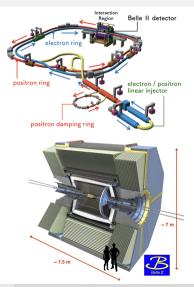
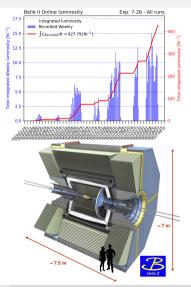
Upgrade of Belle II Vertex Detector with CMOS Pixel Technology

Marike Schwickardi (University of Göttingen) On Behalf of the Belle II VTX Upgrade Group

iWoRiD 2023

26 June 2023

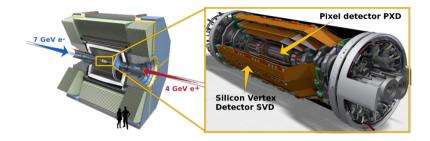



Belle II and SuperKEKB

- Located at the SuperKEKB collider in Tsukuba/Japan
- Asymmetric e^+e^- collider at $\sqrt{s}=M_{\Upsilon(4S)}=10.58~{
 m GeV}$
- Luminosity frontier experiment
- Target $\mathcal{L}_{int} = 50 \text{ ab}^{-1}$
 - Current $\mathcal{L}_{int} =$ 428 fb⁻¹ since 2019
 - Long-shutdown since last June
 - Restart at beginning of 2024
- Record $\mathcal{L}_{max} = 0.47 \cdot 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ in June 2022
- Target peak $\mathcal{L}=6\cdot 10^{35}~\text{cm}^{-2}~\text{s}^{-1}$
 - ightarrow Upgrade \sim 2027 foreseen
 - High currents & nano-beam scheme
 - Challenging background conditions

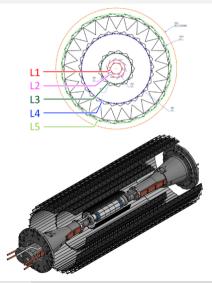
Belle II and SuperKEKB

- Located at the SuperKEKB collider in Tsukuba/Japan
- Asymmetric e^+e^- collider at $\sqrt{s}=M_{\Upsilon(4S)}=10.58$ GeV
- Luminosity frontier experiment
- Target $\mathcal{L}_{int} = 50 \text{ ab}^{-1}$
 - Current $\mathcal{L}_{int} =$ 428 fb⁻¹ since 2019
 - Long-shutdown since last June
 - Restart at beginning of 2024
- Record $\mathcal{L}_{max} = 0.47 \cdot 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ in June 2022
- Target peak $\mathcal{L}=6\cdot 10^{35}~\text{cm}^{-2}~\text{s}^{-1}$
 - ightarrow Upgrade \sim 2027 foreseen
 - High currents & nano-beam scheme
 - Challenging background conditions


Belle II Vertex detector

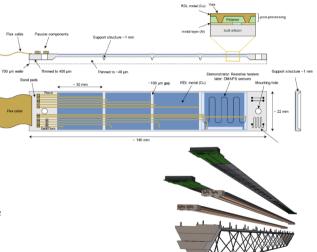
- Current Vertex Detector (VXD):
 - 2 inner layers with DEPFET based pixel sensors
 - 4 layers double sided strip detector
- Low mass ladder design with total material budget of 3.8% X₀
- PXD:
 - Thin sensors (75μm) and small pixel pitch (50-75 μm)
 - Long integration time (20µs)
- SVD :
 - Very good cluster time resolution 3 ns , but long strips (6 cm)
 - $\bullet\,$ Spatial resolution of 10 -25 μm

VXD in High Luminosity Environment

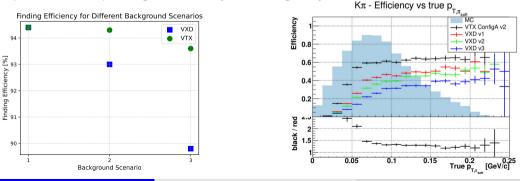


- Current occupancy < 1%
- Background extrapolation uncertain \rightarrow 3 scenarios
- Performance degradation possible for higher occupancy
- $\bullet\,$ May reach limits of current detector for high lumi. environment occupancies $\gtrsim 3\%$

