As our human spaceflight missions change as we reach towards Mars, the risk of an adverse behavio... more As our human spaceflight missions change as we reach towards Mars, the risk of an adverse behavioral outcome increases, and requirements for crew health, safety, and performance, and the internal architecture, will need to change to accommodate unprecedented mission demands. Evidence shows that architectural arrangement and habitability elements impact behavior. Net habitable volume is the volume available to the crew after accounting for elements that decrease the functional volume of the spacecraft. Determination of minimum acceptable net habitable volume and associated architectural design elements, as mission duration and environment varies, is key to enabling, maintaining, andor enhancing human performance and psychological and behavioral health. Current NASA efforts to derive minimum acceptable net habitable volumes and study the interaction of covariates and stressors, such as sensory stimulation, communication, autonomy, and privacy, and application to internal architecture ...
NASA Marshall Space Flight Center, United States, david.smitherman@nasa.gov Evaluating preliminar... more NASA Marshall Space Flight Center, United States, david.smitherman@nasa.gov Evaluating preliminary concepts of a Deep Space Habitat (DSH) enabling long duration crewed exploration of asteroids, the Moon, and Mars is a technically challenging problem. Sufficient habitat volumes and equipment, necessary to ensure crew health and functionality, increase propellant requirements and decrease launch flexibility to deliver multiple elements on a single launch vehicle; both of which increase overall mission cost. Applying modularity in the design of the habitat structures and subsystems can alleviate these difficulties by spreading the build-up of the overall habitation capability across several smaller parts. This allows for a more flexible habitation approach that accommodates various crew mission durations and levels of functionality. This paper provides a technical analysis of how various modular habitation approaches can impact the parametric design of a DSH with potential benefits in ...
The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface l... more The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a skunk-works approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process included establishment of design standards, negotiation of interfaces between subsystems, and scheduling fit checks and installation activities. A major tool used in integration was a coordinated effort to accurately model all the subsystems using CAD, so that conflicts were identified before physical components came together. Some of the major conclusions showed that up-front modularity that emerged as an artifact of constru...
The eXploration Habitat (X-Hab) Academic Innovation Challenge follows a non-typical format for un... more The eXploration Habitat (X-Hab) Academic Innovation Challenge follows a non-typical format for university student competitions. Rather than provide a realistic simulated mission for the students to perform, the X-Hab Challenge puts the student teams in the critical path of NASA's human space flight Exploration systems research and development, and expects them to deliver a product that will likely become heritage for eventual flight systems in the years to come. The added responsibility has two major benefits: the university teams are given real ownership in the NASA vision; students are given Principal Investigator (PI) status for their contribution and are looked upon as peers in the development process. This paper introduces the X-Hab Challenge and discusses the successes behind the program.
HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond L... more HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed conc...
This paper will describe lunar habitat concepts that were defined as part of the Constellation Ar... more This paper will describe lunar habitat concepts that were defined as part of the Constellation Architecture Team-Lunar (CxAT-Lunar) in support of the Vision for Space Exploration. There are many challenges to designing lunar habitats such as mission objectives, launch packaging, lander capability, and risks. Surface habitats are required in support of sustaining human life to meet the mission objectives of lunar exploration, operations, and sustainability. Lunar surface operations consist of crew operations, mission operations, EVA operations, science operations, and logistics operations. Habitats are crewed pressurized vessels that include surface mission operations, science laboratories, living support capabilities, EVA support, logistics, and maintenance facilities. The challenge is to deliver, unload, and deploy self-contained habitats and laboratories to the lunar surface. The CxAT-Lunar surface campaign analysis focused on three primary trade sets of analysis. Trade set one (T...
This paper describes the construction, assembly, subsystem integration, transportation, and field... more This paper describes the construction, assembly, subsystem integration, transportation, and field testing operations associated with the Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) and discusses lessons learned. In a one-year period beginning summer 2009, a tightly scheduled design-develop-build process was utilized by a small NASA "tiger team" to produce the functional HDU-PEM prototype in time to participate in the 2010 Desert Research and Technology Studies (Desert RATS) field campaign. The process required the coordination of multiple teams, subcontractors, facility management and safety staff. It also required a well-choreographed material handling and transportation process to deliver the finished product from the NASA-Johnson Space Center facilities to the remote Arizona desert locations of the field test. Significant findings of this paper include the team s greater understanding of the HDU-PEM s many integration issues and the in-field trai...
NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mo... more NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar ...
Much of the human factors work done in support of the NASA Constellation lunar program has been w... more Much of the human factors work done in support of the NASA Constellation lunar program has been with low fidelity mockups. These volumetric replicas of the future lunar spacecraft allow researchers to insert test subjects from the engineering and astronaut population and evaluate the vehicle design as the test subjects perform simulations of various operational tasks. However, lunar outpost designs must be evaluated without the use of mockups, creating a need for evaluation tools that can be performed on two-dimension conceptual spacecraft layouts, such as floor plans. A tool based on the CooperHarper scale was developed and applied to one lunar scenario, enabling engineers to select between two competing floor plan layouts.
