The Trenton Prong in New Jersey is underlain by a heterogeneous sequence of rocks that is divisib... more The Trenton Prong in New Jersey is underlain by a heterogeneous sequence of rocks that is divisible into northern and southern belts separated by the steeply southeast-dipping Huntingdon Valley fault (HVF). The northern belt contains metagabbro, charnockite, and dacite/tonalite, upon which biotite-bearing quartzofeldspathic gneiss, calc-silicate gneiss, and minor marble may rest unconformably. The mineralogy and geochemistry of these rocks are remarkably similar to those of Middle Proterozoic rocks in the New Jersey Highlands, and the authors interpret them to be correlative. Northern belt rocks are unconformably overlain by the Cambrian Chickies Quartzite, which is cut off to the northeast by the HVF. The southern belt contains felsic to intermediate quartzofeldspathic gneiss and schist and minor amounts of metavolcanic rocks, all of which may be at slightly lower metamorphic grade than those in the northern belt. High TiO[sub 2] metabasalt is chemically identical to diabase dikes ...
New zircon U–Pb geochronologic data from the Grenville-age Trenton Prong provide information on t... more New zircon U–Pb geochronologic data from the Grenville-age Trenton Prong provide information on the age of magmatism, timing of metamorphism, and post-metamorphic history of the inlier. Diorite gneiss (1318 ± 13 Ma) of the Colonial Lake Suite temporally correlates to magmatic arc sequences that formed along the eastern margin of Laurentia at <1.4 Ga. Metasedimentary gneisses yielded detrital zircon ages of ca. 1319–1133 Ma and ca. 1370–1207, consistent with sediment derived from a similar local source of Laurentian affinity. A small population of zircon (either detrital or igneous in origin) in one sample yielded ages of ca. 1074–1037 Ma. Possible interpretations for their formation are explored. Ca. 1060 Ma overgrowths on zircon in the northern part of the inlier constrain the timing of granulite-facies metamorphism to the Ottawan phase of the Grenvillian Orogeny. The undeformed Assunpink Creek Granite (1041 ± 6 Ma) intruded country rocks as small bodies of late-orogenic syenogr...
Kornerupine ± prismatine is present in granulite-facies paragneiss at two locations in the Grenvi... more Kornerupine ± prismatine is present in granulite-facies paragneiss at two locations in the Grenvillian New Jersey Highlands, occurring in an assemblage composed of quartz + biotite + K-feldspar + plagioclase + garnet + Fe-Ti oxides ± sillimanite ± rutile ± graphite. Estimates of the metamorphic conditions of the host gneiss are ≥600 MPa and ~740 °C during the Ottawan phase of the Grenvillian Orogeny. Geochemical compositions of kornerupine-bearing gneiss are consistent with protoliths that were graywacke sandstone and pelite. Metagraywacke is characterized by (in wt. %) 62–76% SiO2, 0.3–0.8% TiO2, 13–16% Al2O3, 0.6–4.3% CaO, 2.2–6.4% Na2O, 1.7–7.4% K2O, and 90–260 ppm Zr; metapelite has lower SiO2 (53–66%) and CaO (0.5–2.0%), higher TiO2 (0.9–1.8%), Al2O3, (15–26%), and Zr (210–490 ppm), and comparable Na2O (2.5–4.9%) and K2O (2.5–7.4%). Indices of weathering and alteration yield low to intermediate values implying a relatively unweathered sediment source. Provenance discriminants s...
The New Jersey Highlands and contiguous Hudson (New York) Highlands host hundreds of small, worke... more The New Jersey Highlands and contiguous Hudson (New York) Highlands host hundreds of small, worked-out magnetite mines, and the major zinc-oxide deposits of Franklin and Sterling Hill. The origin of the magnetite ore remains controversial. Two temporally distinct genetic models have been proposed for magnetite: (1) a pre-Ottawan, sedimentary exhalative model in which ores were deposited on the seafloor as precipitates from iron-enriched hydrothermal fluids; (2) a late-Ottawan, fluid alteration model in which the current mineral composition of ores was derived from Fe-rich, alkaline fluids, associated with late episodes of granitic plutonism (low-Ti Kiruna-type deposits), or in which deposits derived from metamorphogenic fluids circulating in a regional shear zone leached metals from host rocks and precipitated them in veins and faults. Detailed mapping of ore deposits and host rocks near Wanaque and Ringwood, New Jersey, and Warwick, New York, reveal that ore bodies are hosted by su...
