Diet and Nutrition in Dementia and Cognitive Decline, 2015
Cognitive impairment associated with human immunodeficiency virus (HIV) infection continues to be... more Cognitive impairment associated with human immunodeficiency virus (HIV) infection continues to be quite prominent, despite the widespread use and effectiveness of combined antiretroviral drug therapy (cART). Thus, while mortality associated with HIV infection has been significantly reduced by cART, these regimens show only modest central nervous system penetrability, and many HIV-infected individuals show evidence of neurocognitive decline that may produce a progressive dementia. An imbalance of endogenous antioxidant defenses and generation of reactive oxygen species (ROS) is a common characteristic of HIV infection, and preclinical evidence implicates some HIV virotoxins in stimulating the production of ROS to promote neurodegeneration. Antioxidant approaches to address ROS activity produced by these virotoxins have been employed in preclinical models and demonstrate effectiveness in attenuating neurodegeneration produced by exposure to the virotoxins Tat and gp120. However, only a modest clinical literature exists with regard to effects of vitamin E and other antioxidant compounds on HIV progression and HIV-associated cognitive impairment. Findings of these studies demonstrate either no or modest effects of antioxidant regimens on HIV-associated cognitive impairment. Thus, the current state of opinion on the possible efficacy of antioxidant approaches to treat HIV-associated neurocognitive impairment remains unresolved, as a clear need for additional research is evident.
Human immunodeficiency virus-1 (HIV-1) infection may produce neurological deficits, such as cogni... more Human immunodeficiency virus-1 (HIV-1) infection may produce neurological deficits, such as cognitive decline, that may be worsened by concurrent ethanol (EtOH) abuse. Among the many biochemical cascades likely mediating HIV-1-associated neuronal injury is enhancement of N-methyl-d-aspartate (NMDA) receptor function and progression to excitotoxicity, an effect that may be directly or indirectly related to accumulation in brain of the HIV-1 trans-activator
Hypercortisolemia, long-term exposure of the brain to high concentrations of stress hormones (i.e... more Hypercortisolemia, long-term exposure of the brain to high concentrations of stress hormones (i.e. cortisol), may occur in patients suffering from depression, alcoholism, and other disorders. This has been suggested to produce neuropathological effects, in part, via increased function or sensitivity of N-methyl-d-aspartate (NMDA)-type glutamate receptors. Given that cigarette smoking is highly prevalent in some of these patient groups and nicotine
Human immunodeficiency virus type-I (HIV-1) infection is often associated with neuronal loss in c... more Human immunodeficiency virus type-I (HIV-1) infection is often associated with neuronal loss in cortical and subcortical regions that may manifest as motor dysfunction and dementia. The function of the HIV-1 transcription protein Tat and subsequent activation of N-methyl-D-aspartate receptors (NMDAr) have been implicated in this form of neurodegeneration. However, it is unclear if Tat interacts directly with the NMDAr and the role of specific NMDAr subunit composition in mediating effects of Tat is also unclear. The present studies examined the ability of HIV-1 Tat1-72 protein (10 pM-1.0 microM) to displace [3H]MK-801 binding and to attenuate spermidine-induced potentiation of this binding in rat brain homogenate comprised of cerebellum, hippocampus, and cerebral cortex. The role of NMDAr polyamine-site function in the neurotoxic effects of Tat was determined using organotypic hippocampal slice cultures. Binding of [3H]MK-801 in adult rat brain homogenate was not reduced by Tat at concentrations below 1 microM. Tat potently inhibited the potentiation of [3H]MK-801 binding produced by co-exposure of membranes to the NMDAr co-agonist spermidine (IC(50)=3.74 nM). In hippocampal explants, Tat produced neurotoxicity in the CA3 and CA1 pyramidal cell layers, as well as in the dentate gyrus, that was significantly reduced by co-exposure to MK-801 (20 microM) and the NMDAr polyamine-site antagonist arcaine (10 microM). Exposure to the HIV-1 Tat deletion mutant (Tatdelta31-61) did not produce neurotoxicity in hippocampal explants. These data suggest that the neurotoxic effects of HIV-1 Tat are mediated, in part, by direct interactions with a polyamine-sensitive site on the NMDAr that positively modulates the function of this receptor.
