Synaptic dysfunction and neuronal damage have been extensively associated with diabetic retinopat... more Synaptic dysfunction and neuronal damage have been extensively associated with diabetic retinopathy (DR). Our group evidenced that chronic hyperglycemia reduces the retinal expression of presynaptic proteins, which are crucial for proper synaptic function. The aim of the study was to explore the effect of topically administered sitagliptin, an inhibitor of the enzyme dipeptidyl peptidase-4, on the retinal expression patterns of an experimental model of DR. Transcriptome analysis was performed, comparing the retinas of 10 diabetic (db/db) mice randomly treated with sitagliptin eye drops (10 mg/mL) twice daily and the retinas of 10 additional db/db mice that received vehicle eye drops. Ten non-diabetic mice (db/+) were used as a control group. The Gene Ontology (GO) and Reactome databases were used to perform the gene set enrichment analysis (GSEA) in order to explore the most enriched biological pathways among the groups. The most differentiated genes of these pathways were validated...
The aim of this study was to assess the potential benefits of caffeine intake in protecting again... more The aim of this study was to assess the potential benefits of caffeine intake in protecting against the development of diabetic retinopathy (DR) in subjects with type 2 diabetes (T2D). Furthermore, we tested the effect of topical administration of caffeine on the early stages of DR in an experimental model of DR. In the cross-sectional study, a total of 144 subjects with DR and 147 individuals without DR were assessed. DR was assessed by an experienced ophthalmologist. A validated food frequency questionnaire (FFQ) was administered. In the experimental model, a total of 20 mice were included. One drop (5 μL) of caffeine (5 mg/mL) (n = 10) or vehicle (5 μL PBS, pH 7.4) (n = 10) was randomly administered directly onto the superior corneal surface twice daily for two weeks in each eye. Glial activation and retinal vascular permeability were assessed using standard methods. In the cross-sectional study in humans, the adjusted-multivariable model showed that a moderate and high (Q2 and Q...
Hemopexin (HPX) is overexpressed in the retina of diabetic patients, and induces the breakdown of... more Hemopexin (HPX) is overexpressed in the retina of diabetic patients, and induces the breakdown of the blood-retinal barrier (BRB) in vitro. The present study was aimed at evaluating whether HPX blockade by specific antibodies (aHPX) could avoid vascular leakage in vivo and microvascular angiogenesis in vitro and ex vivo. For this purpose, the effect of intravitreal injections (IVT) of aHPX on vascular leakage was evaluated in db/db mice and rats with streptozotocin-induced diabetes (D-STZ) using the Evans Blue method. Retinal neurodegeneration and inflammation were also evaluated. The antiangiogenic effect of aHPX on human retinal endothelial cells (HREC) was tested by scratch wound healing and tube formation using standardized methods, as well as choroidal sprouting assays from retinal explants obtained in rats. We found that IVT of aHPX significantly reduced vascular leakage, as well as retinal neurodegeneration and inflammation. In addition, treatment with aHPX significantly redu...
s from the 27th Meeting of the European Association for the Study of Diabetes Eye Complications S... more s from the 27th Meeting of the European Association for the Study of Diabetes Eye Complications Study Group (EASDec)
Hyperglycemia-induced oxidative stress plays a key role in the impairment of the retinal neurovas... more Hyperglycemia-induced oxidative stress plays a key role in the impairment of the retinal neurovascular unit, an early event in the pathogenesis of DR. The aim of this study was to assess the antioxidant properties of topical administration (eye drops) of sitagliptin in the diabetic retina. For this purpose, db/db mice received sitagliptin or vehicle eye drops twice per day for two weeks. Age-matched db/+ mice were used as the control group. We evaluated retinal mRNA (RT-PCR) and protein levels (Western blotting and immunohistochemistry) of different components from both the antioxidant system (NRF2, CAT, GPX, GR, CuZnSOD, and MnSOD) and the prooxidant machinery (PKC and TXNIP). We also studied superoxide levels (dihydroethidium staining) and oxidative damage to DNA/RNA (8-hydroxyguanosine immunostaining) and proteins (nitrotyrosine immunostaining). Finally, NF-кB translocation and IL-1β production were assessed through Western blotting and/or immunohistochemistry. We found that sita...
