Journal of Atmospheric and Oceanic Technology, 2016
An array of Bio-Argo floats equipped with radiometric sensors has been recently deployed in vario... more An array of Bio-Argo floats equipped with radiometric sensors has been recently deployed in various open ocean areas representative of the diversity of trophic and bio-optical conditions prevailing in the so-called case 1 waters. Around solar noon and almost every day, each float acquires 0–250-m vertical profiles of photosynthetically available radiation and downward irradiance at three wavelengths (380, 412, and 490 nm). Up until now, more than 6500 profiles for each radiometric channel have been acquired. As these radiometric data are collected out of an operator’s control and regardless of meteorological conditions, specific and automatic data processing protocols have to be developed. This paper presents a data quality-control procedure aimed at verifying profile shapes and providing near-real-time data distribution. This procedure is specifically developed to 1) identify main issues of measurements (i.e., dark signal, atmospheric clouds, spikes, and wave-focusing occurrences) ...
ABSTRACT: Microbial distribution and activities were examined in relation to the hydrodynamic con... more ABSTRACT: Microbial distribution and activities were examined in relation to the hydrodynamic conditions in the Almeria-Oran frontal area (AOF), SW Mediterranean Sea, during winter. The main objectives were to explore factors limiting bacterial growth and activities (production, ectoenzymatic activity, utilization and respiration of amino acids) in regard to dissolved organic carbon (DOC) stocks and lability in different parts of the Almeria-Oran front-jet system. The vertical distribution of total chl a, bacterial abundance and production reflected the density profiles, with a deepening of the top of the pycnocline from 25 (front) to 120 m (gyre). At the frontal site, most bacterial production was concentrated within the first 20 m (up to 19.8 nmol C l -1 h -1 ), at the boundary between the jet and Mediterranean waters, whereas bacterial abundance peaked in a wider layer (40 m) in the jet core (up to 15 × 10 5 bacteria ml -1 ). Integrated bacterial production ranged from 5.7 to 17....
Journal of Atmospheric and Oceanic Technology, 2016
An array of Bio-Argo floats equipped with radiometric sensors has been recently deployed in vario... more An array of Bio-Argo floats equipped with radiometric sensors has been recently deployed in various open ocean areas representative of the diversity of trophic and bio-optical conditions prevailing in the so-called case 1 waters. Around solar noon and almost every day, each float acquires 0–250-m vertical profiles of photosynthetically available radiation and downward irradiance at three wavelengths (380, 412, and 490 nm). Up until now, more than 6500 profiles for each radiometric channel have been acquired. As these radiometric data are collected out of an operator’s control and regardless of meteorological conditions, specific and automatic data processing protocols have to be developed. This paper presents a data quality-control procedure aimed at verifying profile shapes and providing near-real-time data distribution. This procedure is specifically developed to 1) identify main issues of measurements (i.e., dark signal, atmospheric clouds, spikes, and wave-focusing occurrences) ...
ABSTRACT: Microbial distribution and activities were examined in relation to the hydrodynamic con... more ABSTRACT: Microbial distribution and activities were examined in relation to the hydrodynamic conditions in the Almeria-Oran frontal area (AOF), SW Mediterranean Sea, during winter. The main objectives were to explore factors limiting bacterial growth and activities (production, ectoenzymatic activity, utilization and respiration of amino acids) in regard to dissolved organic carbon (DOC) stocks and lability in different parts of the Almeria-Oran front-jet system. The vertical distribution of total chl a, bacterial abundance and production reflected the density profiles, with a deepening of the top of the pycnocline from 25 (front) to 120 m (gyre). At the frontal site, most bacterial production was concentrated within the first 20 m (up to 19.8 nmol C l -1 h -1 ), at the boundary between the jet and Mediterranean waters, whereas bacterial abundance peaked in a wider layer (40 m) in the jet core (up to 15 × 10 5 bacteria ml -1 ). Integrated bacterial production ranged from 5.7 to 17....
Uploads
Papers by Louis Prieur