograms over 12 min, produced only a sustained pressor response accompanied by tachycardia, which was resistant to hexamethonium but abolished by morphine and pithing. Responses to both 1 microgram injection and 50 micrograms infusion of capsaicin were unaffected by the SP antagonist, spantide, but were abolished by capsaicin pretreatment of the rats. Capsaicin induces complex effects on the cardiovascular system, the nature of which varies with the dose and speed of administration.
The present study investigated the effects of acute morphine treatment and of naloxone-induced mo... more The present study investigated the effects of acute morphine treatment and of naloxone-induced morphine withdrawal on Substance P (SP) concentrations in microdissected regions of the guinea-pig brain. Guinea-pigs, which were treated with a single dose of morphine sulphate (15mg/kg s.c.), received naloxone hydrochloride (15mg/kg s.c.) after 2h. Control animals received injections of saline, saline and naloxone, or morphine and saline. Locomotor and behavioural activities were measured throughout the experiments. Animals were killed 0.5h after naloxone administration, brains were removed and SP-like immunoreactivity (SP-LI) was measured in microdissected regions using radioimmunoassay. Morphine significantly increased the concentration of SP-LI in the central nucleus of the amygdala, but reduced SP-LI overall in the mesencephalon. Guinea-pigs pretreated with morphine and then given naloxone to precipitate withdrawal showed no change in SP-LI concentrations in any brain region, compare...
Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agon... more Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent of those found in subjects with schizophrenia. The objective of the present study was to investigate brain and behavioural responses of adult rats treated as neonates with capsaicin. It was found that the brain changes found at 5-7 weeks in rats treated as neonates with capsaicin persisted into adulthood (12 weeks) but were less in older rats (16-18 weeks). Increased prepulse inhibition (PPI) of acoustic startle was found in these rats at 8 and 12 weeks of age rather than the deficit commonly found in animal models of schizophrenia. Subjects with schizophrenia also have reduced flare responses to niacin and methylnicotinate propo...
The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in ... more The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in the nervous system where they act as neurotransmitters and neuromodulators. Their respective preferred receptors are NK1, NK2, and NK3 receptors. The presence of substance P in nociceptive primary afferent neurons, electrophysiological studies showing that it activated neurons in the dorsal horn of the spinal cord, and behavioral studies in animals, supported the concept that substance P was an important transmitter in the nociceptive pathway. It was therefore surprising that non-peptide NK1 receptor antagonists were ineffective as analgesics in clinical pain conditions. Nevertheless, the discovery that NK1 receptor antagonists had antidepressant activity led to renewed interest in these antagonists. It is disappointing that clinical trials of MK869 (aprepitant) for depression were suspended. The future of NK1 receptor antagonists as antidepressant drugs will depend on the outcome of cli...
The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in ... more The classical tachykinins, substance P, neurokinin A and neurokinin B are predominantly found in the nervous system where they act as neurotransmitters and neuromodulators. Their respective preferred receptors are NK1, NK2, and NK3 receptors. The presence of substance P in nociceptive primary afferent neurons, electrophysiological studies showing that it activated neurons in the dorsal horn of the spinal cord, and behavioral studies in animals, supported the concept that substance P was an important transmitter in the nociceptive pathway. It was therefore surprising that non-peptide NK1 receptor antagonists were ineffective as analgesics in clinical pain conditions. Nevertheless, the discovery that NK1 receptor antagonists had antidepressant activity led to renewed interest in these antagonists. It is disappointing that clinical trials of MK869 (aprepitant) for depression were suspended. The future of NK1 receptor antagonists as antidepressant drugs will depend on the outcome of clinical trials with other NK1 receptor antagonists. NK1 receptor antagonists were also found to be effective antiemetics, and aprepitant has recently become available for the treatment of chemotherapy induced emesis. Although less is known of the potential of NK2 and NK3 receptor antagonists, recent trials of NK3 receptor antagonists have shown efficacy in schizophrenia. The discovery of a new family of tachykinins, the hemokinins and endokinins, which acts on NK1 receptors and has potent effects on immune cells, has implications for the clinical use of NK1 receptor antagonists. Thus specific therapeutic strategies may be required to enable NK1 receptor antagonists to be introduced for treatment of neuropsychiatric disorders.