<jats:p>Diabetic retinopathy (DR) involves progressive neurovascular degeneration of the re... more <jats:p>Diabetic retinopathy (DR) involves progressive neurovascular degeneration of the retina. Reduction in synaptic protein expression has been observed in retinas from several diabetic animal models and human retinas. We previously reported that the topical administration (eye drops) of sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, prevented retinal neurodegeneration induced by diabetes in db/db mice. The aim of the present study is to examine whether the modulation of presynaptic proteins is a mechanism involved in the neuroprotective effect of sitagliptin. For this purpose, 12 db/db mice, aged 12 weeks, received a topical administration of sitagliptin (5 μL; concentration: 10 mg/mL) twice per day for 2 weeks, while other 12 db/db mice were treated with vehicle (5 μL). Twelve non-diabetic mice (db/+) were used as a control group. Protein levels were assessed by western blot and immunohistochemistry (IHC), and mRNA levels were evaluated by reverse transcription polymerase chain reaction (RT-PCR). Our results revealed a downregulation (protein and mRNA levels) of several presynaptic proteins such as synapsin I (Syn1), synaptophysin (Syp), synaptotagmin (Syt1), syntaxin 1A (Stx1a), vesicle-associated membrane protein 2 (Vamp2), and synaptosomal-associated protein of 25 kDa (Snap25) in diabetic mice treated with vehicle in comparison with non-diabetic mice. These proteins are involved in vesicle biogenesis, mobilization and docking, membrane fusion and recycling, and synaptic neurotransmission. Sitagliptin was able to significantly prevent the downregulation of all these proteins. We conclude that sitagliptin exerts beneficial effects in the retinas of db/db mice by preventing the downregulation of crucial presynaptic proteins. These neuroprotective effects open a new avenue for treating DR as well other retinal diseases in which neurodegeneration/synaptic abnormalities play a relevant role.</jats:p>
The neurovascular unit (NVU) plays an essential role in the development of diabetic retinopathy (... more The neurovascular unit (NVU) plays an essential role in the development of diabetic retinopathy (DR). We previously reported that the topical administration (eye drops) of sitagliptin and saxagliptin, two dipeptidyl peptidase-4 inhibitors (DPP-4i), prevents retinal neurodegeneration and vascular leakage in db/db mice. The aim of the present study is to evaluate the minimum effective dose of the topical administration of these DPP-4i. For this purpose, sitagliptin and saxagliptin were tested at different concentrations (sitagliptin: 1 mg/mL, 5 and 10 mg/mL, twice per day; saxagliptin: 1 and 10 mg/mL, once or twice per day) in db/db mice. As end points of efficacy, the hallmarks of NVU impairment were evaluated: reactive gliosis, neural apoptosis, and vascular leakage. These parameters were assessed by immunohistochemistry, cell counting, and the Evans blue method, respectively. Our results demonstrated that the minimum effective dose is 5 mg/mL twice per day for sitagliptin, and 10 m...
Background: An unexpected increase in the rate of severe diabetic retinopathy was observed in the... more Background: An unexpected increase in the rate of severe diabetic retinopathy was observed in the Semaglutide in Subjects with Type 2 Diabetes (SUSTAIN)-6 clinical trial. Although this effect was attributed to a rapid decrease in blood glucose levels, a direct deleterious effect of semaglutide on the retina could not be ruled out. In order to shed light on this issue, we have performed a study aimed at testing the direct effect of semaglutide administered by eye drops on retinal neuroinflammation and microvascular abnormalities using the db/db mouse model. Methods: Eye drops containing semaglutide (0.33 mg/mL; 5 μL once/daily) or vehicle (PBS; 5 μL once daily) were administered for 15 days. Results: We found that semaglutide significantly reduced glial activation, as well as the retinal expression of Nuclear factor kB (NF-κB), proinflammatory cytokines (IL-1β, IL-6, IL-18) and Intercellular Adhesion Molecule (ICAM)-1. In addition, semaglutide prevented the apoptosis of cells from th...
