... InX 3 -catalyzed haloamidation of vinyl arenes: a facile synthesis of α-bromo-and α-fluoroami... more ... InX 3 -catalyzed haloamidation of vinyl arenes: a facile synthesis of α-bromo-and α-fluoroamides. JS Yadav Corresponding Author Contact Information , a , E-mail The Corresponding Author , BV Subba Reddy a , D. Narasimha Chary a and D. Chandrakanth a. ...
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was e... more ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Doping graphene with electron donating or accepting molecules is an interesting approach to intro... more Doping graphene with electron donating or accepting molecules is an interesting approach to introduce carriers into it, analogous to electrochemical doping accomplished in graphene when used in a field-effect transistor. Here, we use first-principles density-functional theory to determine changes in the electronic-structure and vibrational properties of graphene that arise from the adsorption of aromatic molecules such as aniline and nitrobenzene. Identifying the roles of various mechanisms of chemical interaction between graphene and a molecule, we bring out the contrast between electrochemical and molecular doping of graphene. Our estimates of various contributions to shifts in the Raman-active modes of graphene with molecular doping are fundamental to the possible use of Raman spectroscopy in (a) characterization of the nature and concentration of carriers in graphene with molecular doping, and (b) graphene-based chemical sensors.
Transcription profiling analysis identified Saccharum hybrid DIRIGENT (SHDIR16) and Ο-METHYLTRANS... more Transcription profiling analysis identified Saccharum hybrid DIRIGENT (SHDIR16) and Ο-METHYLTRANSFERASE (SHOMT), putative defense and fiber biosynthesis-related genes that are highly expressed in the stem of sugarcane, a major sucrose accumulator and biomass producer. Promoters (Pro) of these genes were isolated and fused to the β-glucuronidase (GUS) reporter gene. Transient and stable transgene expression analyses showed that both ProDIR16 :GUS and ProOMT :GUS retain the expression characteristics of their respective endogenous genes in sugarcane and function in orthologous monocot species, including rice, maize and sorghum. Furthermore, both promoters conferred stem-regulated expression, which was further enhanced in the stem and induced in the leaf and root by salicylic acid, jasmonic acid and methyl jasmonate, key regulators of biotic and abiotic stresses. ProDIR16 and ProOMT will enable functional gene analysis in monocots, and will facilitate engineering monocots for improved carbon metabolism, enhanced stress tolerance and bioenergy production.
... InX 3 -catalyzed haloamidation of vinyl arenes: a facile synthesis of α-bromo-and α-fluoroami... more ... InX 3 -catalyzed haloamidation of vinyl arenes: a facile synthesis of α-bromo-and α-fluoroamides. JS Yadav Corresponding Author Contact Information , a , E-mail The Corresponding Author , BV Subba Reddy a , D. Narasimha Chary a and D. Chandrakanth a. ...
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was e... more ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Doping graphene with electron donating or accepting molecules is an interesting approach to intro... more Doping graphene with electron donating or accepting molecules is an interesting approach to introduce carriers into it, analogous to electrochemical doping accomplished in graphene when used in a field-effect transistor. Here, we use first-principles density-functional theory to determine changes in the electronic-structure and vibrational properties of graphene that arise from the adsorption of aromatic molecules such as aniline and nitrobenzene. Identifying the roles of various mechanisms of chemical interaction between graphene and a molecule, we bring out the contrast between electrochemical and molecular doping of graphene. Our estimates of various contributions to shifts in the Raman-active modes of graphene with molecular doping are fundamental to the possible use of Raman spectroscopy in (a) characterization of the nature and concentration of carriers in graphene with molecular doping, and (b) graphene-based chemical sensors.
Transcription profiling analysis identified Saccharum hybrid DIRIGENT (SHDIR16) and Ο-METHYLTRANS... more Transcription profiling analysis identified Saccharum hybrid DIRIGENT (SHDIR16) and Ο-METHYLTRANSFERASE (SHOMT), putative defense and fiber biosynthesis-related genes that are highly expressed in the stem of sugarcane, a major sucrose accumulator and biomass producer. Promoters (Pro) of these genes were isolated and fused to the β-glucuronidase (GUS) reporter gene. Transient and stable transgene expression analyses showed that both ProDIR16 :GUS and ProOMT :GUS retain the expression characteristics of their respective endogenous genes in sugarcane and function in orthologous monocot species, including rice, maize and sorghum. Furthermore, both promoters conferred stem-regulated expression, which was further enhanced in the stem and induced in the leaf and root by salicylic acid, jasmonic acid and methyl jasmonate, key regulators of biotic and abiotic stresses. ProDIR16 and ProOMT will enable functional gene analysis in monocots, and will facilitate engineering monocots for improved carbon metabolism, enhanced stress tolerance and bioenergy production.
Uploads
Papers by Chandrakanth Reddy