Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options ... more Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options despite decades of research. In this context, the usefulness of common preclinical SCI models has been criticized. We, therefore, aimed to use a clinically relevant animal model of severe cervical SCI to assess the long-term effects of neural precursor cell (NPC) transplantation on secondary injury processes and functional recovery. To this end, we performed a clip contusion-compression injury at the C6 level in 40 female Wistar rats and a sham surgery in 10 female Wistar rats. NPCs, isolated from the subventricular zone of green fluorescent protein (GFP) expressing transgenic rat embryos, were transplanted ten days after the injury. Functional recovery was assessed weekly, and FluoroGold (FG) retrograde fiber-labeling, as well as manganese-enhanced magnetic resonance imaging (MEMRI), were performed prior to the sacrifice of the animals eight weeks after SCI. After cryosectioning of the ...
The Sonic Hedgehog protein (Shh) has been extensively researched since its discovery in 1980. Its... more The Sonic Hedgehog protein (Shh) has been extensively researched since its discovery in 1980. Its crucial role in early neurogenesis and endogenous stem cells of mature brains, as well as its recently described neuroprotective features, implicate further important effects on neuronal homeostasis. Here, we investigate its potential role in the survival, proliferation, and differentiation of neural precursors cells (NPCs) under inflammatory stress as a potential adjunct for NPC-transplantation strategies in spinal cord injury (SCI) treatment. To this end, we simulated an inflammatory environment in vitro using lipopolysaccharide (LPS) and induced the Shh-pathway using recombinant Shh or blocked it using Cyclopamine, a potent Smo inhibitor. We found that Shh mediates the proliferation and neuronal differentiation potential of NPCs in vitro, even in an inflammatory stress environment mimicking the subacute phase after SCI. At the same time, our results indicate that a reduction of the S...
Purpose The Sonic Hedgehog (Shh) pathway has been associated with a protective role after injury ... more Purpose The Sonic Hedgehog (Shh) pathway has been associated with a protective role after injury to the central nervous system (CNS). We, therefore, investigated the effects of intrathecal Shh-administration in the subacute phase after thoracic spinal cord injury (SCI) on secondary injury processes in rats. Methods Twenty-one Wistar rats were subjected to thoracic clip-contusion/compression SCI at T9. Animals were randomized into three treatment groups (Shh, Vehicle, Sham). Seven days after SCI, osmotic pumps were implanted for seven-day continuous intrathecal administration of Shh. Basso, Beattie and Bresnahan (BBB) score, Gridwalk test and bodyweight were weekly assessed. Animals were sacrificed six weeks after SCI and immunohistological analyses were conducted. The results were compared between groups and statistical analysis was performed (p < 0.05 was considered significant). Results The intrathecal administration of Shh led to significantly increased polarization of macroph...
Stem cell therapy with neural precursor cells (NPCs) has the potential to improve neuroregenerati... more Stem cell therapy with neural precursor cells (NPCs) has the potential to improve neuroregeneration after spinal cord injury (SCI). Unfortunately, survival and differentiation of transplanted NPCs in the injured spinal cord remains low. Growth factors have been successfully used to improve NPC transplantation in animal models, but their extensive application is associated with a relevant financial burden and might hinder translation of findings into the clinical practice. In our current study, we assessed the potential of a reduced number of growth factors in different combinations and concentrations to increase proliferation and differentiation of NPCs in vitro. After identifying a “cocktail” (EGF, bFGF, and PDGF-AA) that directed cell fate towards the oligodendroglial and neuronal lineage while reducing astrocytic differentiation, we translated our findings into an in vivo model of cervical clip contusion/compression SCI at the C6 level in immunosuppressed Wistar rats, combining N...
This study aimed to provide a molecular signature for enriched adult human stem/progenitor sperma... more This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (<2 weeks) and long-term culture (up to more than 14 months) in comparison to human testicular fibroblasts and human embryonic stem cells. Human spermatogonia were isolated by CD49f magnetic activated cell sorting and collagen−/laminin+matrix binding from primary testis cultures obtained from ten adult men. For transcriptomic analysis, single spermatogonia-like cells were collected based on their morphology and dimensions using a micromanipulation system from the enriched germ cell cultures. Immunocytochemical, RT-PCR and microarray analyses revealed that the analyzed populations of cells were distinct at the molecular level. The germ- and pluripotency-associated genes and genes of differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated ...