The effects of subchronic subcutaneous treatment with tachykinin receptor antagonists over nine d... more The effects of subchronic subcutaneous treatment with tachykinin receptor antagonists over nine days on the repeated mild stress response induced by daily subcutaneous injections and on the severe acute stress induced by morphine withdrawal were investigated in guinea-pigs. The NK(1) receptor antagonist, L733,060, 0.25mg/kg, significantly increased locomotor activity of guinea-pigs compared with animals subjected to repeated injection of the inactive enantiomer, but inhibited Fos-like immunoreactivity (Fos-LI) in the hypothalamus. In animals subjected to the acute severe stress of naltrexone-induced morphine withdrawal, treatment with the NK(1) antagonist, L733,060, produced reductions in Fos-LI in the spinal dorsal horn, whereas those treated with the NK(3) antagonist, SSR146,977, 0.3mg/kg, had reduced Fos-LI in the dorsal horn, adrenal medulla, nucleus accumbens, ventral tegmental area and periaqueductal grey. Those animals treated with both NK(1) and NK(3) antagonists also had reduced Fos-LI in the amygdala and paraventricular nucleus of the thalamus. It was concluded that the NK(1) antagonist reduced the hypothalamic response to mild stress but the NK(3) antagonist was more effective in reducing the severe stress response to morphine withdrawal. Furthermore, combination of NK(1) and NK(3) antagonists was more effective than either antagonist in reducing the Fos-LI response to morphine withdrawal.
The effects on locomotor activity and plasma catecholamines of substance P, 0.5 nmol, injected in... more The effects on locomotor activity and plasma catecholamines of substance P, 0.5 nmol, injected into each lateral ventricle (i.c.v.), or 1 nmol, injected into the cisterna magna of conscious guinea-pigs, were investigated. Locomotor activity was measured in cages fitted with an infra-red photocell and detector, and plasma catecholamines, were measured by HPLC with electrochemical detection. Substance P, given intraventricularly or into the cisterna magna, produced increased locomotor activity and a pattern of behavioural activity which mimicked the opiate withdrawal response, found in previous studies in this species. Levels of NA and AD in plasma were also significantly elevated after injection of substance P. These effects of substance P were relatively long-lasting, since they were present up to 1 hr after injection. The results show that the effects of centrally administered substance P in guinea-pigs are similar to those in rats. Furthermore, the results support the suggestion that substance P might be the mediator of the opiate withdrawal response in the central nervous system as has been proposed for the enteric nervous system.
There is increasing acceptance that schizophrenia is associated with a generalised disorder in co... more There is increasing acceptance that schizophrenia is associated with a generalised disorder in cortical neurodevelopment. The aim of this paper is to review the evidence that this disorder may be accounted for by abnormalities in mechanisms mediated by the main family of excitatory neuroreceptors in cortical brain systems, the N-methyl-D-aspartate (NMDA) glutamatergic receptors. The neurobiological evidence is presented for an abnormality in cortical development related to synaptic pathology in schizophrenia. The unique functions of the NMDA receptor in information processing are described, especially its role in learning and memory, and in neural plasticity and brain development. It is argued that the cellular and molecular mechanisms which underlie learning and memory also govern normal brain development. Studies examining abnormalities in glutamatergic transmission in schizophrenia are reviewed. There is a substantial literature in support of the possibility that NMDA receptor abnormalities may be involved in the neurodevelopmental predisposition to schizophrenia, as well as in symptom production. Research to determine the role of the NMDA receptor in the pathophysiology of schizophrenia is warranted and now feasible. To be successful, this research will require the application of molecular biology techniques to postmortem brain tissue studies, in addition to traditional histochemical approaches.