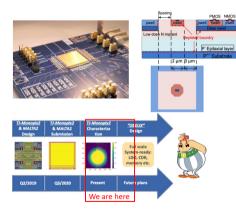
VTX Upgrade for Belle II


Vertex Detector Upgrade Proposal

- SuperKEKB upgrade likely to change interaction region for high luminosity environment during LS2
- Opportunity to upgrade current vertex detector with 5 straight layers Depleted CMOS MAPS
- \bullet Reduced material budget $\sim 2.5\% X_0$
- Increase space-time granularity
- Requirements:
 - Robust against inner layer background
 - Hit-rate up to 120 $\rm MHz/cm^2$
 - $\bullet~Resolution$ ${<}15~\mu m$
 - High efficiency
 - Ionizing dose \sim 10 kGy/year
 - NIEL $5 \cdot 10^{13} n_{eq}/cm^2/y_{ear}$

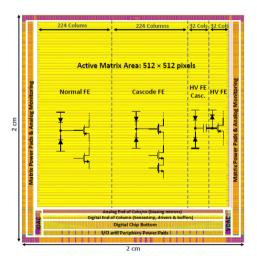

VTX detector mechanics

- 5 straight DMAPS layers
- Radii at 14, 22, 39, 90, 140 mm
- Ladder/stave design
- iVTX:
 - L1 & L2
 - All silicon ladders
 - Air cooling
 - $\sim 0.1\% X_0$
- oVTX:
 - L3 & L4 & L5
 - Carbon-fibre structure support frame
 - Cooling plate with water cooling
 - $\sim 0.3 0.5\% X_0$ L3 & L4
 - $\sim 0.8\% X_0~L5$


VTX Tracking Performance

- Based on simulations of 1000 $B\bar{B}$ events and respective overlay background files
- Background overlays range from best case scenario (1) to worst case (3)
- VTX gives better tracking efficiency than VXD for Full Tracking (vertex tracking combined with CDC)
- In particular soft pion signal efficiency effected greatly

Marike Schwickardi


TJ-Monopix2

Nucl. Instrum. Methods Phys. Res. A, 978 (2020) 164460

- Developed for ATLAS
- DMAPS in TowerJazz (TJ) 180 nm process
- Proposed as starting point for OBELIX design
- \rightarrow Copy of pixel matrix + trigger adaptation in periphery
- $2 \times 2 \text{ cm}^2$ chip, 512×512 pixels
- \bullet Pixel pitch: 33.04 \times 33.04 μm^2
- Expected from design:
 - $\sim 100~e^-$ min. threshold
 - 5-10 e^- threshold dispersion (tuned)
 - $\bullet~>97\%$ efficiency at $10^{15}n_{eq}/cm^2$
 - \sim 5 e^- noise
 - Fully efficient with hit rate 120 $\rm MHz/cm^2$
 - MIP $\sim 2500e^-$

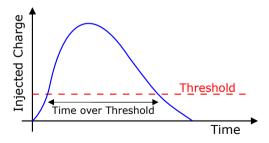
TJ-Monopix2

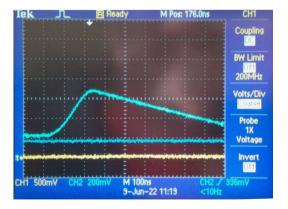
4 pixel Front-End (FE) flavours with differences in pre-amplifier, sensor coupling, biasing

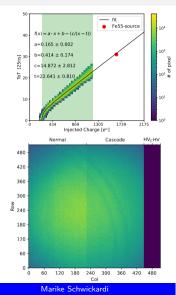
- Normal and Cascode FE:
 - DC coupled to charge collection electrode
- HV and HV Cascode FE:
 - AC coupled to charge collection electrode
 - Allows higher bias voltages
- Cascode and Non-Cascode versions:
 - Differ only by one transistor \rightarrow designed to increase gain