Synaptic dysfunction and neuronal damage have been extensively associated with diabetic retinopat... more Synaptic dysfunction and neuronal damage have been extensively associated with diabetic retinopathy (DR). Our group evidenced that chronic hyperglycemia reduces the retinal expression of presynaptic proteins, which are crucial for proper synaptic function. The aim of the study was to explore the effect of topically administered sitagliptin, an inhibitor of the enzyme dipeptidyl peptidase-4, on the retinal expression patterns of an experimental model of DR. Transcriptome analysis was performed, comparing the retinas of 10 diabetic (db/db) mice randomly treated with sitagliptin eye drops (10 mg/mL) twice daily and the retinas of 10 additional db/db mice that received vehicle eye drops. Ten non-diabetic mice (db/+) were used as a control group. The Gene Ontology (GO) and Reactome databases were used to perform the gene set enrichment analysis (GSEA) in order to explore the most enriched biological pathways among the groups. The most differentiated genes of these pathways were validated...
The aim of this study was to assess the potential benefits of caffeine intake in protecting again... more The aim of this study was to assess the potential benefits of caffeine intake in protecting against the development of diabetic retinopathy (DR) in subjects with type 2 diabetes (T2D). Furthermore, we tested the effect of topical administration of caffeine on the early stages of DR in an experimental model of DR. In the cross-sectional study, a total of 144 subjects with DR and 147 individuals without DR were assessed. DR was assessed by an experienced ophthalmologist. A validated food frequency questionnaire (FFQ) was administered. In the experimental model, a total of 20 mice were included. One drop (5 μL) of caffeine (5 mg/mL) (n = 10) or vehicle (5 μL PBS, pH 7.4) (n = 10) was randomly administered directly onto the superior corneal surface twice daily for two weeks in each eye. Glial activation and retinal vascular permeability were assessed using standard methods. In the cross-sectional study in humans, the adjusted-multivariable model showed that a moderate and high (Q2 and Q...
Hemopexin (HPX) is overexpressed in the retina of diabetic patients, and induces the breakdown of... more Hemopexin (HPX) is overexpressed in the retina of diabetic patients, and induces the breakdown of the blood-retinal barrier (BRB) in vitro. The present study was aimed at evaluating whether HPX blockade by specific antibodies (aHPX) could avoid vascular leakage in vivo and microvascular angiogenesis in vitro and ex vivo. For this purpose, the effect of intravitreal injections (IVT) of aHPX on vascular leakage was evaluated in db/db mice and rats with streptozotocin-induced diabetes (D-STZ) using the Evans Blue method. Retinal neurodegeneration and inflammation were also evaluated. The antiangiogenic effect of aHPX on human retinal endothelial cells (HREC) was tested by scratch wound healing and tube formation using standardized methods, as well as choroidal sprouting assays from retinal explants obtained in rats. We found that IVT of aHPX significantly reduced vascular leakage, as well as retinal neurodegeneration and inflammation. In addition, treatment with aHPX significantly redu...
s from the 27th Meeting of the European Association for the Study of Diabetes Eye Complications S... more s from the 27th Meeting of the European Association for the Study of Diabetes Eye Complications Study Group (EASDec)
Hyperglycemia-induced oxidative stress plays a key role in the impairment of the retinal neurovas... more Hyperglycemia-induced oxidative stress plays a key role in the impairment of the retinal neurovascular unit, an early event in the pathogenesis of DR. The aim of this study was to assess the antioxidant properties of topical administration (eye drops) of sitagliptin in the diabetic retina. For this purpose, db/db mice received sitagliptin or vehicle eye drops twice per day for two weeks. Age-matched db/+ mice were used as the control group. We evaluated retinal mRNA (RT-PCR) and protein levels (Western blotting and immunohistochemistry) of different components from both the antioxidant system (NRF2, CAT, GPX, GR, CuZnSOD, and MnSOD) and the prooxidant machinery (PKC and TXNIP). We also studied superoxide levels (dihydroethidium staining) and oxidative damage to DNA/RNA (8-hydroxyguanosine immunostaining) and proteins (nitrotyrosine immunostaining). Finally, NF-кB translocation and IL-1β production were assessed through Western blotting and/or immunohistochemistry. We found that sita...
