Proceedings of the National Academy of Sciences of the United States of America, Jan 6, 2015
Glucocorticoids are known to promote the development of metabolic syndrome through the modulation... more Glucocorticoids are known to promote the development of metabolic syndrome through the modulation of both feeding pathways and metabolic processes; however, the precise mechanisms of these effects are not well-understood. Recent evidence shows that glucocorticoids possess the ability to increase endocannabinoid signaling, which is known to regulate appetite, energy balance, and metabolic processes through both central and peripheral pathways. The aim of this study was to determine the role of endocannabinoid signaling in glucocorticoid-mediated obesity and metabolic syndrome. Using a mouse model of excess corticosterone exposure, we found that the ability of glucocorticoids to increase adiposity, weight gain, hormonal dysregulation, hepatic steatosis, and dyslipidemia was reduced or reversed in mice lacking the cannabinoid CB1 receptor as well as mice treated with the global CB1 receptor antagonist AM251. Similarly, a neutral, peripherally restricted CB1 receptor antagonist (AM6545)...
Adipogenesis in adulthood replaces fat cells that turn over and can contribute to the development... more Adipogenesis in adulthood replaces fat cells that turn over and can contribute to the development of obesity. However, the proliferative potential of adipocyte progenitors in vivo is unknown (Faust et al., 1976; Faust et al., 1977; Hirsch and Han, 1969; Johnson and Hirsch, 1972). We addressed this by injecting labeled wild-type embryonic stem cells into blastocysts derived from lipodystrophic A-ZIP transgenic mice, which have a genetic block in adipogenesis. In the resulting chimeric animals, wild-type ES cells are the only source of mature adipocytes. We found that when chimeric animals were fed a high-fat-diet, animals with low levels of chimerism showed a significantly lower adipose tissue mass than animals with high levels of chimerism. The difference in adipose tissue mass was attributed to variability in the amount of subcutaneous adipose tissue as the amount of visceral fat was independent of the level of chimerism. Our findings thus suggest that proliferative potential of ad...
The European journal of neuroscience, Jan 23, 2018
Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of... more Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti-related peptide (AgRP) and anorexigenic pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), yet nicotine and other nAChR agonists decrease food intake in mice. Viral-mediated knockdown of the β4 nAChR subunit in all neuronal cell types in the ARC prevents the nicotinic agonist cytisine from decreasing food intake, but it is not known whether the β4 subunit is selectively expressed in anorexigenic neurons or how other nAChR subtypes are distributed in this nucleus. Using translating ribosome affinity purification (TRAP) on ARC tissue from mice with ribosomes tagged in either AgRP or POMC cells, we examined nAChR subunit mRNA levels using real-time PCR. Both AgRP and POMC cells express a comparable panel of nAChR subunits with differences in α7 mRNA levels and a trend for difference in α4 levels, but no differences in β4 expression....
Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake... more Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons. MCH neurons were profiled using Cre-dependent molecular profiling technologies (vTRAP). MCHCre mice crossed to Vglut2mice or to DTRwere used to identify the role of glutamate in MCH neurons. We assessed metabolic parameters such as body composition, glucose tolerance, or sucrose preference. We found that nearly all MCH neurons in the LH are glutamatergic and that a loss of glutamatergic signaling from MCH neurons from a glutamate transporter (VGlut2) knockout leads to a reduced weight, hypophagia and hyperkinetic behavior with improved glucose tolerance and a loss of sucrose preference. These effects are indistinguishable from those seen after ablation of MCH neurons. These findings are in con...
In this report we evaluated the functions of hypothalamic amylin in vivo and in vitro. Profiling ... more In this report we evaluated the functions of hypothalamic amylin in vivo and in vitro. Profiling of hypothalamic neurons revealed that islet amyloid polypeptide (Iapp, precursor to amylin) is expressed in neurons in the lateral hypothalamus, arcuate nucleus, medial preoptic area, and elsewhere. Hypothalamic expression of lapp is markedly decreased in ob/ob mice and normalized by exogenous leptin. In slices, amylin and leptin had similar electrophysiologic effects on lateral hypothalamic leptin receptor ObRb-expressing neurons, while the amylin antagonist AC187 inhibited their activity and blunted the effect of leptin. Finally, i.c.v. infusion of AC187 acutely reduced the anorectic effects of leptin. These data show that hypothalamic amylin is transcriptionally regulated by leptin, that it can act directly on ObRb neurons in concert with leptin, and that it regulates feeding. These findings provide a potential mechanism for the increased efficacy of a metreleptin/pramlintide combinat...