As our human spaceflight missions change as we reach towards Mars, the risk of an adverse behavio... more As our human spaceflight missions change as we reach towards Mars, the risk of an adverse behavioral outcome increases, and requirements for crew health, safety, and performance, and the internal architecture, will need to change to accommodate unprecedented mission demands. Evidence shows that architectural arrangement and habitability elements impact behavior. Net habitable volume is the volume available to the crew after accounting for elements that decrease the functional volume of the spacecraft. Determination of minimum acceptable net habitable volume and associated architectural design elements, as mission duration and environment varies, is key to enabling, maintaining, andor enhancing human performance and psychological and behavioral health. Current NASA efforts to derive minimum acceptable net habitable volumes and study the interaction of covariates and stressors, such as sensory stimulation, communication, autonomy, and privacy, and application to internal architecture ...
NASA Marshall Space Flight Center, United States, david.smitherman@nasa.gov Evaluating preliminar... more NASA Marshall Space Flight Center, United States, david.smitherman@nasa.gov Evaluating preliminary concepts of a Deep Space Habitat (DSH) enabling long duration crewed exploration of asteroids, the Moon, and Mars is a technically challenging problem. Sufficient habitat volumes and equipment, necessary to ensure crew health and functionality, increase propellant requirements and decrease launch flexibility to deliver multiple elements on a single launch vehicle; both of which increase overall mission cost. Applying modularity in the design of the habitat structures and subsystems can alleviate these difficulties by spreading the build-up of the overall habitation capability across several smaller parts. This allows for a more flexible habitation approach that accommodates various crew mission durations and levels of functionality. This paper provides a technical analysis of how various modular habitation approaches can impact the parametric design of a DSH with potential benefits in ...
The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface l... more The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a skunk-works approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process included establishment of design standards, negotiation of interfaces between subsystems, and scheduling fit checks and installation activities. A major tool used in integration was a coordinated effort to accurately model all the subsystems using CAD, so that conflicts were identified before physical components came together. Some of the major conclusions showed that up-front modularity that emerged as an artifact of constru...
The eXploration Habitat (X-Hab) Academic Innovation Challenge follows a non-typical format for un... more The eXploration Habitat (X-Hab) Academic Innovation Challenge follows a non-typical format for university student competitions. Rather than provide a realistic simulated mission for the students to perform, the X-Hab Challenge puts the student teams in the critical path of NASA's human space flight Exploration systems research and development, and expects them to deliver a product that will likely become heritage for eventual flight systems in the years to come. The added responsibility has two major benefits: the university teams are given real ownership in the NASA vision; students are given Principal Investigator (PI) status for their contribution and are looked upon as peers in the development process. This paper introduces the X-Hab Challenge and discusses the successes behind the program.
HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond L... more HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed conc...
This paper will describe lunar habitat concepts that were defined as part of the Constellation Ar... more This paper will describe lunar habitat concepts that were defined as part of the Constellation Architecture Team-Lunar (CxAT-Lunar) in support of the Vision for Space Exploration. There are many challenges to designing lunar habitats such as mission objectives, launch packaging, lander capability, and risks. Surface habitats are required in support of sustaining human life to meet the mission objectives of lunar exploration, operations, and sustainability. Lunar surface operations consist of crew operations, mission operations, EVA operations, science operations, and logistics operations. Habitats are crewed pressurized vessels that include surface mission operations, science laboratories, living support capabilities, EVA support, logistics, and maintenance facilities. The challenge is to deliver, unload, and deploy self-contained habitats and laboratories to the lunar surface. The CxAT-Lunar surface campaign analysis focused on three primary trade sets of analysis. Trade set one (T...
This paper describes the construction, assembly, subsystem integration, transportation, and field... more This paper describes the construction, assembly, subsystem integration, transportation, and field testing operations associated with the Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) and discusses lessons learned. In a one-year period beginning summer 2009, a tightly scheduled design-develop-build process was utilized by a small NASA "tiger team" to produce the functional HDU-PEM prototype in time to participate in the 2010 Desert Research and Technology Studies (Desert RATS) field campaign. The process required the coordination of multiple teams, subcontractors, facility management and safety staff. It also required a well-choreographed material handling and transportation process to deliver the finished product from the NASA-Johnson Space Center facilities to the remote Arizona desert locations of the field test. Significant findings of this paper include the team s greater understanding of the HDU-PEM s many integration issues and the in-field trai...
NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mo... more NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar ...
Much of the human factors work done in support of the NASA Constellation lunar program has been w... more Much of the human factors work done in support of the NASA Constellation lunar program has been with low fidelity mockups. These volumetric replicas of the future lunar spacecraft allow researchers to insert test subjects from the engineering and astronaut population and evaluate the vehicle design as the test subjects perform simulations of various operational tasks. However, lunar outpost designs must be evaluated without the use of mockups, creating a need for evaluation tools that can be performed on two-dimension conceptual spacecraft layouts, such as floor plans. A tool based on the CooperHarper scale was developed and applied to one lunar scenario, enabling engineers to select between two competing floor plan layouts.
Uploads
Papers by Larry Toups