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SPHIRD: A photon counting hybrid pixel detector with

▪ High flux capabilities (very high count-rate)

✓ Fast front-end analog electronics  (×2-3)

✓ Pile-up compensation methods (×3-5)

✓ 2×2 pixel binning  (×4)

▪ Small pixels for optimum use of intense coherent beams

▪ Designed to operate with high-Z compound semiconductors

➢ to increase radiation hardness

➢ to reach high energies:  optimised in the 15 - 30 keV range, usable in a wider range

➢ to minimize parallax effects (important with small pixels)

> ×30  the state-of-the art

The SPHIRD Project 
Small Pixel, High Rate Detector
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Main technical choices:

▪ Readout electronics designed for electron collection, Si and high-Z sensors

▪ TSMC 40 nm CMOS technology

▪ Fast Charge Sensitive Amplifier design with short output pulses

▪ Explore pile-up compensation and sub-pixel relocation schemes in the pixel logic
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The SPHIRD Project 
Target Goals and Strategies

Count-rate @ 10% pile-up >15 Mcps; >60 Mcps after binning

Pixel pitch < 50 µm

Energy Range 10 – 35 keV

Frame rate > 10 kHz
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Pulse processing techniques 
Pile-up Compensation

▪ STDC: STandarD Counting mode, with faster CSA 

and readout chain

▪ VDIS: Voltage DIScrimination mode, use of extra 

discriminators to detect pile-up in the pulse amplitude

▪ TDIS: Time DIScrimination mode, use of extra 

discriminators to detect pile-up in the pulse width

▪ FPHC: Fractional PHoton Counting mode, use of an 

asynchronous clock to measure the duration of the 

hits (based on ToT techniques)
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The techniques are based on similar strategies adopted in the community

(P. Grybos et al, 10.1109/TNS.2007.914018; M. Andrä et al, 10.1016/j.nima.2018.11.026; T. Loeliger et al, 10.1109/NSSMIC.2012.6551180)

https://doi.org/10.1016/j.nima.2018.11.026
https://doi.org/10.1109/NSSMIC.2012.6551180
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Pulse processing techniques
Subpixel relocation

▪ Analyze coincidence pulses (charge sharing events) 

between neighbor pixels to decide on:

▪ PIXEL allocation (arbitration algorithm)

▪ Relocation of the X-ray hit within boundary regions:
▪ CORNER regions (NW, NE, SE, SW)

▪ EDGE regions (N, S, E, W)

▪ CENTER region

▪ Combine the pixel and region location information to 

register the hit into a matrix of 2×2 or 3×3 subpixels

▪ Requirements:

➢ Large number of counters in the pixel

➢ Uniformization of the effective subpixel areas 2×2 relocation
(asymmetric)

2×2 relocation
(overlapping)

3×3 relocation
 



▪ 32 x 64 pixels of 50 µm pitch = 1.6 x 3.2 mm

▪ CSA based on the Krummenacher structure

▪ Baseline Restorer circuit to mitigate the DC baseline shift

▪ 3 discriminators (2 operating in voltage or time mode)

▪ 32 bits counter, can be split in up to 3 shorter counters
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First ASIC Fabrication Run
Test ASIC Design v1.0

P. Grybos et al, 10.1109/TCSII.2023.3267859 

https://ieeexplore.ieee.org/document/10104105


First assemblies arrived in May 2022

▪ NI RT FlexRIO readout

▪ 200 MHz clock

▪ Foreseen sensors (electron collection):

▪ Silicon : 400 µm thick , 50 µm pitch

➢ 12 assemblies successfully bonded

▪ CdTe :  1 mm thick, 50 and 100 µm pitch

▪ High-flux CZT : 2 mm thick, 50 and 100 µm pitch
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First ASIC Fabrication Run
Sphird Test Prototypes

in bonding process
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Characterization Results

All experiments were performed at beamline BM05 @ ESRF. 

Many thanks to Phillip Cook and all the BM05 staff for their support
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▪ CSA Performance

▪ Count Rate Capabilities

▪ Pixel Relocation Schemes
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Characterization Results 
Performance of the CSA, pencil beam and full field beam

Experimental conditions:

▪ 16 keV monochromatic beam, 16-bunch mode 

▪ -200V sensor Bias Voltage, Si sensor

Estimations of the CSA response in nominal conditions

▪ Gain and noise: pencil beam (≈7x5µm) at the center of the pixel

▪ Pulse width: FPHC mode, fullfield irradiation of the whole matrix

Gain 0.026 ± 0.001 LSB/e-

Noise @ 16 keV 179±15 e-

Avg. pulse width @ 50%E 18±4 ns
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Characterization Results 
Count-rate Capabilities, direct beam

Experimental conditions:

▪ 15 keV monochromatic beam, multi-bunch mode, scan of the flux with Al filters 

▪ Direct beam defined with slits, 1.0x0.5 mm (20x10 pixels)

State-of-the-art system*

* T. Donath et al, 10.1107/S160057752300454X

Count-rate Response of a Single Pixel

https://doi.org/10.1107/S160057752300454X
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Characterization Results
Arbitration Algorithm functionality, pencil beam scans

▪ Behavior at the corners measured for 50µm pitch:

▪ Count losses in Standard mode: 7.79%

▪ Arbitration overcounting: 0.13%

➢ Estimated behavior for 37.5µm pitch:

▪ Count losses in Standard mode: 13.85%

Experimental conditions:

▪ 16 keV monochromatic beam, 16-bunch mode

▪ Data from pencil beam scans of the corners, beam ≈ 7x5 µm:

Standard, TH = 50%E Arbitration, TH = 25%E

➢ These results and simulations will be used to 

decide on the pixel pitch for the final system
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Characterization Results
Sub-pixel Relocation – 3x3 subpixels, pencil beam scans 

Experimental conditions:

▪ 16 keV monochromatic beam, 16-bunch mode

▪ Data from pencil beam scans, beam ≈ 7x5 µm, TH 25%E

3x3: Counters to all edges, center and corners

▪ North-west corner counter is faulty and was not used

▪ Symmetric division of the pixel

FWHM N: 

12.7 µm

FWHM W: 

13.66 µm

FWHM NE: 

12.1x11.6 µm

FWHM SE: 

12.35x12.33 µm

FWHM SW: 

12.6x12.1 µm

FWHM CEN: 

36.6x36.8 µm

FWHM E:

13.47 µm

FWHM S: 

13.49 µm
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Characterization Results
Sub-pixel Relocation – 2x2 subpixels, pencil beam scans 

Experimental conditions:

▪ 16 keV monochromatic beam, 16-bunch mode

▪ Data from pencil beam scans, beam ≈ 7x5 µm, TH 25%E

2x2: Counters for the Vertical Edge, Horizontal Edge, and Center

▪ CORNER is obtained by summing 3 corner counters

▪ North-west counter is faulty and was not used

▪ Asymmetric division of the pixel

FWHM H-Edge:

13.96 µm

FWHM CORNER: 

13.8x13.4 µm

FWHM CEN:

36.6x36.8 µm

FWHM V-Edge:

14.5 µm
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Characterization Results
Sub-pixel Relocation – 2x2 subpixels overlapping, pencil beam scans 

Experimental conditions:

▪ 16 keV monochromatic beam, 16-bunch mode

▪ Data from pencil beam scans, beam ≈ 7x5 µm, TH 25%E

2x2 Overlap: 4 counters for 4 symmetric subpixels

▪ Subpixels obtained by relocating information from the 3x3 mode

▪ Now done in post-processing

➢ If in the pixel logic, would spare counters (and pixel area)

Note: a scenario with smaller pixels and thicker sensors should

improve the uniformity of the subpixel shapes in all modes
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Characterization Results
Sub-pixel Relocation performance, full field illumination

Arbitration 2x2 Asymmetric Subpixels 3x3 Subpixels

Experimental conditions:

▪ 16 keV monochromatic beam, 16-bunch mode 

▪ Full-field images of a pattern with the 3 allocation modes

▪ 0.5 second acquisitions, TH = 25%E

▪ Results shown here were taken using the 10 lp/mm region

▪ Raw images (no post-processing for pixel uniformization)



Conclusions and Outlook
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The methods investigated in SPHIRD work and results are very encouraging

▪ Count-rate capabilities exceed the current state-of-the-art systems

▪ Pixel relocation circuitry works as expected

Main technical issues:

▪ Large mismatch between pixels, in pulse amplitude (gain) and width

▪ Severe difficulties to bond 50 µm CdTe/CZT sensors on MPW chips

Next steps:

▪ Test the performance of CdTe and CZT assemblies 

▪ Second test ASIC under development (submitted this summer): 

➢ Some architecture improvements, better pixel matching and trimming capabilities (pixel equalization)

➢ Commercial high-speed data serializer for fast readout
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Thank you!



Backup Slides
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Comparison



MTF – Preliminary Results
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▪ No post-processing to correct the different pixel sizes in the matrix applied

▪ Slanted edge technique

▪ ESF curve fitted with an ERF function



CZT Response
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▪ Tests with 1mm and 2mm thick sensor bonded to a Timepix2 ASIC

▪ Promising uniformity of the electric field:

➢ S. Tsigaridas et al (2021), 10.3390/s21092932

▪ Also promising response to high flux (HF-CZT):

➢ O. Baussens et al (2022), 10.1088/1748-0221/17/11/C11008

Linearity up to

6×109 20 keV ph/sec/100µm pixel

https://doi.org/10.3390/s21092932
https://iopscience.iop.org/article/10.1088/1748-0221/17/11/C11008
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ESRF-EBS: 

▪ Higher photon fluxes, meaning shorter 
exposure times

▪ Increase of the coherent fraction of the 
beam enables coherent diffraction techniques 
at high energy: need for higher angular 
resolution

▪ Push of many experiments towards higher 
energy ranges

→ Demand for fast detectors coping with high 
fluxes and high frame rates, able to operate 
at high energies
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The SPHIRD Project 
Motivation



Experimental Setups
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Uniform beam:   ~ 20 × 10 pixels

SPHIRD
slitsbeam 

monitor

500 um thick 
photodiode 1 mm × 0.5 mm

opening

filter box

Set of filters 
(Aluminium)

Multilayer Monochromator
X-ray beam: 15 keV

Focused beam: 7 × 5 µm

Focusing lenses

Aluminum 
CRLs

filter box

Set of filters 
(Aluminium)

Si Monochromator
X-ray beam: 16 keV

SPHIRD

1)

2)



ACF Si Assembly
Full-field images, HV = -200V
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@Threshold = 20% | 50%:

Active pixels( ct > 1): 99.95% | 95.9%

Gaussian pixels: 80.57% | 81.45%
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