Proceedings of the National Academy of Sciences, 2002
Little is known about the influence of substrate-bound gradients on neuronal development, since i... more Little is known about the influence of substrate-bound gradients on neuronal development, since it has been difficult to fabricate gradients over the distances typically required for biological studies (a few hundred micrometers). This article demonstrates a generally applicable technique for the fabrication of substrate-bound gradients of proteins with complex shapes, using laminar flows in microchannels. Gradients that range from pure laminin to pure BSA were formed in solution by using a network of microchannels, and these proteins were allowed to adsorb onto a homogeneous layer of poly- l -lysine. Rat hippocampal neurons were cultivated on these substrate-bound gradients. Analysis of optical images of these neurons showed that axon specification is oriented in the direction of increasing surface density of laminin. Linear gradients in laminin adsorbed from a gradient in solution having a slope of ∇[laminin] > about 0.06 μg (ml⋅μm) −1 (defined by dividing the change of concent...
Treatment of ob/ob (obese) mice with a cannabinoid receptor 1 (Cnr1) antagonist reduces food inta... more Treatment of ob/ob (obese) mice with a cannabinoid receptor 1 (Cnr1) antagonist reduces food intake, suggesting a role for endocannabinoid signaling in leptin action. We further evaluated the role of endocannabinoid signaling by analyzing the phenotype of Cnr1 knockout ob/ob mice. Double mutant animals show a more severe growth retardation than ob/ob mice with similar levels of adiposity and reduced IGF-I levels without alterations of growth hormone (GH) levels. The double mutant mice are also significantly more glucose intolerant than ob/ob mice. This is in contrast to treatment of ob/ob mice with a Cnr1 antagonist that had no effect on glucose metabolism, suggesting a possible requirement for endocannabinoid signaling during development for normal glucose homeostasis. Double mutant animals also showed similar leptin sensitivity as ob/ob mice, suggesting that there are developmental changes that compensate for the loss of Cnr1 signaling. These data establish a role for Cnr1 during ...
Proceedings of the National Academy of Sciences, 2005
Synaptic vesicles are recycled locally within presynaptic specializations. We examined how vesicl... more Synaptic vesicles are recycled locally within presynaptic specializations. We examined how vesicles are reused after endocytosis, using transgenic mice expressing the genetically encoded fluorescent indicator synaptopHluorin in subsets of neurons. At both excitatory and inhibitory synapses in cultured hippocampal neurons, newly endocytosed vesicles did not preferentially enter the releasable pool of vesicles. Rather, they entered the reserve pool first and subsequently the readily releasable pool over a period of several minutes. All vesicles in the recycling pool could be accessed by spaced stimuli, arguing against preferential local reuse of the readily releasable vesicles. Interestingly, nearly half the vesicles at excitatory synapses, and a third at inhibitory synapses, could not be recruited for release even by sustained stimuli. We conclude that, at presynaptic terminals in the hippocampus, most vesicles vacate release sites after exocytosis and are replaced by existing vesicl...
Genetically encoded fluorescent probes have become indispensable tools in the biological sciences... more Genetically encoded fluorescent probes have become indispensable tools in the biological sciences. Studies of synaptic vesicle recycling have been facilitated by a group of GFP-derived probes called pHluorins. These probes exploit changes in pH that accompany exocytosis and recapture of synaptic vesicles. Here we describe how these synaptic tracers can be used in rodent hippocampal neurons to monitor the synaptic vesicle cycle in real time and to obtain mechanistic insights about it. Synapses can be observed in living samples using a wide-field fluorescence microscope and a cooled charge-coupled device camera. A simple specimen chamber allows electrical stimulation of synapses to evoke exocytosis in a precisely controlled manner. We present protocols to measure various parameters of the synaptic vesicle cycle. This technique can be easily adapted to study different classes of synapses from wild-type and mutant mice. Once cultured neurons expressing synaptopHluorin are available, the whole procedure should take about 2 h.
Leptin receptors play critical roles in mediating leptin's pleiotropic effects on mammalian p... more Leptin receptors play critical roles in mediating leptin's pleiotropic effects on mammalian physiology. To date, six splice variants of the leptin receptor gene have been identified [1-3]. These splice variants have identical extracellular leptin binding motifs but different intracellular C termini. The finding that mutations specifically ablating the function of ObRb cause obesity has established a critical role for this isoform in leptin signaling [1,7]. ObRa is the most abundant splicing isoform with a broad tissue distribution [5], and it has been proposed to play roles in regulating leptin bioavailability, CSF (cerebrospinal fluid) transport and function by forming heterodimers with ObRb and also activating signal transduction via JAK2 in-vitro [5-10]. To assess the in-vivo role of ObRa, we generated an ObRa KO mouse by deleting the ObRa-specific exon 19a. Homozygous mutant mice breed normally and are indistinguishable from wild-type mice on regular chow diet, but show a sl...
