Background: Antimicrobial submicrometer particles are being studied as promising interventions ag... more Background: Antimicrobial submicrometer particles are being studied as promising interventions against a wide range of skin conditions, such as fungal or bacterial infections. Aims: To submicronize chloroxine, the crystalline compound 5,7-dichloro-8-hydroxyquinoline, by nanoprecipitation and characterize the resulting assemblies. Methods: The chloroxine particles were stabilized by a nonionic surfactant and were studied by a broth microdilution assay against 20 medically important bacteria and fungi. The intervention was studied using a murine model of skin irritation. Results & conclusions: Chloroxine nanoparticles with a diameter of 600–800 nm exhibit good tolerability in terms of skin irritation in vivo and good antimicrobial activity. Thus, the fabricated formulation shows great promise for interventions for both cutaneous infection control and prophylaxis.
The present work developed lipid nanoparticles to determine whether retinol loading and surface c... more The present work developed lipid nanoparticles to determine whether retinol loading and surface charge influenced liver targeting and biodistribution. Silibinin for treating liver fibrosis was used as the active model. The capability of nanoparticles to suppress hepatic stellate cells (HSCs) was investigated by examining cell viability and α-smooth muscle actin (α-SMA). The biodistribution of the nanocarriers in rats was monitored by real-time and organ bioimaging after an intravenous injection. Silibinin concentration in the organs was detected as well. Anionic nanoparticles showed a mean size of around 260nm, which was greater than that of cationic nanoparticles (about 170nm). The encapsulation percentage of silibinin was >98% for both anionic and cationic nanoparticles. All nanoparticles tested were able to be ingested into HSCs, with no difference between the formulations. The positive nanoparticles produced activated HSC apoptosis much more strongly than negative nanoparticl...
Background Bacteremia-induced sepsis is a leading cause of mortality in intensive care units. To ... more Background Bacteremia-induced sepsis is a leading cause of mortality in intensive care units. To control a bacterial infection, an immune response is required, but this response might contribute to organ failure. Kidneys are one of the main organs affected by bacteremia. Combination therapies with antibacterial and anti-inflammatory effects may be beneficial in treating bacteremia. This study aimed to develop nanostructured lipid carriers (NLCs) loaded with ciprofloxacin and rolipram that exert a combination of anti-methicillin-resistant Staphylococcus aureus (MRSA) and anti-inflammatory effects. Retinol was incorporated into the nanoparticles to transport retinol-binding protein 4 (RBP4) to the kidneys, which abundantly express RBP receptors. The NLCs were fabricated by high-shear homogenization and sonication, and neutrophils were used as a model to assess their anti-inflammatory effects. Mice were injected with MRSA to establish a model of bacteremia with organ injury. Results Th...
Background: Antimicrobial submicrometer particles are being studied as promising interventions ag... more Background: Antimicrobial submicrometer particles are being studied as promising interventions against a wide range of skin conditions, such as fungal or bacterial infections. Aims: To submicronize chloroxine, the crystalline compound 5,7-dichloro-8-hydroxyquinoline, by nanoprecipitation and characterize the resulting assemblies. Methods: The chloroxine particles were stabilized by a nonionic surfactant and were studied by a broth microdilution assay against 20 medically important bacteria and fungi. The intervention was studied using a murine model of skin irritation. Results & conclusions: Chloroxine nanoparticles with a diameter of 600–800 nm exhibit good tolerability in terms of skin irritation in vivo and good antimicrobial activity. Thus, the fabricated formulation shows great promise for interventions for both cutaneous infection control and prophylaxis.
The present work developed lipid nanoparticles to determine whether retinol loading and surface c... more The present work developed lipid nanoparticles to determine whether retinol loading and surface charge influenced liver targeting and biodistribution. Silibinin for treating liver fibrosis was used as the active model. The capability of nanoparticles to suppress hepatic stellate cells (HSCs) was investigated by examining cell viability and α-smooth muscle actin (α-SMA). The biodistribution of the nanocarriers in rats was monitored by real-time and organ bioimaging after an intravenous injection. Silibinin concentration in the organs was detected as well. Anionic nanoparticles showed a mean size of around 260nm, which was greater than that of cationic nanoparticles (about 170nm). The encapsulation percentage of silibinin was >98% for both anionic and cationic nanoparticles. All nanoparticles tested were able to be ingested into HSCs, with no difference between the formulations. The positive nanoparticles produced activated HSC apoptosis much more strongly than negative nanoparticl...
Background Bacteremia-induced sepsis is a leading cause of mortality in intensive care units. To ... more Background Bacteremia-induced sepsis is a leading cause of mortality in intensive care units. To control a bacterial infection, an immune response is required, but this response might contribute to organ failure. Kidneys are one of the main organs affected by bacteremia. Combination therapies with antibacterial and anti-inflammatory effects may be beneficial in treating bacteremia. This study aimed to develop nanostructured lipid carriers (NLCs) loaded with ciprofloxacin and rolipram that exert a combination of anti-methicillin-resistant Staphylococcus aureus (MRSA) and anti-inflammatory effects. Retinol was incorporated into the nanoparticles to transport retinol-binding protein 4 (RBP4) to the kidneys, which abundantly express RBP receptors. The NLCs were fabricated by high-shear homogenization and sonication, and neutrophils were used as a model to assess their anti-inflammatory effects. Mice were injected with MRSA to establish a model of bacteremia with organ injury. Results Th...
Uploads
Papers by you shan Dai