In some classes of inflationary models, a violation of the null energy condition (NEC) is expecte... more In some classes of inflationary models, a violation of the null energy condition (NEC) is expected during the phase of accelerated expansion. The most striking observational effect would be a "blue" spectrum of primordial gravitational waves with a spectral index nT larger than zero. In this brief paper, we first update the current constraints on the amplitude of a blue GW spectrum. We then forecast the ability of the ongoing Planck satellite mission to detect a violation of the NEC during inflation, showing that the detection of the GW background is substantially improved if the NEC is violated during inflation.
Cosmic Microwave Background experiments must achieve very accurate calibration of their polarizat... more Cosmic Microwave Background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitational wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several non-standard, symmetry breaking theories of electrodynamics that allow for \textit{in vacuo} rotation if the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the CMB may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle $\alpha=-4.3^\circ\pm4.1^\circ$. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then $1^\circ$ for Planck and $0.2\circ$ for EPIC, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a GW background.
The faint radio point sources that are unresolved in cosmic microwave background (CMB) anisotropy... more The faint radio point sources that are unresolved in cosmic microwave background (CMB) anisotropy maps are likely to be a biased tracer of the large-scale structure dark matter distribution. While the shot-noise contribution to the angular power spectrum of unresolved radio point sources is included either when optimally constructing the CMB angular power spectrum, as with WMAP data, or when extracting cosmological parameters, we suggest that clustering part of the point source power spectrum should also be included. This is especially necessary at high frequencies above 150 GHz, where the clustering of far-IR sources is expected to dominate the shot-noise level of the angular power spectrum at tens of arcminute angular scales of both radio and sub-mm sources. We make an estimate of source clustering of unresolved radio sources in both WMAP and ACBAR, and marginalize over the amplitude of source clustering in each CMB data set when model fitting for cosmological parameters. For the combination of WMAP 5-year data and ACBAR, we find that the spectral index changes from the value of $0.963 \pm 0.014$ to $0.959 \pm 0.014$ (at 68% c.l.) when the clustering power spectrum of point sources is included in model fits. While we find that the differences are marginal with and without source clustering in current data, it may be necessary to account for source clustering with future datasets such as Planck, especially to properly model fit anisotropies at arcminute angular scales. If clustering is not accounted and point sources are modeled with a shot-noise only out to $l \sim 2000$, the spectral index will be biased by about 1.5$\sigma$.
We analyse WMAP 7-year temperature data, jointly modeling the cosmic microwave background (CMB) a... more We analyse WMAP 7-year temperature data, jointly modeling the cosmic microwave background (CMB) and Galactic foreground emission. We use the Commander code based on Gibbs sampling. Thus, from the WMAP7 data, we derive simultaneously the CMB and Galactic components on scales larger than 1deg with sensitivity improved relative to previous work. We conduct a detailed study of the low-frequency foreground with particular focus on the "microwave haze" emission around the Galactic center. We demonstrate improved performance in quantifying the diffuse galactic emission when Haslam 408MHz data are included together with WMAP7, and the spinning and thermal dust emission is modeled jointly. We also address the question of whether the hypothetical galactic haze can be explained by a spatial variation of the synchrotron spectral index. The excess of emission around the Galactic center appears stable with respect to variations of the foreground model that we study. Our results demonstrate that the new galactic foreground component - the microwave haze - is indeed present.
Journal of Cosmology and Astroparticle Physics, 2008
We study the implications of recent indications for a red spectrum of primordial density perturba... more We study the implications of recent indications for a red spectrum of primordial density perturbations for the detection of inflationary gravitational waves (IGWs) with forthcoming cosmic microwave background experiments. We find that if inflation occurs with a single field with an inflaton potential minimized at V=0, then Planck will be able to detect IGWs at better than 2$\sigma$ confidence level, unless the inflaton potential is a power law with a very weak power. The proposed satellite missions of the Cosmic Vision and Inflation Probe programs will be able to detect IGWs from all the models we have surveyed at better than 5$\sigma$ confidence level. We provide an example of what is required if the IGW background is to remain undetected even by these latter experiments.
Modern cosmology has sharpened questions posed for millennia about the origin of our cosmic habit... more Modern cosmology has sharpened questions posed for millennia about the origin of our cosmic habitat. The age-old questions have been transformed into two pressing issues primed for attack in the coming decade: How did the Universe begin? and What physical laws govern the Universe at the highest energies? The clearest window onto these questions is the pattern of polarization in the Cosmic Microwave Background (CMB), which is uniquely sensitive to primordial gravity waves. A detection of the special pattern produced by gravity waves would be not only an unprecedented discovery, but also a direct probe of physics at the earliest observable instants of our Universe. Experiments which map CMB polarization over the coming decade will lead us on our first steps towards answering these age-old questions.
COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently... more COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently proposed to ESA within Cosmic Vision 2015-2025. COrE will provide maps of the microwave sky in polarization and temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and sensitivities roughly 10 to 30 times better than PLANCK (depending on the frequency channel). The COrE mission will lead to breakthrough science in a wide range of areas, ranging from primordial cosmology to galactic and extragalactic science. COrE is designed to detect the primordial gravitational waves generated during the epoch of cosmic inflation at more than $3\sigma $ for $r=(T/S)>=10^{-3}$. It will also measure the CMB gravitational lensing deflection power spectrum to the cosmic variance limit on all linear scales, allowing us to probe absolute neutrino masses better than laboratory experiments and down to plausible values suggested by the neutrino oscillation data. COrE will also search for primordial non-Gaussianity with significant improvements over Planck in its ability to constrain the shape (and amplitude) of non-Gaussianity. In the areas of galactic and extragalactic science, in its highest frequency channels COrE will provide maps of the galactic polarized dust emission allowing us to map the galactic magnetic field in areas of diffuse emission not otherwise accessible to probe the initial conditions for star formation. COrE will also map the galactic synchrotron emission thirty times better than PLANCK. This White Paper reviews the COrE science program, our simulations on foreground subtraction, and the proposed instrumental configuration.
We investigate the impact of a nonstandard time evolution of the dark matter component on current... more We investigate the impact of a nonstandard time evolution of the dark matter component on current cosmological bounds from cosmic microwave background (CMB) anisotropies. We found that a less than 0.1% variation in the effective dark matter equation of state w dm can ...
In some classes of inflationary models, a violation of the null energy condition (NEC) is expecte... more In some classes of inflationary models, a violation of the null energy condition (NEC) is expected during the phase of accelerated expansion. The most striking observational effect would be a "blue" spectrum of primordial gravitational waves with a spectral index nT larger than zero. In this brief paper, we first update the current constraints on the amplitude of a blue GW spectrum. We then forecast the ability of the ongoing Planck satellite mission to detect a violation of the NEC during inflation, showing that the detection of the GW background is substantially improved if the NEC is violated during inflation.
Cosmic Microwave Background experiments must achieve very accurate calibration of their polarizat... more Cosmic Microwave Background experiments must achieve very accurate calibration of their polarization reference frame to avoid biasing the cosmological parameters. In particular, a wrong or inaccurate calibration might mimic the presence of a gravitational wave background, or a signal from cosmological birefringence, a phenomenon characteristic of several non-standard, symmetry breaking theories of electrodynamics that allow for \textit{in vacuo} rotation if the polarization direction of the photon. Noteworthly, several authors have claimed that the BOOMERanG 2003 (B2K) published polarized power spectra of the CMB may hint at cosmological birefringence. Such analyses, however, do not take into account the reported calibration uncertainties of the BOOMERanG focal plane. We develop a formalism to include this effect and apply it to the BOOMERanG dataset, finding a cosmological rotation angle $\alpha=-4.3^\circ\pm4.1^\circ$. We also investigate the expected performances of future space borne experiment, finding that an overall miscalibration larger then $1^\circ$ for Planck and $0.2\circ$ for EPIC, if not properly taken into account, will produce a bias on the constraints on the cosmological parameters and could misleadingly suggest the presence of a GW background.
The faint radio point sources that are unresolved in cosmic microwave background (CMB) anisotropy... more The faint radio point sources that are unresolved in cosmic microwave background (CMB) anisotropy maps are likely to be a biased tracer of the large-scale structure dark matter distribution. While the shot-noise contribution to the angular power spectrum of unresolved radio point sources is included either when optimally constructing the CMB angular power spectrum, as with WMAP data, or when extracting cosmological parameters, we suggest that clustering part of the point source power spectrum should also be included. This is especially necessary at high frequencies above 150 GHz, where the clustering of far-IR sources is expected to dominate the shot-noise level of the angular power spectrum at tens of arcminute angular scales of both radio and sub-mm sources. We make an estimate of source clustering of unresolved radio sources in both WMAP and ACBAR, and marginalize over the amplitude of source clustering in each CMB data set when model fitting for cosmological parameters. For the combination of WMAP 5-year data and ACBAR, we find that the spectral index changes from the value of $0.963 \pm 0.014$ to $0.959 \pm 0.014$ (at 68% c.l.) when the clustering power spectrum of point sources is included in model fits. While we find that the differences are marginal with and without source clustering in current data, it may be necessary to account for source clustering with future datasets such as Planck, especially to properly model fit anisotropies at arcminute angular scales. If clustering is not accounted and point sources are modeled with a shot-noise only out to $l \sim 2000$, the spectral index will be biased by about 1.5$\sigma$.