Received: 4/Accepted: 28/Dec/2008 Objective: In vertebrates, bone morphogenetic proteins (BMPs) a... more Received: 4/Accepted: 28/Dec/2008 Objective: In vertebrates, bone morphogenetic proteins (BMPs) and activin signals play multiple roles in dorso-ventral patterning and development of the spinal cord. Here the inductions of BMP 4 and activin A on embryonic stem cells (ESCs) into dorsal interneurons have been studied. Materials and Methods: Four different treatments have been used for mESC derived neural precursors; they include BMP4 (1ng/ml and 10ng/ml), activin A (100 ng/ml), and activin A+BMP4 (100ng/ml, 10ng/ml). Induction’s effect on expression of specific dorsal interneuron markers in mature neurons have been evaluated by the use of immunocytochemistry and RT-PCR. Results: Treatment of ESC-derived neural precursors with BMP4, activin A, or both showed an increased generation of both dI1 and dI3 interneurons (Lhx2 and Isl-1-positive cells) compared to the control group. However, the synergistic effect in generation of dI3 was not observed when both factors were used. Moreover, RT...
The aim of this study was to elucidate the molecular status of single human adult germ stem cells... more The aim of this study was to elucidate the molecular status of single human adult germ stem cells (haGSCs) and haGSC colonies, which spontaneously developed from the CD49f MACS and matrix- (collagen-/laminin+ binding-) selected fraction of enriched spermatogonia. Single-cell transcriptional profiling by Fluidigm BioMark system of a long-term cultured haGSCs cluster in comparison to human embryonic stem cells (hESCs) and human fibroblasts (hFibs) revealed that haGSCs showed a characteristic germ- and pluripotency-associated gene expression profile with some similarities to hESCs and with a significant distinction from somatic hFibs. Genome-wide comparisons with microarray analysis confirmed that different haGSC colonies exhibited gene expression heterogeneity with more or less pluripotency. The results of this study confirm that haGSCs are adult stem cells with a specific molecular gene expression profile in vitro, related but not identical to true pluripotent stem cells. Under ES-ce...
Neural differentiation of human embryonic stem cells (hESCs) is a unique opportunity for in vitro... more Neural differentiation of human embryonic stem cells (hESCs) is a unique opportunity for in vitro analyses of neurogenesis in humans. Extrinsic cues through neural plate formation are well described in the hESCs although intracellular mechanisms underlying neural development are largely unknown. Proteome analysis of hESC differentiation to neural cells will help to further define molecular mechanisms involved in neurogenesis in humans. Using a two-dimensional differential gel electrophoresis (2D-DIGE) system, we analyzed the proteome of hESC differentiation to neurons at three stages, early neural differentiation, neural ectoderm and mature neurons. Out of 137 differentially accumulated protein spots, 118 spots were identified using MALDI-TOF/TOF and LC MS/MS. We observed that proteins involved in redox hemostasis, vitamin and energy metabolism and ubiquitin dependent proteolysis were more abundant in differentiated cells, whereas the abundance of proteins associated with RNA processing and protein folding was higher in hESCs. Higher abundance of proteins involved in maintaining cellular redox state suggests the importance of redox hemostasis in neural differentiation. Furthermore, our results support the concept of a coupling mechanism between neuronal activity and glucose utilization. The protein network analysis showed that the majority of the interacting proteins were associated with the cell cycle and cellular proliferation. These results enhanced our understanding of the molecular dynamics that underlie neural commitment and differentiation. In highlighting the role of redox and unique metabolic properties of neuronal cells, the present findings add insight to our understanding of hESC differentiation to neurons. The abundance of fourteen proteins involved in maintaining cellular redox state, including 10 members of peroxiredoxin (Prdx) family, mainly increased during differentiation, thus highlighting a link of neural differentiation to redox. Our results revealed markedly higher expression of genes encoding enzymes involved in the glycolysis and amino acid synthesis during differentiation. Protein network analysis predicted a number of critical mediators in hESC differentiation. These proteins included TP53, CTNNB1, SMARCA4, TNF, TERT, E2F1, MYC, RB1, and AR.
The International Journal of Artificial Organs, 2011
In this study, a highly porous poly (D, L-lactic acid) (PDLLA) scaffold was designed and fabricat... more In this study, a highly porous poly (D, L-lactic acid) (PDLLA) scaffold was designed and fabricated using dioxane and thermal-induced phase separation (TIPS) methods (liquid-liquid and solid-liquid). Additionally, we characterized the ability of mouse embryonic stem cells (ESCs) to differentiate into neural cells in PDLLA scaffold with uniform porosity, interconnectivity, and high porosity, and then compared them with cells seeded under conventional two-dimensional (2D) culture conditions. Histochemistry staining showed the migration of differentiated cells through the scaffold. Immunofluorescence analysis of the differentiated cells by counting positive cells revealed that the PDLLA scaffold resulted in a significantly greater number of neural markers, microtubule associated protein-2, β-tubulin III, neurofilament protein, and glial fibrillary acidic protein (the astrocyte marker) when compared to those in 2D culture condition. Moreover, the expression of Nestin, Mash1, Pax6, and H...
Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options ... more Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options despite decades of research. In this context, the usefulness of common preclinical SCI models has been criticized. We, therefore, aimed to use a clinically relevant animal model of severe cervical SCI to assess the long-term effects of neural precursor cell (NPC) transplantation on secondary injury processes and functional recovery. To this end, we performed a clip contusion-compression injury at the C6 level in 40 female Wistar rats and a sham surgery in 10 female Wistar rats. NPCs, isolated from the subventricular zone of green fluorescent protein (GFP) expressing transgenic rat embryos, were transplanted ten days after the injury. Functional recovery was assessed weekly, and FluoroGold (FG) retrograde fiber-labeling, as well as manganese-enhanced magnetic resonance imaging (MEMRI), were performed prior to the sacrifice of the animals eight weeks after SCI. After cryosectioning of the ...
The Sonic Hedgehog protein (Shh) has been extensively researched since its discovery in 1980. Its... more The Sonic Hedgehog protein (Shh) has been extensively researched since its discovery in 1980. Its crucial role in early neurogenesis and endogenous stem cells of mature brains, as well as its recently described neuroprotective features, implicate further important effects on neuronal homeostasis. Here, we investigate its potential role in the survival, proliferation, and differentiation of neural precursors cells (NPCs) under inflammatory stress as a potential adjunct for NPC-transplantation strategies in spinal cord injury (SCI) treatment. To this end, we simulated an inflammatory environment in vitro using lipopolysaccharide (LPS) and induced the Shh-pathway using recombinant Shh or blocked it using Cyclopamine, a potent Smo inhibitor. We found that Shh mediates the proliferation and neuronal differentiation potential of NPCs in vitro, even in an inflammatory stress environment mimicking the subacute phase after SCI. At the same time, our results indicate that a reduction of the S...
Purpose The Sonic Hedgehog (Shh) pathway has been associated with a protective role after injury ... more Purpose The Sonic Hedgehog (Shh) pathway has been associated with a protective role after injury to the central nervous system (CNS). We, therefore, investigated the effects of intrathecal Shh-administration in the subacute phase after thoracic spinal cord injury (SCI) on secondary injury processes in rats. Methods Twenty-one Wistar rats were subjected to thoracic clip-contusion/compression SCI at T9. Animals were randomized into three treatment groups (Shh, Vehicle, Sham). Seven days after SCI, osmotic pumps were implanted for seven-day continuous intrathecal administration of Shh. Basso, Beattie and Bresnahan (BBB) score, Gridwalk test and bodyweight were weekly assessed. Animals were sacrificed six weeks after SCI and immunohistological analyses were conducted. The results were compared between groups and statistical analysis was performed (p < 0.05 was considered significant). Results The intrathecal administration of Shh led to significantly increased polarization of macroph...
Stem cell therapy with neural precursor cells (NPCs) has the potential to improve neuroregenerati... more Stem cell therapy with neural precursor cells (NPCs) has the potential to improve neuroregeneration after spinal cord injury (SCI). Unfortunately, survival and differentiation of transplanted NPCs in the injured spinal cord remains low. Growth factors have been successfully used to improve NPC transplantation in animal models, but their extensive application is associated with a relevant financial burden and might hinder translation of findings into the clinical practice. In our current study, we assessed the potential of a reduced number of growth factors in different combinations and concentrations to increase proliferation and differentiation of NPCs in vitro. After identifying a “cocktail” (EGF, bFGF, and PDGF-AA) that directed cell fate towards the oligodendroglial and neuronal lineage while reducing astrocytic differentiation, we translated our findings into an in vivo model of cervical clip contusion/compression SCI at the C6 level in immunosuppressed Wistar rats, combining N...
This study aimed to provide a molecular signature for enriched adult human stem/progenitor sperma... more This study aimed to provide a molecular signature for enriched adult human stem/progenitor spermatogonia during short-term (<2 weeks) and long-term culture (up to more than 14 months) in comparison to human testicular fibroblasts and human embryonic stem cells. Human spermatogonia were isolated by CD49f magnetic activated cell sorting and collagen−/laminin+matrix binding from primary testis cultures obtained from ten adult men. For transcriptomic analysis, single spermatogonia-like cells were collected based on their morphology and dimensions using a micromanipulation system from the enriched germ cell cultures. Immunocytochemical, RT-PCR and microarray analyses revealed that the analyzed populations of cells were distinct at the molecular level. The germ- and pluripotency-associated genes and genes of differentiation/spermatogenesis pathway were highly expressed in enriched short-term cultured spermatogonia. After long-term culture, a proportion of cells retained and aggravated ...
