Docking studies and simulations by Stefan Noha
Biochemical Pharmacology, 2013
Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) possesses anti-inflammatory and anti-carcinoge... more Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone) possesses anti-inflammatory and anti-carcinogenic properties in vivo, and these features have been related to interference with multiple targets including XIAPs, NFκB, STAT-3, Akt and mTOR. However, interference with these proteins requires relatively high concentrations of embelin (IC₅₀>4 μM) and cannot fully explain its bioactivity observed in several functional studies. Here we reveal human 5-lipoxygenase (5-LO) and microsomal prostaglandin E₂ synthase (mPGES)-1 as direct molecular targets of embelin. Thus, embelin potently suppressed the biosynthesis of eicosanoids by selective inhibition of 5-LO and mPGES-1 with IC₅₀=0.06 and 0.2 μM, respectively. In intact human polymorphonuclear leukocytes and monocytes, embelin consistently blocked the biosynthesis of various 5-LO products regardless of the stimulus (fMLP or A23187) with IC₅₀=0.8-2 μM. Neither the related human 12- and 15-LO nor the cyclooxygenases-1 and -2 or cytosolic phospholipase A₂ were significantly affected by 10 μM embelin. Inhibition of 5-LO and mPGES-1 by embelin was (I) essentially reversible after wash-out, (II) not impaired at higher substrate concentrations, (III) unaffected by inclusion of Triton X-100, and (IV) did not correlate to its proposed antioxidant properties. Docking simulations suggest concrete binding poses in the active sites of both 5-LO and mPGES-1. Because 5-LO- and mPGES-1-derived eicosanoids play roles in inflammation and cancer, the interference of embelin with these enzymes may contribute to its biological effects and suggests embelin as novel chemotype for development of dual 5-LO/mPGES-1 inhibitors.
Journal of natural products, Jan 27, 2014
The microsomal prostaglandin E2 synthase (mPGES)-1 is the terminal enzyme in the biosynthesis of ... more The microsomal prostaglandin E2 synthase (mPGES)-1 is the terminal enzyme in the biosynthesis of prostaglandin (PG)E2 from cyclooxygenase (COX)-derived PGH2. We previously found that mPGES-1 is inhibited by boswellic acids (IC50 = 3-30 μM), which are bioactive triterpene acids present in the anti-inflammatory remedy frankincense. Here we show that besides boswellic acids, additional known triterpene acids (i.e., tircuallic, lupeolic, and roburic acids) isolated from frankincense suppress mPGES-1 with increased potencies. In particular, 3α-acetoxy-8,24-dienetirucallic acid (6) and 3α-acetoxy-7,24-dienetirucallic acid (10) inhibited mPGES-1 activity in a cell-free assay with IC50 = 0.4 μM, each. Structure-activity relationship studies and docking simulations revealed concrete structure-related interactions with mPGES-1 and its cosubstrate glutathione. COX-1 and -2 were hardly affected by the triterpene acids (IC50 > 10 μM). Given the crucial role of mPGES-1 in inflammation and the ...
Journal of Natural Products, 2014
The microsomal prostaglandin E2 synthase (mPGES)-1 is the terminal enzyme in the biosynthesis of ... more The microsomal prostaglandin E2 synthase (mPGES)-1 is the terminal enzyme in the biosynthesis of prostaglandin (PG)E2 from cyclooxygenase (COX)-derived PGH2. We previously found that mPGES-1 is inhibited by boswellic acids (IC50 = 3−30 μM), which are bioactive triterpene acids present in the anti-inflammatory remedy frankincense. Here we show that besides boswellic acids, additional known triterpene acids (i.e., tircuallic, lupeolic, and roburic acids) isolated from frankincense suppress mPGES-1 with increased potencies. In particular, 3α-acetoxy-8,24dienetirucallic acid (6) and 3α-acetoxy-7,24-dienetirucallic acid (10) inhibited mPGES-1 activity in a cell-free assay with IC50 = 0.4 μM, each. Structure−activity relationship studies and docking simulations revealed concrete structure-related interactions with mPGES-1 and its cosubstrate glutathione. COX-1 and-2 were hardly affected by the triterpene acids (IC50 > 10 μM). Given the crucial role of mPGES-1 in inflammation and the abundance of highly active triterpene acids in frankincence extracts, our findings provide further evidence of the anti-inflammatory potential of frankincense preparations and reveal novel, potent bioactivities of tirucallic acids, roburic acids, and lupeolic acids.
Journal of Natural Products, 2014
Journal of Natural Products, 2014
Journal of Natural Products, 2014
ACS chemical neuroscience, Jan 21, 2017
Among opioids, morphinans are of major importance as the most effective analgesic drugs acting pr... more Among opioids, morphinans are of major importance as the most effective analgesic drugs acting primarily via μ-opioid receptor (μ-OR) activation. Our long-standing efforts in the field of opioid analgesics from the class of morphinans led to N-methylmorphinan-6-ones differently substituted at positions 5 and 14 as μ-OR agonists inducing potent analgesia and fewer undesirable effects. Herein we present the first thorough molecular modeling study and structure-activity relationship (SAR) explorations aided by docking and molecular dynamics (MD) simulations of 14-oxygenated N-methylmorphinan-6-ones to gain insights into their mode of binding to the μ-OR and interaction mechanisms. The structure of activated μ-OR provides an essential model for how ligand/μ-OR binding is encoded within small chemical differences in otherwise structurally similar morphinans. We reveal important molecular interactions that these μ-agonists share and distinguish them. The molecular docking outcomes indicat...