The human immunodeficiency virus 1 (HIV-1) protein Trans-activator of Transcription (Tat) is a nu... more The human immunodeficiency virus 1 (HIV-1) protein Trans-activator of Transcription (Tat) is a nuclear regulatory protein that may contribute to the development of HIV-1 associated dementia by disrupting the neuronal cytoskeleton. The present studies examined effects of recombinant Tat(1-86; 1-100 nM) on microtubule-associated protein (MAP)-dependent and MAP-independent microtubule formation ex vivo and oxidative neuronal injury in rat organotypic hippocampal explants. Acute exposure to Tat(1-86) (≥1 nM) markedly reduced MAP-dependent and -independent microtubule formation ex vivo, as did vincristine sulfate (0.1-10 μM). Cytotoxicity, as measured by propidium iodide uptake, was observed in granule cells of the DG with exposure to 100 nM Tat(1-86) for 24 or 72 h, while significant reductions in MAP-2 immunoreactivity were observed in granule cells and pyramidal cells of the CA1 and CA3 regions at each timepoint. These effects were prevented by co-exposure to the soluble vitamin E analog Trolox (500 μM). Thus, effects of Tat(1-86) on the neuronal viability may be associated with direct interactions with microtubules and generation of oxidative stress.
Glutamatergic systems have been increasingly recognized as mediators of methamphetamine's (M... more Glutamatergic systems have been increasingly recognized as mediators of methamphetamine's (METH) pharmacological effects though little is known about the means by which METH interacts with glutamate receptors. The present studies examined effects of METH (0.1100 μM) on ...
Elevations in circulating concentrations of glucocorticoids (GC) may increase the expression and/... more Elevations in circulating concentrations of glucocorticoids (GC) may increase the expression and/or sensitivity of ionotropic transmitter receptors in brain. For example, recent evidence suggests that acute and chronic GC exposure may alter the number and/or function of N-methyl-d-...
Exposure to high levels of glucocorticoids (GCs) may adversely affect neuronal viability, particu... more Exposure to high levels of glucocorticoids (GCs) may adversely affect neuronal viability, particularly in the developing hippocampus, via increased function or sensitivity of N-methyl-D-aspartate (NMDA)-type glutamate receptors. Conversely, choline supplementation in the ...
Excess glutamate release and stimulation of post-synaptic glutamatergic receptors have been impli... more Excess glutamate release and stimulation of post-synaptic glutamatergic receptors have been implicated in the pathophysiology of many neurological diseases. The hippocampus, and the pyramidal cell layer of the cornu ammonus 1 (CA1) region in ...
Recent findings suggest that methamphetamine (METH) functions acutely to inhibit N-methyl-d-aspar... more Recent findings suggest that methamphetamine (METH) functions acutely to inhibit N-methyl-d-aspartate (NMDA) receptor function. Protracted withdrawal from METH exposure may increase the sensitivity of NMDA receptors to agonist exposure, promoting neuronal excitability. However, the relevance of METH effects on NMDA receptor activity with regard to neuronal viability has not been studied. The present studies examined the effects of protracted METH exposure (6 or 7 days; 1.0-100 μM) and withdrawal (1 or 7 days) on NMDA receptor-dependent neurotoxicity, determined with use of the non-vital fluorescent marker propidium iodide, in organotypic slice cultures of male and female rats. Prolonged exposure to METH (100 μM) produced only modest toxicity in the granule cell layer of the dentate gyrus. Withdrawal from METH exposure (1 or 7 days) did not produce overt neuronal injury in any region of slice cultures. Exposure to NMDA (5 μM) produced marked neurotoxicity in the CA1 pyramidal cell layer. Neither co-exposure to METH nor 1 day of METH withdrawal in combination with NMDA exposure altered NMDA-induced neurotoxicity. In contrast, protracted withdrawal from METH exposure (7 days) was associated with a marked (~400%) increase in NMDA-induced neurotoxicity in CA1 region pyramidal cells. This potentiation of neurotoxicity was prevented by co-exposure to the selective NMDA receptor antagonist 5-2-amino-5-phoshonovaleric acid (20 μM) and was markedly attenuated by co-exposure of slices to xestospongin C (1 μM), an antagonist of IP3 receptors. The results of the present studies suggest that long-term METH withdrawal functionally sensitizes the NMDA receptor to agonist exposure and requires the co-activation of NMDA and IP3 receptors.
