Diagnosis of the problem‐solving state of a novice student in science, by an accomplished teacher... more Diagnosis of the problem‐solving state of a novice student in science, by an accomplished teacher, is studied in order to build a computer system that will simulate the process. Although such “expert” systems have been successfully developed in medicine (MYCIN, INTERNIST/CADUCEUS), very little has been accomplished in science education, even though there is a reasonably close parallel between expert medical diagnosis of patients with physiological problems and expert instructional diagnosis of students with learning problems. The system described in this paper, DIPS: Diagnosis for Instruction in Problem Solving, involves a new line of research for science educators interested in interdisciplinary efforts and ways in which computer technology might be used to better understand how to improve science learning. The basic architecture of the DIPS system is outlined and explained in terms of instruction and research implications, and the role of such “intelligent” computer systems in sci...
The purpose of this paper is to identify important aspects of Piaget's work and refer the rea... more The purpose of this paper is to identify important aspects of Piaget's work and refer the reader to sources readily available in books and periodicals.
Building on the earlier analysis by Berlin (1991), this paper reviews various studies on integrat... more Building on the earlier analysis by Berlin (1991), this paper reviews various studies on integrating mathematics and science in the 1990s and provides some implications for further research. The areas identified for further exploration include comparison of the nature of mathematics and science, epistemological debates in mathematics and in science education, the bases used to emphasize science over mathematics or vice versa, empirical evidence of effectiveness of integration, connections between teacher education programs for integration and teachers' subsequent classroom teaching practices, perceptions of integration on the part of teacher educators, contextual difficulties in implementing integrated approaches and possible solutions, and rationales of integrating mathematics and science through technology. In order to help all students become scientifically literate, which most reform documents call for, more focused attention on integration of curriculum and instruction is n...
Diagnosis of the problem‐solving state of a novice student in science, by an accomplished teacher... more Diagnosis of the problem‐solving state of a novice student in science, by an accomplished teacher, is studied in order to build a computer system that will simulate the process. Although such “expert” systems have been successfully developed in medicine (MYCIN, INTERNIST/CADUCEUS), very little has been accomplished in science education, even though there is a reasonably close parallel between expert medical diagnosis of patients with physiological problems and expert instructional diagnosis of students with learning problems. The system described in this paper, DIPS: Diagnosis for Instruction in Problem Solving, involves a new line of research for science educators interested in interdisciplinary efforts and ways in which computer technology might be used to better understand how to improve science learning. The basic architecture of the DIPS system is outlined and explained in terms of instruction and research implications, and the role of such “intelligent” computer systems in sci...
The purpose of this paper is to identify important aspects of Piaget's work and refer the rea... more The purpose of this paper is to identify important aspects of Piaget's work and refer the reader to sources readily available in books and periodicals.
Building on the earlier analysis by Berlin (1991), this paper reviews various studies on integrat... more Building on the earlier analysis by Berlin (1991), this paper reviews various studies on integrating mathematics and science in the 1990s and provides some implications for further research. The areas identified for further exploration include comparison of the nature of mathematics and science, epistemological debates in mathematics and in science education, the bases used to emphasize science over mathematics or vice versa, empirical evidence of effectiveness of integration, connections between teacher education programs for integration and teachers' subsequent classroom teaching practices, perceptions of integration on the part of teacher educators, contextual difficulties in implementing integrated approaches and possible solutions, and rationales of integrating mathematics and science through technology. In order to help all students become scientifically literate, which most reform documents call for, more focused attention on integration of curriculum and instruction is n...
Uploads
Papers by Ronald Good