Dye leakage in rats, produced by intracutaneous injections of irritants into the abdominal skin, ... more Dye leakage in rats, produced by intracutaneous injections of irritants into the abdominal skin, was quantitated using the Evans blue technique of Harada et al. (1971). In control rats and in rats pretreated with indomethacin (an inhibitor of prostaglandin synthesis) concentration-response lines were obtained for 5-hydroxytryptamine, histamine, bradykinin and prostaglandin E1, bradykinin in the presence of prostaglandin E1 (10-6 M), adenosine-5'-triphosphate, compound 48/80, capsaicin and silver nitrate. In rats pretreated with indomethacin the dye leakage responses to histamine, prostaglandin E1, adenosine-5'-triphosphate and silver nitrate were significantly reduced, but no significant changes were observed in the responses to the other irritants. It is suggested that part of the action of histamine, adenosine-5'-triphosphate and prostagland in E1 is produced indirectly by releaseor stimulation of the synthesis of prostaglandins or their precursors. These results might have important implications in the understanding of the inflammatory response.
Ultrasound at frequencies between 0.75 and 3.0 MHz is widely used in the treatment of musculoskel... more Ultrasound at frequencies between 0.75 and 3.0 MHz is widely used in the treatment of musculoskeletal injuries in human and veterinary patients. The mechanisms by which ultrasound affects clinical recovery are, however, incompletely understood. At present no clear rationale has been evolved to guide the selection and use of all the factors comprising the dosage of ultrasound in treatment designed to encourage tissue healing. In the present study applications of ultrasound considered to be therapeutic caused a small but significant increase in vascular permeability in the hindpaw ankles of rats in vivo which was abolished by pre-treatment of the rats with a combination of a histamine H1-receptor antagonist and a serotonin antagonist. Histological sections from rat ankles showed that ultrasound also caused a significant increase in the number of degranulated mast cells above control values. Since mast cells contain histamine, low concentrations of which have been associated with healing, the finding that ultrasound produces mast cell degranulation and evidence of histamine release provides a new direction for investigation of the mechanism of its therapeutic action, and for determination of appropriate regimens of treatment.
Arterial blood pressure and heart rate were recorded from male Wistar rats anaesthetized with ure... more Arterial blood pressure and heart rate were recorded from male Wistar rats anaesthetized with urethane. Intravenous injection of capsaicin, 1 microgram, produced a reproducible triphasic effect on blood pressure, comprising an initial fall in blood pressure and heart rate, followed by a transient and then a sustained pressor response. The depressor response and bradycardia were abolished by vagal section. The transient pressor response was altered in shape by hexamethonium. Slow intravenous infusion of capsaicin, 50 micrograms over 12 min, produced only a sustained pressor response accompanied by tachycardia, which was resistant to hexamethonium but abolished by morphine and pithing. Responses to both 1 microgram injection and 50 micrograms infusion of capsaicin were unaffected by the SP antagonist, spantide, but were abolished by capsaicin pretreatment of the rats. Capsaicin induces complex effects on the cardiovascular system, the nature of which varies with the dose and speed of administration.
The present study investigated the effects of acute morphine treatment and of naloxone-induced mo... more The present study investigated the effects of acute morphine treatment and of naloxone-induced morphine withdrawal on Substance P (SP) concentrations in microdissected regions of the guinea-pig brain. Guinea-pigs, which were treated with a single dose of morphine sulphate (15mg/kg s.c.), received naloxone hydrochloride (15mg/kg s.c.) after 2h. Control animals received injections of saline, saline and naloxone, or morphine and saline. Locomotor and behavioural activities were measured throughout the experiments. Animals were killed 0.5h after naloxone administration, brains were removed and SP-like immunoreactivity (SP-LI) was measured in microdissected regions using radioimmunoassay. Morphine significantly increased the concentration of SP-LI in the central nucleus of the amygdala, but reduced SP-LI overall in the mesencephalon. Guinea-pigs pretreated with morphine and then given naloxone to precipitate withdrawal showed no change in SP-LI concentrations in any brain region, compare...
Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agon... more Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent of those found in subjects with schizophrenia. The objective of the present study was to investigate brain and behavioural responses of adult rats treated as neonates with capsaicin. It was found that the brain changes found at 5-7 weeks in rats treated as neonates with capsaicin persisted into adulthood (12 weeks) but were less in older rats (16-18 weeks). Increased prepulse inhibition (PPI) of acoustic startle was found in these rats at 8 and 12 weeks of age rather than the deficit commonly found in animal models of schizophrenia. Subjects with schizophrenia also have reduced flare responses to niacin and methylnicotinate propo...
Uploads
Papers by Loris Chahl