Prolonged exposure to organophosphate (OP) pesticides may produce cognitive deficits reflective o... more Prolonged exposure to organophosphate (OP) pesticides may produce cognitive deficits reflective of hippocampal injury in both humans and rodents. Recent work has indicated that microtubule trafficking is also adversely affected by exposure to the OP pesticide chlorpyrifos, suggesting a novel mode of OP-induced neurotoxicity. The present studies examined effects of prolonged exposure to chlorpyrifos oxon (CPO) on acetylcholinesterase (AChE) activity,
Diet and Nutrition in Dementia and Cognitive Decline, 2015
Cognitive impairment associated with human immunodeficiency virus (HIV) infection continues to be... more Cognitive impairment associated with human immunodeficiency virus (HIV) infection continues to be quite prominent, despite the widespread use and effectiveness of combined antiretroviral drug therapy (cART). Thus, while mortality associated with HIV infection has been significantly reduced by cART, these regimens show only modest central nervous system penetrability, and many HIV-infected individuals show evidence of neurocognitive decline that may produce a progressive dementia. An imbalance of endogenous antioxidant defenses and generation of reactive oxygen species (ROS) is a common characteristic of HIV infection, and preclinical evidence implicates some HIV virotoxins in stimulating the production of ROS to promote neurodegeneration. Antioxidant approaches to address ROS activity produced by these virotoxins have been employed in preclinical models and demonstrate effectiveness in attenuating neurodegeneration produced by exposure to the virotoxins Tat and gp120. However, only a modest clinical literature exists with regard to effects of vitamin E and other antioxidant compounds on HIV progression and HIV-associated cognitive impairment. Findings of these studies demonstrate either no or modest effects of antioxidant regimens on HIV-associated cognitive impairment. Thus, the current state of opinion on the possible efficacy of antioxidant approaches to treat HIV-associated neurocognitive impairment remains unresolved, as a clear need for additional research is evident.
Human immunodeficiency virus-1 (HIV-1) infection may produce neurological deficits, such as cogni... more Human immunodeficiency virus-1 (HIV-1) infection may produce neurological deficits, such as cognitive decline, that may be worsened by concurrent ethanol (EtOH) abuse. Among the many biochemical cascades likely mediating HIV-1-associated neuronal injury is enhancement of N-methyl-d-aspartate (NMDA) receptor function and progression to excitotoxicity, an effect that may be directly or indirectly related to accumulation in brain of the HIV-1 trans-activator
Hypercortisolemia, long-term exposure of the brain to high concentrations of stress hormones (i.e... more Hypercortisolemia, long-term exposure of the brain to high concentrations of stress hormones (i.e. cortisol), may occur in patients suffering from depression, alcoholism, and other disorders. This has been suggested to produce neuropathological effects, in part, via increased function or sensitivity of N-methyl-d-aspartate (NMDA)-type glutamate receptors. Given that cigarette smoking is highly prevalent in some of these patient groups and nicotine
Human immunodeficiency virus type-I (HIV-1) infection is often associated with neuronal loss in c... more Human immunodeficiency virus type-I (HIV-1) infection is often associated with neuronal loss in cortical and subcortical regions that may manifest as motor dysfunction and dementia. The function of the HIV-1 transcription protein Tat and subsequent activation of N-methyl-D-aspartate receptors (NMDAr) have been implicated in this form of neurodegeneration. However, it is unclear if Tat interacts directly with the NMDAr and the role of specific NMDAr subunit composition in mediating effects of Tat is also unclear. The present studies examined the ability of HIV-1 Tat1-72 protein (10 pM-1.0 microM) to displace [3H]MK-801 binding and to attenuate spermidine-induced potentiation of this binding in rat brain homogenate comprised of cerebellum, hippocampus, and cerebral cortex. The role of NMDAr polyamine-site function in the neurotoxic effects of Tat was determined using organotypic hippocampal slice cultures. Binding of [3H]MK-801 in adult rat brain homogenate was not reduced by Tat at concentrations below 1 microM. Tat potently inhibited the potentiation of [3H]MK-801 binding produced by co-exposure of membranes to the NMDAr co-agonist spermidine (IC(50)=3.74 nM). In hippocampal explants, Tat produced neurotoxicity in the CA3 and CA1 pyramidal cell layers, as well as in the dentate gyrus, that was significantly reduced by co-exposure to MK-801 (20 microM) and the NMDAr polyamine-site antagonist arcaine (10 microM). Exposure to the HIV-1 Tat deletion mutant (Tatdelta31-61) did not produce neurotoxicity in hippocampal explants. These data suggest that the neurotoxic effects of HIV-1 Tat are mediated, in part, by direct interactions with a polyamine-sensitive site on the NMDAr that positively modulates the function of this receptor.