Lab Set-up

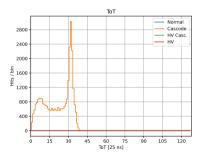
- Commercial 2 channel power supply
- 1.8 V supply voltage
- Up to 6/60 V bias voltage

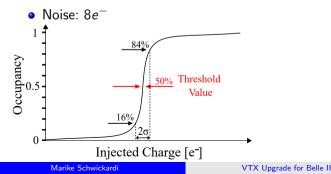

Simple and user-friendly set-up:

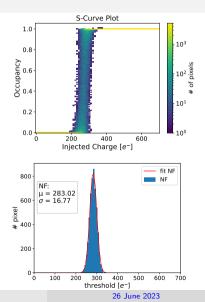

- Carrier PCB with FPGA readout
- Bdaq53 board with TJ-Monopix2 firmware based on Basil



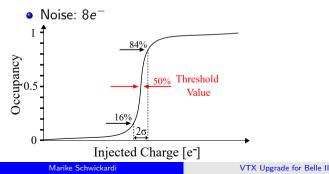
VTX Upgrade for Belle II

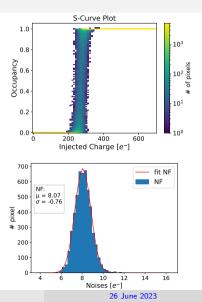

- Internal injection tests \rightarrow inject known charge in pre-amplifier
- Output: ToT (Time over Threshold)
- ToT in units of 25 ns 7-bit encoded

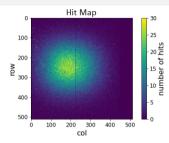




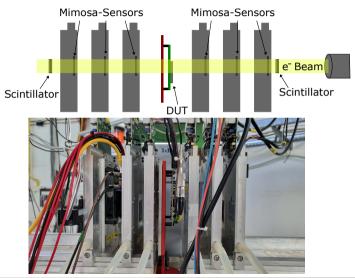
- Testing in Bonn, Pisa, HEPHY, CPPM, Göttingen
- Calibrate ToT responds with injection test
- Absolute calibration with Fe⁵⁵ agrees with design
- Measurements ranging 8.5 10 e-/DAC



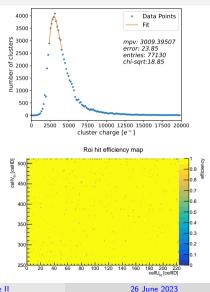

- S-curve tests with internal injection
- Determine threshold
- Tune sensor for low threshold and low dispersion
- Threshold: $280e^- \pm 17e^-$



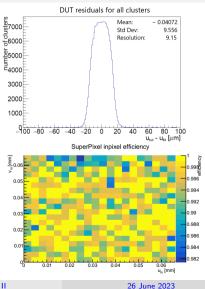
- S-curve tests with internal injection
- Determine threshold
- Tune sensor for low threshold and low dispersion
- Threshold: $280e^- \pm 17e^-$



Beam Test Set-up



- 3-5 GeV e^- at DESY June 2022
- Mimosa EUDET-Telescope
- Unirradiated chips
- Preliminary settings used ightarrowVery high thresholds \sim 500 e^-


Efficiency and Resolution

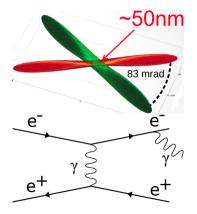
- 4 GeV, Perpendicular incidents
- Hit efficiency: $\epsilon = \frac{n_{matched}}{n_{tracks}}$
- ϵ at ${\sim}500e^-$ threshold: 99.54 \pm 0.04 %
- ~9.15 μm cluster position resolution \rightarrow Better than pitch/ $\sqrt{12} \sim$ 9.5 μm
- \bullet Next: Irradiation to $10^{14}-10^{15}~n_{eq}/cm^2$
- Test beam in July 2023