The Trenton Prong in New Jersey is underlain by a heterogeneous sequence of rocks that is divisib... more The Trenton Prong in New Jersey is underlain by a heterogeneous sequence of rocks that is divisible into northern and southern belts separated by the steeply southeast-dipping Huntingdon Valley fault (HVF). The northern belt contains metagabbro, charnockite, and dacite/tonalite, upon which biotite-bearing quartzofeldspathic gneiss, calc-silicate gneiss, and minor marble may rest unconformably. The mineralogy and geochemistry of these rocks are remarkably similar to those of Middle Proterozoic rocks in the New Jersey Highlands, and the authors interpret them to be correlative. Northern belt rocks are unconformably overlain by the Cambrian Chickies Quartzite, which is cut off to the northeast by the HVF. The southern belt contains felsic to intermediate quartzofeldspathic gneiss and schist and minor amounts of metavolcanic rocks, all of which may be at slightly lower metamorphic grade than those in the northern belt. High TiO[sub 2] metabasalt is chemically identical to diabase dikes ...
New zircon U–Pb geochronologic data from the Grenville-age Trenton Prong provide information on t... more New zircon U–Pb geochronologic data from the Grenville-age Trenton Prong provide information on the age of magmatism, timing of metamorphism, and post-metamorphic history of the inlier. Diorite gneiss (1318 ± 13 Ma) of the Colonial Lake Suite temporally correlates to magmatic arc sequences that formed along the eastern margin of Laurentia at <1.4 Ga. Metasedimentary gneisses yielded detrital zircon ages of ca. 1319–1133 Ma and ca. 1370–1207, consistent with sediment derived from a similar local source of Laurentian affinity. A small population of zircon (either detrital or igneous in origin) in one sample yielded ages of ca. 1074–1037 Ma. Possible interpretations for their formation are explored. Ca. 1060 Ma overgrowths on zircon in the northern part of the inlier constrain the timing of granulite-facies metamorphism to the Ottawan phase of the Grenvillian Orogeny. The undeformed Assunpink Creek Granite (1041 ± 6 Ma) intruded country rocks as small bodies of late-orogenic syenogr...
Kornerupine ± prismatine is present in granulite-facies paragneiss at two locations in the Grenvi... more Kornerupine ± prismatine is present in granulite-facies paragneiss at two locations in the Grenvillian New Jersey Highlands, occurring in an assemblage composed of quartz + biotite + K-feldspar + plagioclase + garnet + Fe-Ti oxides ± sillimanite ± rutile ± graphite. Estimates of the metamorphic conditions of the host gneiss are ≥600 MPa and ~740 °C during the Ottawan phase of the Grenvillian Orogeny. Geochemical compositions of kornerupine-bearing gneiss are consistent with protoliths that were graywacke sandstone and pelite. Metagraywacke is characterized by (in wt. %) 62–76% SiO2, 0.3–0.8% TiO2, 13–16% Al2O3, 0.6–4.3% CaO, 2.2–6.4% Na2O, 1.7–7.4% K2O, and 90–260 ppm Zr; metapelite has lower SiO2 (53–66%) and CaO (0.5–2.0%), higher TiO2 (0.9–1.8%), Al2O3, (15–26%), and Zr (210–490 ppm), and comparable Na2O (2.5–4.9%) and K2O (2.5–7.4%). Indices of weathering and alteration yield low to intermediate values implying a relatively unweathered sediment source. Provenance discriminants s...
The New Jersey Highlands and contiguous Hudson (New York) Highlands host hundreds of small, worke... more The New Jersey Highlands and contiguous Hudson (New York) Highlands host hundreds of small, worked-out magnetite mines, and the major zinc-oxide deposits of Franklin and Sterling Hill. The origin of the magnetite ore remains controversial. Two temporally distinct genetic models have been proposed for magnetite: (1) a pre-Ottawan, sedimentary exhalative model in which ores were deposited on the seafloor as precipitates from iron-enriched hydrothermal fluids; (2) a late-Ottawan, fluid alteration model in which the current mineral composition of ores was derived from Fe-rich, alkaline fluids, associated with late episodes of granitic plutonism (low-Ti Kiruna-type deposits), or in which deposits derived from metamorphogenic fluids circulating in a regional shear zone leached metals from host rocks and precipitated them in veins and faults. Detailed mapping of ore deposits and host rocks near Wanaque and Ringwood, New Jersey, and Warwick, New York, reveal that ore bodies are hosted by su...
Uploads
Papers by Richard A. Volkert