The human immunodeficiency virus 1 (HIV-1) protein Trans-activator of Transcription (Tat) is a nu... more The human immunodeficiency virus 1 (HIV-1) protein Trans-activator of Transcription (Tat) is a nuclear regulatory protein that may contribute to the development of HIV-1 associated dementia by disrupting the neuronal cytoskeleton. The present studies examined effects of recombinant Tat(1-86; 1-100 nM) on microtubule-associated protein (MAP)-dependent and MAP-independent microtubule formation ex vivo and oxidative neuronal injury in rat organotypic hippocampal explants. Acute exposure to Tat(1-86) (≥1 nM) markedly reduced MAP-dependent and -independent microtubule formation ex vivo, as did vincristine sulfate (0.1-10 μM). Cytotoxicity, as measured by propidium iodide uptake, was observed in granule cells of the DG with exposure to 100 nM Tat(1-86) for 24 or 72 h, while significant reductions in MAP-2 immunoreactivity were observed in granule cells and pyramidal cells of the CA1 and CA3 regions at each timepoint. These effects were prevented by co-exposure to the soluble vitamin E analog Trolox (500 μM). Thus, effects of Tat(1-86) on the neuronal viability may be associated with direct interactions with microtubules and generation of oxidative stress.
Glutamatergic systems have been increasingly recognized as mediators of methamphetamine's (M... more Glutamatergic systems have been increasingly recognized as mediators of methamphetamine's (METH) pharmacological effects though little is known about the means by which METH interacts with glutamate receptors. The present studies examined effects of METH (0.1100 μM) on ...
Elevations in circulating concentrations of glucocorticoids (GC) may increase the expression and/... more Elevations in circulating concentrations of glucocorticoids (GC) may increase the expression and/or sensitivity of ionotropic transmitter receptors in brain. For example, recent evidence suggests that acute and chronic GC exposure may alter the number and/or function of N-methyl-d-...
Exposure to high levels of glucocorticoids (GCs) may adversely affect neuronal viability, particu... more Exposure to high levels of glucocorticoids (GCs) may adversely affect neuronal viability, particularly in the developing hippocampus, via increased function or sensitivity of N-methyl-D-aspartate (NMDA)-type glutamate receptors. Conversely, choline supplementation in the ...
Excess glutamate release and stimulation of post-synaptic glutamatergic receptors have been impli... more Excess glutamate release and stimulation of post-synaptic glutamatergic receptors have been implicated in the pathophysiology of many neurological diseases. The hippocampus, and the pyramidal cell layer of the cornu ammonus 1 (CA1) region in ...
Recent findings suggest that methamphetamine (METH) functions acutely to inhibit N-methyl-d-aspar... more Recent findings suggest that methamphetamine (METH) functions acutely to inhibit N-methyl-d-aspartate (NMDA) receptor function. Protracted withdrawal from METH exposure may increase the sensitivity of NMDA receptors to agonist exposure, promoting neuronal excitability. However, the relevance of METH effects on NMDA receptor activity with regard to neuronal viability has not been studied. The present studies examined the effects of protracted METH exposure (6 or 7 days; 1.0-100 μM) and withdrawal (1 or 7 days) on NMDA receptor-dependent neurotoxicity, determined with use of the non-vital fluorescent marker propidium iodide, in organotypic slice cultures of male and female rats. Prolonged exposure to METH (100 μM) produced only modest toxicity in the granule cell layer of the dentate gyrus. Withdrawal from METH exposure (1 or 7 days) did not produce overt neuronal injury in any region of slice cultures. Exposure to NMDA (5 μM) produced marked neurotoxicity in the CA1 pyramidal cell layer. Neither co-exposure to METH nor 1 day of METH withdrawal in combination with NMDA exposure altered NMDA-induced neurotoxicity. In contrast, protracted withdrawal from METH exposure (7 days) was associated with a marked (~400%) increase in NMDA-induced neurotoxicity in CA1 region pyramidal cells. This potentiation of neurotoxicity was prevented by co-exposure to the selective NMDA receptor antagonist 5-2-amino-5-phoshonovaleric acid (20 μM) and was markedly attenuated by co-exposure of slices to xestospongin C (1 μM), an antagonist of IP3 receptors. The results of the present studies suggest that long-term METH withdrawal functionally sensitizes the NMDA receptor to agonist exposure and requires the co-activation of NMDA and IP3 receptors.
Prolonged exposure to organophosphate (OP) pesticides may produce cognitive deficits reflective o... more Prolonged exposure to organophosphate (OP) pesticides may produce cognitive deficits reflective of hippocampal injury in both humans and rodents. Recent work has indicated that microtubule trafficking is also adversely affected by exposure to the OP pesticide chlorpyrifos, suggesting a novel mode of OP-induced neurotoxicity. The present studies examined effects of prolonged exposure to chlorpyrifos oxon (CPO) on acetylcholinesterase (AChE) activity,
Uploads
Papers by Rachel Self