<jats:p>Diabetic retinopathy (DR) involves progressive neurovascular degeneration of the re... more <jats:p>Diabetic retinopathy (DR) involves progressive neurovascular degeneration of the retina. Reduction in synaptic protein expression has been observed in retinas from several diabetic animal models and human retinas. We previously reported that the topical administration (eye drops) of sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, prevented retinal neurodegeneration induced by diabetes in db/db mice. The aim of the present study is to examine whether the modulation of presynaptic proteins is a mechanism involved in the neuroprotective effect of sitagliptin. For this purpose, 12 db/db mice, aged 12 weeks, received a topical administration of sitagliptin (5 μL; concentration: 10 mg/mL) twice per day for 2 weeks, while other 12 db/db mice were treated with vehicle (5 μL). Twelve non-diabetic mice (db/+) were used as a control group. Protein levels were assessed by western blot and immunohistochemistry (IHC), and mRNA levels were evaluated by reverse transcription polymerase chain reaction (RT-PCR). Our results revealed a downregulation (protein and mRNA levels) of several presynaptic proteins such as synapsin I (Syn1), synaptophysin (Syp), synaptotagmin (Syt1), syntaxin 1A (Stx1a), vesicle-associated membrane protein 2 (Vamp2), and synaptosomal-associated protein of 25 kDa (Snap25) in diabetic mice treated with vehicle in comparison with non-diabetic mice. These proteins are involved in vesicle biogenesis, mobilization and docking, membrane fusion and recycling, and synaptic neurotransmission. Sitagliptin was able to significantly prevent the downregulation of all these proteins. We conclude that sitagliptin exerts beneficial effects in the retinas of db/db mice by preventing the downregulation of crucial presynaptic proteins. These neuroprotective effects open a new avenue for treating DR as well other retinal diseases in which neurodegeneration/synaptic abnormalities play a relevant role.</jats:p>
The neurovascular unit (NVU) plays an essential role in the development of diabetic retinopathy (... more The neurovascular unit (NVU) plays an essential role in the development of diabetic retinopathy (DR). We previously reported that the topical administration (eye drops) of sitagliptin and saxagliptin, two dipeptidyl peptidase-4 inhibitors (DPP-4i), prevents retinal neurodegeneration and vascular leakage in db/db mice. The aim of the present study is to evaluate the minimum effective dose of the topical administration of these DPP-4i. For this purpose, sitagliptin and saxagliptin were tested at different concentrations (sitagliptin: 1 mg/mL, 5 and 10 mg/mL, twice per day; saxagliptin: 1 and 10 mg/mL, once or twice per day) in db/db mice. As end points of efficacy, the hallmarks of NVU impairment were evaluated: reactive gliosis, neural apoptosis, and vascular leakage. These parameters were assessed by immunohistochemistry, cell counting, and the Evans blue method, respectively. Our results demonstrated that the minimum effective dose is 5 mg/mL twice per day for sitagliptin, and 10 m...
Background: An unexpected increase in the rate of severe diabetic retinopathy was observed in the... more Background: An unexpected increase in the rate of severe diabetic retinopathy was observed in the Semaglutide in Subjects with Type 2 Diabetes (SUSTAIN)-6 clinical trial. Although this effect was attributed to a rapid decrease in blood glucose levels, a direct deleterious effect of semaglutide on the retina could not be ruled out. In order to shed light on this issue, we have performed a study aimed at testing the direct effect of semaglutide administered by eye drops on retinal neuroinflammation and microvascular abnormalities using the db/db mouse model. Methods: Eye drops containing semaglutide (0.33 mg/mL; 5 μL once/daily) or vehicle (PBS; 5 μL once daily) were administered for 15 days. Results: We found that semaglutide significantly reduced glial activation, as well as the retinal expression of Nuclear factor kB (NF-κB), proinflammatory cytokines (IL-1β, IL-6, IL-18) and Intercellular Adhesion Molecule (ICAM)-1. In addition, semaglutide prevented the apoptosis of cells from th...
Uploads
Papers by Patricia Bogdanov