COSINUS: A cryogenic Nal dark matter detector using the novel "remoTES" design

Presented by: Matthew Stukel For the 24th International Workshop On Radiation Imaging Detectors

S

G

S GRAN SASSO SCIENCE INSTITUTE

SCHOOL OF ADVANCED STUDIES

Scuola Universitaria Superiore

Dark Matter

Dark Matter

- Evidence includes: Rotation curves of galaxies, weak gravitational lensing, cosmological modelling
- Many experiments that employ many techniques!
- Direct Detection: Nuclear or electric recoils

Matthew Stukel - iWORID 2023

Direct Detection: Annual Modulation

https://iopscience.iop.org/article/10.1088/1361-6471/ab8e93/meta

• The sun moves through the galactic dark matter halo

The earths rotates around the sun

 Induces a change in the dark matter flux throughout the year

Unique and detectable signal for dark matter

- Period of one year
- Peaks around June 2nd
- Signal expected in low energy region (O(keV))

DAMA/LIBRA Results

- The DAMA collaboration has detected a peculiar annual modulation signal since 1997
- Signal is consistent with WIMP dark matter halo predictions (0.75 keV threshold shown) Statistics: >13 σ
 - Period: 0.999 +/- 0.001
 - Phase: 25th May +/- 5 days
 - Non-dark matter explanation: No

Complications with DAMA

Matthew Stukel - iWORID 2023

GS SI

Response of DAMA

See e EPJC PRD8 See e See e Streams? Streams? Streams?	Ag: Riv.N.Cim.26 ono.1(2003)1, IJMPD13(2004)2127, 47(2006)263, IJMPA21(2006)1445, EPJC56(2008)333, 4(2011)055014, JMPA28(2013)1330022 and experimental aspects Exposures Energy threshold Detector response (phe/keV) Energy scale and energy resolution Calibrations Stability of all the operating conditions. Selections of detectors and of data. Subtraction/rejection procedures and stability in time of all the selected windows and related quantities Efficiencies Definition of fiducial volume and non- uniformity Quenching factors, channeling	LS T approach
terms of exclusion plots and in terms of all assumptions and parameters' values are intri No experiment can- compared in a model i	owed regions/volumes. Thus comparisons with a fixed set of nsically strongly uncertain. - at least in principle - be directly ndependent way with DAMA so far	No, it isn't. This

https://agenda.infn.it/getFile.py/access?contribId=34&sessionId=1&resId=0&materialId=slides&confId=15474

Astroparticle Physics European Consortium (APPEC) **Recommendation:**

"The long-standing claim from DAMA/LIBRA [...] needs to be independently verified using the same target material."

S

G

S

<u>Cryogenic</u> Observatory for <u>SIgnatures seen in Next-generation</u> Underground Searches

The Group

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

GRAN SASSO SCIENCE INSTITUTE G S S SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

Gran Sasso National Laboratory (LNGS)

https://www.planetware.com/map/italy-italy-republic-map-i-i37.htm

LNGS provides 3500 m of water equivalent shielding from cosmic radiation Matthew Stukel - iWORID 2023

https://www.appec.org/news/hands-on-experimental-underground-physics-at-Ings

S

S

Landscape of Dark Matter Experiments

- <u>Goal:</u> Aims at a model independent test of the DAMA/LIBRA experiment
 - · Same material (Nal)
 - Same location (LNGS)
- Unique Technique: Operate
 - Nal as a cryogenic detector (First ever!!)
 - Dual Channel: Phonon (90%) and Light (10%) signal for <u>event-by-</u>
 <u>event particle discrimination</u>

Nal - Phonon Signal Measurement

- Deposition of energy \rightarrow Lattice vibrations (<u>Phonons</u>) \rightarrow Change of temperature \rightarrow Change in resistance \rightarrow Signal
- Thermometer: Transition Edge Sensor (TES)
 - TES is Tungsten superconducting film operated at **mK** temperatures
 - TES readout technology developed and used by CRESST

Nal not so NICE

Difficulties with attaching TES directly to Nal

- Nal is hygroscopic (cannot come into contact with humid air)
- Very soft and low melting point (easy to damage when handling)
- Not suited for traditional thin film deposition
- .14 Solution: remotes

d air) handling)

Nal- remoTES design

- Implement <u>remotes</u> design, first proposed by Matt Pyle
- Separate wafer that holds the TES: Wafer: Al_2O_3
- Gold pad on absorber with a gold bonding wire connected to TES
 - Wafer and TES setup is constructed separately then attached to the Nal

First measurement of remoTES

- Although ideal for Nal the first measurements of the novel remotes idea was performed on Si and TeO_2
 - Si is highly studied for low temperature detectors
 - TeO₂ is thermally very similar to Nal
- Si resolution achieved was 88 eV
- TeO₂ resolution achieved as 193 eV
- Baseline threshold is 5 times lower then quoted resolution