Proceedings of the National Academy of Sciences of the United States of America, Jan 6, 2015
Glucocorticoids are known to promote the development of metabolic syndrome through the modulation... more Glucocorticoids are known to promote the development of metabolic syndrome through the modulation of both feeding pathways and metabolic processes; however, the precise mechanisms of these effects are not well-understood. Recent evidence shows that glucocorticoids possess the ability to increase endocannabinoid signaling, which is known to regulate appetite, energy balance, and metabolic processes through both central and peripheral pathways. The aim of this study was to determine the role of endocannabinoid signaling in glucocorticoid-mediated obesity and metabolic syndrome. Using a mouse model of excess corticosterone exposure, we found that the ability of glucocorticoids to increase adiposity, weight gain, hormonal dysregulation, hepatic steatosis, and dyslipidemia was reduced or reversed in mice lacking the cannabinoid CB1 receptor as well as mice treated with the global CB1 receptor antagonist AM251. Similarly, a neutral, peripherally restricted CB1 receptor antagonist (AM6545)...
Adipogenesis in adulthood replaces fat cells that turn over and can contribute to the development... more Adipogenesis in adulthood replaces fat cells that turn over and can contribute to the development of obesity. However, the proliferative potential of adipocyte progenitors in vivo is unknown (Faust et al., 1976; Faust et al., 1977; Hirsch and Han, 1969; Johnson and Hirsch, 1972). We addressed this by injecting labeled wild-type embryonic stem cells into blastocysts derived from lipodystrophic A-ZIP transgenic mice, which have a genetic block in adipogenesis. In the resulting chimeric animals, wild-type ES cells are the only source of mature adipocytes. We found that when chimeric animals were fed a high-fat-diet, animals with low levels of chimerism showed a significantly lower adipose tissue mass than animals with high levels of chimerism. The difference in adipose tissue mass was attributed to variability in the amount of subcutaneous adipose tissue as the amount of visceral fat was independent of the level of chimerism. Our findings thus suggest that proliferative potential of ad...
The European journal of neuroscience, Jan 23, 2018
Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of... more Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti-related peptide (AgRP) and anorexigenic pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), yet nicotine and other nAChR agonists decrease food intake in mice. Viral-mediated knockdown of the β4 nAChR subunit in all neuronal cell types in the ARC prevents the nicotinic agonist cytisine from decreasing food intake, but it is not known whether the β4 subunit is selectively expressed in anorexigenic neurons or how other nAChR subtypes are distributed in this nucleus. Using translating ribosome affinity purification (TRAP) on ARC tissue from mice with ribosomes tagged in either AgRP or POMC cells, we examined nAChR subunit mRNA levels using real-time PCR. Both AgRP and POMC cells express a comparable panel of nAChR subunits with differences in α7 mRNA levels and a trend for difference in α4 levels, but no differences in β4 expression....
Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake... more Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons. MCH neurons were profiled using Cre-dependent molecular profiling technologies (vTRAP). MCHCre mice crossed to Vglut2mice or to DTRwere used to identify the role of glutamate in MCH neurons. We assessed metabolic parameters such as body composition, glucose tolerance, or sucrose preference. We found that nearly all MCH neurons in the LH are glutamatergic and that a loss of glutamatergic signaling from MCH neurons from a glutamate transporter (VGlut2) knockout leads to a reduced weight, hypophagia and hyperkinetic behavior with improved glucose tolerance and a loss of sucrose preference. These effects are indistinguishable from those seen after ablation of MCH neurons. These findings are in con...
In this report we evaluated the functions of hypothalamic amylin in vivo and in vitro. Profiling ... more In this report we evaluated the functions of hypothalamic amylin in vivo and in vitro. Profiling of hypothalamic neurons revealed that islet amyloid polypeptide (Iapp, precursor to amylin) is expressed in neurons in the lateral hypothalamus, arcuate nucleus, medial preoptic area, and elsewhere. Hypothalamic expression of lapp is markedly decreased in ob/ob mice and normalized by exogenous leptin. In slices, amylin and leptin had similar electrophysiologic effects on lateral hypothalamic leptin receptor ObRb-expressing neurons, while the amylin antagonist AC187 inhibited their activity and blunted the effect of leptin. Finally, i.c.v. infusion of AC187 acutely reduced the anorectic effects of leptin. These data show that hypothalamic amylin is transcriptionally regulated by leptin, that it can act directly on ObRb neurons in concert with leptin, and that it regulates feeding. These findings provide a potential mechanism for the increased efficacy of a metreleptin/pramlintide combinat...