Received: 4/Accepted: 28/Dec/2008 Objective: In vertebrates, bone morphogenetic proteins (BMPs) a... more Received: 4/Accepted: 28/Dec/2008 Objective: In vertebrates, bone morphogenetic proteins (BMPs) and activin signals play multiple roles in dorso-ventral patterning and development of the spinal cord. Here the inductions of BMP 4 and activin A on embryonic stem cells (ESCs) into dorsal interneurons have been studied. Materials and Methods: Four different treatments have been used for mESC derived neural precursors; they include BMP4 (1ng/ml and 10ng/ml), activin A (100 ng/ml), and activin A+BMP4 (100ng/ml, 10ng/ml). Induction’s effect on expression of specific dorsal interneuron markers in mature neurons have been evaluated by the use of immunocytochemistry and RT-PCR. Results: Treatment of ESC-derived neural precursors with BMP4, activin A, or both showed an increased generation of both dI1 and dI3 interneurons (Lhx2 and Isl-1-positive cells) compared to the control group. However, the synergistic effect in generation of dI3 was not observed when both factors were used. Moreover, RT...
The aim of this study was to elucidate the molecular status of single human adult germ stem cells... more The aim of this study was to elucidate the molecular status of single human adult germ stem cells (haGSCs) and haGSC colonies, which spontaneously developed from the CD49f MACS and matrix- (collagen-/laminin+ binding-) selected fraction of enriched spermatogonia. Single-cell transcriptional profiling by Fluidigm BioMark system of a long-term cultured haGSCs cluster in comparison to human embryonic stem cells (hESCs) and human fibroblasts (hFibs) revealed that haGSCs showed a characteristic germ- and pluripotency-associated gene expression profile with some similarities to hESCs and with a significant distinction from somatic hFibs. Genome-wide comparisons with microarray analysis confirmed that different haGSC colonies exhibited gene expression heterogeneity with more or less pluripotency. The results of this study confirm that haGSCs are adult stem cells with a specific molecular gene expression profile in vitro, related but not identical to true pluripotent stem cells. Under ES-ce...
Neural differentiation of human embryonic stem cells (hESCs) is a unique opportunity for in vitro... more Neural differentiation of human embryonic stem cells (hESCs) is a unique opportunity for in vitro analyses of neurogenesis in humans. Extrinsic cues through neural plate formation are well described in the hESCs although intracellular mechanisms underlying neural development are largely unknown. Proteome analysis of hESC differentiation to neural cells will help to further define molecular mechanisms involved in neurogenesis in humans. Using a two-dimensional differential gel electrophoresis (2D-DIGE) system, we analyzed the proteome of hESC differentiation to neurons at three stages, early neural differentiation, neural ectoderm and mature neurons. Out of 137 differentially accumulated protein spots, 118 spots were identified using MALDI-TOF/TOF and LC MS/MS. We observed that proteins involved in redox hemostasis, vitamin and energy metabolism and ubiquitin dependent proteolysis were more abundant in differentiated cells, whereas the abundance of proteins associated with RNA processing and protein folding was higher in hESCs. Higher abundance of proteins involved in maintaining cellular redox state suggests the importance of redox hemostasis in neural differentiation. Furthermore, our results support the concept of a coupling mechanism between neuronal activity and glucose utilization. The protein network analysis showed that the majority of the interacting proteins were associated with the cell cycle and cellular proliferation. These results enhanced our understanding of the molecular dynamics that underlie neural commitment and differentiation. In highlighting the role of redox and unique metabolic properties of neuronal cells, the present findings add insight to our understanding of hESC differentiation to neurons. The abundance of fourteen proteins involved in maintaining cellular redox state, including 10 members of peroxiredoxin (Prdx) family, mainly increased during differentiation, thus highlighting a link of neural differentiation to redox. Our results revealed markedly higher expression of genes encoding enzymes involved in the glycolysis and amino acid synthesis during differentiation. Protein network analysis predicted a number of critical mediators in hESC differentiation. These proteins included TP53, CTNNB1, SMARCA4, TNF, TERT, E2F1, MYC, RB1, and AR.
The International Journal of Artificial Organs, 2011
In this study, a highly porous poly (D, L-lactic acid) (PDLLA) scaffold was designed and fabricat... more In this study, a highly porous poly (D, L-lactic acid) (PDLLA) scaffold was designed and fabricated using dioxane and thermal-induced phase separation (TIPS) methods (liquid-liquid and solid-liquid). Additionally, we characterized the ability of mouse embryonic stem cells (ESCs) to differentiate into neural cells in PDLLA scaffold with uniform porosity, interconnectivity, and high porosity, and then compared them with cells seeded under conventional two-dimensional (2D) culture conditions. Histochemistry staining showed the migration of differentiated cells through the scaffold. Immunofluorescence analysis of the differentiated cells by counting positive cells revealed that the PDLLA scaffold resulted in a significantly greater number of neural markers, microtubule associated protein-2, β-tubulin III, neurofilament protein, and glial fibrillary acidic protein (the astrocyte marker) when compared to those in 2D culture condition. Moreover, the expression of Nestin, Mash1, Pax6, and H...
Uploads
Papers by Maryam Hatami