Nal – Light Detector

collection silicon

Scintillation light is detected by a surrounding silicon beaker 1mm thick, 40mm in diameter

 4π coverage to maximize light collection

TES is evaporated directly onto the

Resolution: 990 eV_{ee}

COSINUS: Particle Discrimination

Angloher, G., et al. "Simulation-based design study for the passive shielding of the COSINUS dark matter experiment." The European Physical Journal C 82.3 (2022): 1-11

advantage

- by-event basis

Particle discrimination is the COSINUS

Light Energy Light Yield = Phonon Energy

Electromagnetic interactions will emit more light than nuclear recoils

Use for **particle discrimination** on an event-

Left is simulated data

Position of the bands is very dependent on the quenching factor (QF)

Dedicated QF performed at TUNL (See backup slide)

COSINUS: Particle Discrimination

- December 2021: Demonstrated the first particle discrimination in Nal at a surface setup
- June 2022: Measurement was carried out using a CRESST test facility at the Gran Sasso National Laboratory (underground)
- Plots by Leonie Einfalt, publication in preparation •
- Nal phonon resolution: 440 eV_{nr} •
- Neutron band is clearly visible, proof of particle discrimination in Nal

Matthew Stukel - iWORID 2023

19

COSINUS: Current Status

- 1 module (3.6g) of Nal
- 11.6 g·d exposure
- 1 order of magnitude away from DAMA/LIBRA
- 3 order of magnitude lower then COSINE-100
 - They have 10⁵ times larger exposure

COSINUS: Dry Dilution Refrigerator

- Detectors housed in a pulse tubed assisted dilution refrigerator (mK)
- Three stage vibration decoupling: Global, Cryostat and Detector
- Ultra-pure copper for shielding the detectors from cryostat radiogenics

Matthew Stukel - iWORID 2023

Experimental Setup I

Experimental Setup II

Experimental Setup III

COSINUS Physics Goals I

*Not Updated for DAMA <1 keV_{ee} result

- COSINUS-1π: 1000 kg•days
 Run time of 1-3 years
 - Exclude or confirm a nuclear recoil origin of the DAMA\LIBRA result
 - Model independent exclusion
 - <u>100 kg•days: Exclude an elastic</u> <u>scattering scenario independent of DM</u> <u>halo</u>
- COSINUS-2π
- Annual modulation signal
 - Increase target mass capability, more than double the number of detectors

1000 kg days

Conclusion/ Summary

- The search for dark matter is on the forefront of modern particle physics
- Effective annual modulation of dark matter is a unique and important way to continue this search
- · COSINUS is a cryogenic Nal dark matter experiment whose goal is to verify the longstanding DAMA/LIBRA dark matter claim
- COSINUS will begin commissioning in 2023 and we look forward to great results!!
- · Follow us on Twitter: @COSINUSdm

Thank You

- The DAMA detector consists of 25 highly radiopure Nal(Tl) crystals. (~10 kg each)
- Search for dark matter model-independent annual modulation signature
- <u>Single-channel Experiment</u> -> Scintillation light from NaI(TI)

Based On: https://wanda.fiu.edu/boeglinw/courses/Modern_lab_manual3/scintillator.html

S G S

ANAIS-112: 3 Years of Data Taking

Amare, J., et al. "Annual Modulation Results from Three Years Exposure of ANAIS-112." arXiv preprint arXiv:2103.01175 (2021).

sensitivity of 3.3(3.0) σ for [1-6] ([2-6]) keV energy region

S

Gi

S

Quenching Factor Measurement

- Performed at TUNL (Triangle Universities Nuclear Laboratory)
- 5 Nal crystals with different Tl doping (0.1-0.9%)
 - Neutron beam scatters in the crystal and arrives at backing detector
 - Based on the angle we know the actual energy of the recoil

Can then compare to energy measured and determine the **QF!!**

Dilution refrigerator

- Pure ⁴He obeys boson statistics ($T_c = 2.17$ K) Pure ³He obeys fermi statistics (no superfluid until very, very low temperature)
- When a fluid at point A is cooled to point B it undergoes superfluid transition
- At point C it separates into the ³He and ⁴He ('dilute phase') rich phase
- ³He will float on top of the ⁴He phase in the 'mixing chamber'
- If we remove ³He atoms from the dilute phase ³He from the concentrated phase will cross the phase boundary to occupy the vacant state Cooling power = $T^2 \times Flow$ rate of ³He

Crystal Growth

 Crystals are grown in collaboration with SICCAS using Astrograde (MERCK) powder in a modified Bridgeman technique

 Keep isotope contamination down (K, Th, U)

 First sample hexagonal crystals have been made and will be tested soon