Proceedings of the National Academy of Sciences, 2002
Little is known about the influence of substrate-bound gradients on neuronal development, since i... more Little is known about the influence of substrate-bound gradients on neuronal development, since it has been difficult to fabricate gradients over the distances typically required for biological studies (a few hundred micrometers). This article demonstrates a generally applicable technique for the fabrication of substrate-bound gradients of proteins with complex shapes, using laminar flows in microchannels. Gradients that range from pure laminin to pure BSA were formed in solution by using a network of microchannels, and these proteins were allowed to adsorb onto a homogeneous layer of poly- l -lysine. Rat hippocampal neurons were cultivated on these substrate-bound gradients. Analysis of optical images of these neurons showed that axon specification is oriented in the direction of increasing surface density of laminin. Linear gradients in laminin adsorbed from a gradient in solution having a slope of ∇[laminin] > about 0.06 μg (ml⋅μm) −1 (defined by dividing the change of concent...
Treatment of ob/ob (obese) mice with a cannabinoid receptor 1 (Cnr1) antagonist reduces food inta... more Treatment of ob/ob (obese) mice with a cannabinoid receptor 1 (Cnr1) antagonist reduces food intake, suggesting a role for endocannabinoid signaling in leptin action. We further evaluated the role of endocannabinoid signaling by analyzing the phenotype of Cnr1 knockout ob/ob mice. Double mutant animals show a more severe growth retardation than ob/ob mice with similar levels of adiposity and reduced IGF-I levels without alterations of growth hormone (GH) levels. The double mutant mice are also significantly more glucose intolerant than ob/ob mice. This is in contrast to treatment of ob/ob mice with a Cnr1 antagonist that had no effect on glucose metabolism, suggesting a possible requirement for endocannabinoid signaling during development for normal glucose homeostasis. Double mutant animals also showed similar leptin sensitivity as ob/ob mice, suggesting that there are developmental changes that compensate for the loss of Cnr1 signaling. These data establish a role for Cnr1 during ...
Proceedings of the National Academy of Sciences, 2005
Synaptic vesicles are recycled locally within presynaptic specializations. We examined how vesicl... more Synaptic vesicles are recycled locally within presynaptic specializations. We examined how vesicles are reused after endocytosis, using transgenic mice expressing the genetically encoded fluorescent indicator synaptopHluorin in subsets of neurons. At both excitatory and inhibitory synapses in cultured hippocampal neurons, newly endocytosed vesicles did not preferentially enter the releasable pool of vesicles. Rather, they entered the reserve pool first and subsequently the readily releasable pool over a period of several minutes. All vesicles in the recycling pool could be accessed by spaced stimuli, arguing against preferential local reuse of the readily releasable vesicles. Interestingly, nearly half the vesicles at excitatory synapses, and a third at inhibitory synapses, could not be recruited for release even by sustained stimuli. We conclude that, at presynaptic terminals in the hippocampus, most vesicles vacate release sites after exocytosis and are replaced by existing vesicl...
Genetically encoded fluorescent probes have become indispensable tools in the biological sciences... more Genetically encoded fluorescent probes have become indispensable tools in the biological sciences. Studies of synaptic vesicle recycling have been facilitated by a group of GFP-derived probes called pHluorins. These probes exploit changes in pH that accompany exocytosis and recapture of synaptic vesicles. Here we describe how these synaptic tracers can be used in rodent hippocampal neurons to monitor the synaptic vesicle cycle in real time and to obtain mechanistic insights about it. Synapses can be observed in living samples using a wide-field fluorescence microscope and a cooled charge-coupled device camera. A simple specimen chamber allows electrical stimulation of synapses to evoke exocytosis in a precisely controlled manner. We present protocols to measure various parameters of the synaptic vesicle cycle. This technique can be easily adapted to study different classes of synapses from wild-type and mutant mice. Once cultured neurons expressing synaptopHluorin are available, the whole procedure should take about 2 h.
Leptin receptors play critical roles in mediating leptin's pleiotropic effects on mammalian p... more Leptin receptors play critical roles in mediating leptin's pleiotropic effects on mammalian physiology. To date, six splice variants of the leptin receptor gene have been identified [1-3]. These splice variants have identical extracellular leptin binding motifs but different intracellular C termini. The finding that mutations specifically ablating the function of ObRb cause obesity has established a critical role for this isoform in leptin signaling [1,7]. ObRa is the most abundant splicing isoform with a broad tissue distribution [5], and it has been proposed to play roles in regulating leptin bioavailability, CSF (cerebrospinal fluid) transport and function by forming heterodimers with ObRb and also activating signal transduction via JAK2 in-vitro [5-10]. To assess the in-vivo role of ObRa, we generated an ObRa KO mouse by deleting the ObRa-specific exon 19a. Homozygous mutant mice breed normally and are indistinguishable from wild-type mice on regular chow diet, but show a sl...
Uploads
Papers by Zhiying Li