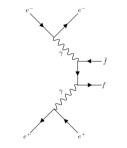
Efficiency and Resolution

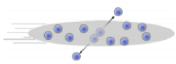
- 4 GeV, Perpendicular incidents
- Hit efficiency: $\epsilon = \frac{n_{matched}}{n_{tracks}}$
- ϵ at $\sim 500e^-$ threshold: 99.54 \pm 0.04 %
- $\sim 9.15 \,\mu m$ cluster position resolution ightarrow Better than pitch/ $\sqrt{12} \sim 9.5 \, \mu m$
- Next: Irradiation to $10^{14} 10^{15} n_{eq}/cm^2$
- Test beam in July 2023

15/16

Conclusion and Outlook

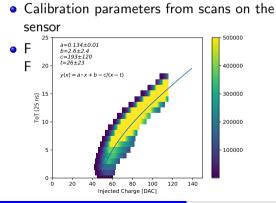

Conclusion:

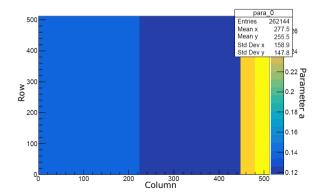

- Important to carefully characterise TJ-Monopix2, since sensor matrix design will be carried over to OBELIX
- Main performance figures of non-irradiated TJ-Monopix2 matching requirements
- Successful test beam with stable module operation over long times Outlook:
 - Preparing measurements on irradiated sensors
 - Additional test beam in July at DESY
 - OBELIX design, targeting submission in autumn 2023


Back up

Nano-beam and beam background

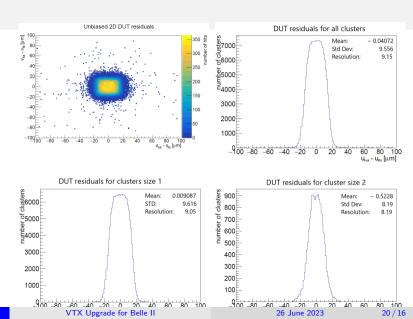
- Squeeze beam for smaller cross-section
- High Luminosity backgrounds
 - \rightarrow scales with luminosity
 - 2γ
 - radiative bhabha-scattering
 - elastic scattering of e^-e^+
- Storage background
- Injection backgrounds





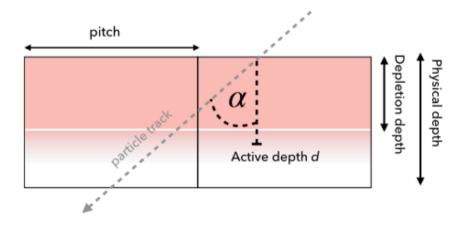
In-Pixel calibration

- Conversion of ToT to charge in electron, before clustering
- Inj. charge in DAC \cdot 10.1= charge in e



Marike Schwickardi

VTX Upgrade for Belle II


Residuals: epi module

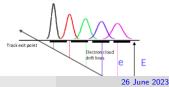
- Residuals at 3V PSUB/PWELL
- Uncertainty of telescope intersection at DUT plane ${\sim}3.5~\mu\text{m}$
- Expected res. from pixel pitch: 9.54 µm
- Resolution of 9.14 µm

Marike Schwickardi

TJ-Monopix2

Register	Default Settings ("Göttingen ")	Improved Settings ("Patrick")	HV Settings	HV Settings W8R3 "HEPHY"
ITHR	64	50	30	30
IBIAS	50	100	60	60
VRESET	143	143	100	95
ICASN	0	0	8	8
VCASP	93	93	40	40

Digitizer

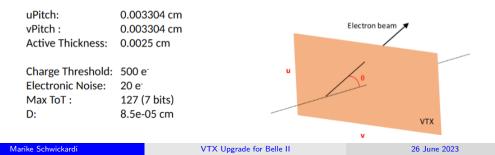

VTX Digitizer: from tracks to digits

Based on digitizer for PXD in the Belle II software. Rather simple and generic code.

