Most ovarian cancer patients develop recurrent cancers which are often resistant to commonly empl... more Most ovarian cancer patients develop recurrent cancers which are often resistant to commonly employed chemotherapy agents, such as cisplatin. We have previously shown that the inhibition of heat shock protein 27 (HSP27) or fatty acid oxidation (FAO) sensitizes cisplatin-resistant ovarian cancer cell lines to cisplatin and dual inhibition of both HSP27 and FAO induces substantial cell death in vitro. However, it is unclear how HSP27 and FAO promote cisplatin resistance, and if dual inhibition of both HSP27 and FAO would augment cisplatin treatment in vivo. Here we showed that HSP27 knockdown in two cisplatin-resistant ovarian cancer cell lines (A2780CIS and PEO4) resulted in more ROS production upon cisplatin treatment. HSP27-knockdown cancer cells exhibited decreased levels of reduced glutathione (GSH) and glucose6phosphate dehydrogenase (G6PD), a crucial pentose phosphate pathway enzyme. ROS depletion with the compound N-acetyl cysteine (NAC) attenuated cisplatin-induced upregulati...
Hypoxia-inducible factors (HIFs) have been shown to be upregulated in tumor tissues and linked wi... more Hypoxia-inducible factors (HIFs) have been shown to be upregulated in tumor tissues and linked with tumor progression and metastasis in breast cancer. Among regulatory mechanisms for HIF expression is a natural occurring antisense named aHIF, which has been shown to be overexpressed in breast cancer and influence the level of the HIF-1α transcript. In the present study, we analyzed the expression of HIF-1α and aHIF in breast cancer tissues versus adjacent noncancer tissues (ANCTs) in relation with the clinical and biological behavior of the tumors. aHIF has been shown to be expressed in 67.4% of invasive ductal carcinoma samples, while none of ANCTs showed its expression. HIF-1α has been expressed in all of tumors and 90% of ANCTs. Comparison of HIF-1α expression level between tumor and ANCT tissues showed a total upregulation in tumor samples. No statistically significant association has been found between the level of HIF-1α expression in tumor samples and clinicopathologic and demographic characteristics such as age, tumor size, estrogen receptor status, progesterone receptor status, HER2/neu expression level, lymph node status, histological grade, and stage except for a weak correlation between HIF-1α expression and Ki-67 status. Besides, we could not detect any significant correlation between relative expression of HIF-1α and aHIF in tumor samples. Collectively, these data suggest that aHIF overexpression can be used as a potential biomarker in breast cancer. However, further studies are needed for the evaluation of its mechanism of action in regulation of HIF-1α expression in different pathological conditions. HIF-1α overexpression results in the upregulation of several genes that participated in cancer-associated pathways such as proliferation, angiogenesis, and glucose metabolism. We showed that HIF-1α is upregulated in breast tumor samples compared with adjacent noncancerous tissues. Its expression has been associated with Ki-67 status. Its natural occurring antisense is only expressed in tumor tissues. Thus, it can be used as a potential biomarker in breast cancer.
Most ovarian cancer patients develop recurrent cancers which are often resistant to commonly empl... more Most ovarian cancer patients develop recurrent cancers which are often resistant to commonly employed chemotherapy agents, such as cisplatin. We have previously shown that the inhibition of heat shock protein 27 (HSP27) or fatty acid oxidation (FAO) sensitizes cisplatin-resistant ovarian cancer cell lines to cisplatin and dual inhibition of both HSP27 and FAO induces substantial cell death in vitro. However, it is unclear how HSP27 and FAO promote cisplatin resistance, and if dual inhibition of both HSP27 and FAO would augment cisplatin treatment in vivo. Here we showed that HSP27 knockdown in two cisplatin-resistant ovarian cancer cell lines (A2780CIS and PEO4) resulted in more ROS production upon cisplatin treatment. HSP27-knockdown cancer cells exhibited decreased levels of reduced glutathione (GSH) and glucose6phosphate dehydrogenase (G6PD), a crucial pentose phosphate pathway enzyme. ROS depletion with the compound N-acetyl cysteine (NAC) attenuated cisplatin-induced upregulati...
Hypoxia-inducible factors (HIFs) have been shown to be upregulated in tumor tissues and linked wi... more Hypoxia-inducible factors (HIFs) have been shown to be upregulated in tumor tissues and linked with tumor progression and metastasis in breast cancer. Among regulatory mechanisms for HIF expression is a natural occurring antisense named aHIF, which has been shown to be overexpressed in breast cancer and influence the level of the HIF-1α transcript. In the present study, we analyzed the expression of HIF-1α and aHIF in breast cancer tissues versus adjacent noncancer tissues (ANCTs) in relation with the clinical and biological behavior of the tumors. aHIF has been shown to be expressed in 67.4% of invasive ductal carcinoma samples, while none of ANCTs showed its expression. HIF-1α has been expressed in all of tumors and 90% of ANCTs. Comparison of HIF-1α expression level between tumor and ANCT tissues showed a total upregulation in tumor samples. No statistically significant association has been found between the level of HIF-1α expression in tumor samples and clinicopathologic and demographic characteristics such as age, tumor size, estrogen receptor status, progesterone receptor status, HER2/neu expression level, lymph node status, histological grade, and stage except for a weak correlation between HIF-1α expression and Ki-67 status. Besides, we could not detect any significant correlation between relative expression of HIF-1α and aHIF in tumor samples. Collectively, these data suggest that aHIF overexpression can be used as a potential biomarker in breast cancer. However, further studies are needed for the evaluation of its mechanism of action in regulation of HIF-1α expression in different pathological conditions. HIF-1α overexpression results in the upregulation of several genes that participated in cancer-associated pathways such as proliferation, angiogenesis, and glucose metabolism. We showed that HIF-1α is upregulated in breast tumor samples compared with adjacent noncancerous tissues. Its expression has been associated with Ki-67 status. Its natural occurring antisense is only expressed in tumor tissues. Thus, it can be used as a potential biomarker in breast cancer.
Uploads
Papers by elahe nikpayam