We analyse WMAP 7-year temperature data, jointly modeling the cosmic microwave background (CMB) a... more We analyse WMAP 7-year temperature data, jointly modeling the cosmic microwave background (CMB) and Galactic foreground emission. We use the Commander code based on Gibbs sampling. Thus, from the WMAP7 data, we derive simultaneously the CMB and Galactic components on scales larger than 1deg with sensitivity improved relative to previous work. We conduct a detailed study of the low-frequency foreground with particular focus on the "microwave haze" emission around the Galactic center. We demonstrate improved performance in quantifying the diffuse galactic emission when Haslam 408MHz data are included together with WMAP7, and the spinning and thermal dust emission is modeled jointly. We also address the question of whether the hypothetical galactic haze can be explained by a spatial variation of the synchrotron spectral index. The excess of emission around the Galactic center appears stable with respect to variations of the foreground model that we study. Our results demonstrate that the new galactic foreground component - the microwave haze - is indeed present.
Journal of Cosmology and Astroparticle Physics, 2008
We study the implications of recent indications for a red spectrum of primordial density perturba... more We study the implications of recent indications for a red spectrum of primordial density perturbations for the detection of inflationary gravitational waves (IGWs) with forthcoming cosmic microwave background experiments. We find that if inflation occurs with a single field with an inflaton potential minimized at V=0, then Planck will be able to detect IGWs at better than 2$\sigma$ confidence level, unless the inflaton potential is a power law with a very weak power. The proposed satellite missions of the Cosmic Vision and Inflation Probe programs will be able to detect IGWs from all the models we have surveyed at better than 5$\sigma$ confidence level. We provide an example of what is required if the IGW background is to remain undetected even by these latter experiments.
Modern cosmology has sharpened questions posed for millennia about the origin of our cosmic habit... more Modern cosmology has sharpened questions posed for millennia about the origin of our cosmic habitat. The age-old questions have been transformed into two pressing issues primed for attack in the coming decade: How did the Universe begin? and What physical laws govern the Universe at the highest energies? The clearest window onto these questions is the pattern of polarization in the Cosmic Microwave Background (CMB), which is uniquely sensitive to primordial gravity waves. A detection of the special pattern produced by gravity waves would be not only an unprecedented discovery, but also a direct probe of physics at the earliest observable instants of our Universe. Experiments which map CMB polarization over the coming decade will lead us on our first steps towards answering these age-old questions.
COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently... more COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently proposed to ESA within Cosmic Vision 2015-2025. COrE will provide maps of the microwave sky in polarization and temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and sensitivities roughly 10 to 30 times better than PLANCK (depending on the frequency channel). The COrE mission will lead to breakthrough science in a wide range of areas, ranging from primordial cosmology to galactic and extragalactic science. COrE is designed to detect the primordial gravitational waves generated during the epoch of cosmic inflation at more than $3\sigma $ for $r=(T/S)>=10^{-3}$. It will also measure the CMB gravitational lensing deflection power spectrum to the cosmic variance limit on all linear scales, allowing us to probe absolute neutrino masses better than laboratory experiments and down to plausible values suggested by the neutrino oscillation data. COrE will also search for primordial non-Gaussianity with significant improvements over Planck in its ability to constrain the shape (and amplitude) of non-Gaussianity. In the areas of galactic and extragalactic science, in its highest frequency channels COrE will provide maps of the galactic polarized dust emission allowing us to map the galactic magnetic field in areas of diffuse emission not otherwise accessible to probe the initial conditions for star formation. COrE will also map the galactic synchrotron emission thirty times better than PLANCK. This White Paper reviews the COrE science program, our simulations on foreground subtraction, and the proposed instrumental configuration.
We investigate the impact of a nonstandard time evolution of the dark matter component on current... more We investigate the impact of a nonstandard time evolution of the dark matter component on current cosmological bounds from cosmic microwave background (CMB) anisotropies. We found that a less than 0.1% variation in the effective dark matter equation of state w dm can ...
Uploads
Papers by Luca Pagano