ACS Chemical Neuroscience, 2017
Among opioids, morphinans are of major importance as the most effective analgesic drugs acting pr... more Among opioids, morphinans are of major importance as the most effective analgesic drugs acting primarily via μ-opioid receptor (μ-OR) activation. Our long-standing efforts in the field of opioid analgesics from the class of morphinans led to N-methylmorphinan-6-ones differently substituted at positions 5 and 14 as μ-OR agonists inducing potent analgesia and fewer undesirable effects. Herein we present the first thorough molecular modeling study and structure−activity relationship (SAR) explorations aided by docking and molecular dynamics (MD) simulations of 14oxygenated N-methylmorphinan-6-ones to gain insights into their mode of binding to the μ-OR and interaction mechanisms. The structure of activated μ-OR provides an essential model for how ligand/μ-OR binding is encoded within small chemical differences in otherwise structurally similar morphinans. We reveal important molecular interactions that these μ-agonists share and distinguish them. The molecular docking outcomes indicate the crucial role of the relative orientation of the ligand in the μ-OR binding site, influencing the propensity of critical non-covalent interactions that are required to facilitate ligand/μ-OR interactions and receptor activation. The MD simulations point out minor differences in the tendency to form hydrogen bonds by the 4,5α-epoxy group, along with the tendency to affect the 3−7 lock switch. The emerged SARs reveal the subtle interplay between the substituents at positions 5 and 14 in the morphinan scaffold by enabling the identification of key structural elements that determine the distinct pharmacological profiles. This study provides a significant structural basis for understanding ligand binding and μ-OR activation by the 14-oxygenated N-methylmorphinan-6-ones, which should be useful for guiding drug design.
Journal of Medicinal Chemistry, 2017
Position 6 of the morphinan skeleton plays a key role in the μ-opioid receptor (MOR) activity in ... more Position 6 of the morphinan skeleton plays a key role in the μ-opioid receptor (MOR) activity in vitro and in vivo. We describe the consequence of the 6-carbonyl group deletion in N-methylmorphinan-6-ones 1−4 on ligand−MOR interaction, signaling, and antinociception. While 6-desoxo compounds 1a, 2a, and 4a show similar profiles to their 6-keto counterparts, the 6-desoxo-14-benzyloxy substituted 3a displays significantly increased MOR binding and agonist potency and a distinct binding mode compared with its analogue 3.
Pharmacophore modeling and virtual screening by Stefan Noha
Journal of Medicinal Chemistry, Apr 20, 2011
ABSTRACT: Microsomal prostaglandin E 2 synthase-1 (mPGES-1) catalyzes prostaglandin E2 formation ... more ABSTRACT: Microsomal prostaglandin E 2 synthase-1 (mPGES-1) catalyzes prostaglandin E2 formation and is considered as a potential anti-inflammatory pharmacological target. To identify novel chemical scaffolds active on this enzyme, two pharmacophore models for acidic mPGES-1 inhibitors were developed and theoretically validated using information on mPGES-1 inhibitors from literature. The models were used to screen chemical databases supplied from the National Cancer Institute (NCI) and the Specs. Out of 29 compounds selected for biological evaluation, nine chemically diverse compounds caused concentration-dependent inhibition of mPGES-1 activity in a cell-free assay with IC 50 values between 0.4 and 7.9 μM, respectively. Further pharmacological characterization revealed that also 5-lipoxygenase (5-LO) was inhibited by most of these active compounds in cell-free and cell-based assays with IC50 values in the low micromolar range. Together, nine novel chemical scaffolds inhibiting mPGE...
Bioorg Medicinal Chem Letter, 2011
Bioorganic & Medicinal Chemistry Letters, 2011
Bioorganic & Medicinal Chemistry, 2011
Bioorganic & Medicinal Chemistry Letters, 2012
Current Pharmaceutical Design, Feb 19, 2013
The κ opioid receptor (KOR) plays a significant role in many physiological functions, including p... more The κ opioid receptor (KOR) plays a significant role in many physiological functions, including pain relief, stress, depression, drug abuse, anxiety and psychotic behaviors. KORs are widely distributed in the central and peripheral nervous systems, and are specifically activated by endogenous opioids derived from prodynorphin. They are members of the G protein-coupled receptor superfamily, and the crystal structure of the human KOR was recently elucidated. KORs were initially studied for their involvement in mediation of pain as stimulation of KOR produces analgesia and minimizes abuse liability and other side effects. Nowadays, the KOR is rapidly emerging as an important target for the treatment of a variety of other human disorders. Specifically, the KOR system has become increasingly implicated as a modulator of stress-related and addictive behaviors. Several selective KOR partial agonists and antagonists have been developed as potential antidepressants, anxiolytic and anti-addiction medications. Although many KOR ligands have not demonstrated desirable pharmacological properties, some have been shown to be viable drug candidates. Herein, we describe chemical and pharmacological developments on KOR ligands, advantages and challenges, and potential therapeutic applications of ligands for KORs. In the second part, recent advances in the KOR drug design utilizing computational approaches are presented, with focus on the discovery of a new naturally derived scaffold, sewarine, as a novel class of selective KOR ligands with antagonist properties, using a pharmacophore-based virtual screening strategy.
Uploads
Docking studies and simulations by Stefan Noha
Pharmacophore modeling and virtual screening by Stefan Noha