- Start: List of Geant4 steps on sensitive (depleted) Si
- Check if the particle hit is inside the integration time window T
- Split the path of the particle in the VTX depleted Si into segments and drift the charges from the center of each segments.
 - The transverse diffusion (coefficient D) follows a Gaussian with a width defined as : sigmaDiffus = sqrt (D * e /2)
- Integrate smeared charge clouds per pixel area and add the noise to the charge
- Subtract hit threshold

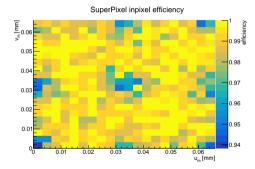
Charge -= chargeThreshold

- Check if Charge > 0
- Amplify and digitize charge ToT = F(Charge)



VTX Upgrade for Belle II

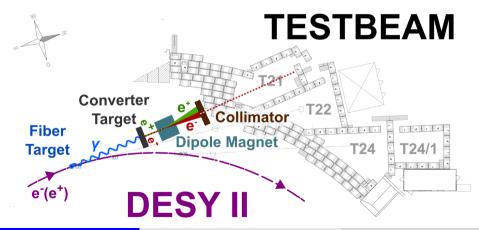
Digitizer


Test beam simulations

- Simplified simulation in basf2 software. No simulation of telescope and tracking is done, just using true hits instead.
- ParticleGun shooting electrons at 4.0 GeV perpendicular to 1 VTX sensor in +X

Efficiency

0°


SuperPixel inpixel efficiency الله ۵.06 م efficiency 0.05 -0.96 0.04 0.03 0.94 0.02 0.92 0.01 0.9 0 0.06 u_m [mm] 0.02 0.03 0.04 0.05

 10°

DESY Test Beam Facility

- Duration: 2022-06-27 to 2022-07-11
- Beam line: TB22

• 2-5 GeV electron beam

test beam Set-up

- DESY test beam facility
- AIDA TLU v2
- Mimosa26-based DURANTA Telescope
- Upstream scintillator

VTX Upgrade for Belle II

Marike Schwickardi

VTX Tracking Performance

	Tracking Validation results									
	SVD/CDC only		Based on simulated sample of 1000 \ensuremath{BB} events + respective overlay background files							
	Full tracking		Slides by Jarek			SVD	bkg hits only CDC			
	Bkg type	Finding Efficiency [%]	Hit Efficiency [%]	Fake Rate [%]	Clone Rate [%]	SVD L3 occup. [%] ONline (u/v) OFFline (u/v)	Hit Rate (R) [kHz/wire] (inner / outer)			
	v1	94.6 / 81.3 94.4	94.8 / 86.4 82.0	4.9/2.5 4.6	0.5 / 0.7 3.9	4.3 / 3.5 2.2 / 2.1	204.0 / 145.9 Total: 148.9			
	v2	92.9 / 78.2 93.0	93.6 / 83.8 79.5	8.1/2.9 6.7	2.7 / 0.7 4.2	7.2 / 5.5 4.2 / 3.9	308.7 / 203.8 Total: 209.1			
	v3	89.3 / 70.3 89.8	91.1 / 80.0 74.8	18.0 / 3.2 13.8	2.6 / 0.8 4.5	12.2 / 9.2 7.5 / 7.1	469.5 / 293.6 Total: 302.4			
VTX only/CDC only R_=%/(408.7 m*1200 wires + 754.6 ms										
	Full	tracking	From Benjamin study			N - Istal number of CDC hits (per event)				
	BG type	Finding efficiency	Hit efficiency	Fake rate	Clone rate	R _{av} kHz/wire	VTX L1 occupancy			
	vl	0.979 /0.81 3 0.944	3 0.943/0.866 0.824	0.043 /0.028 0.043	0.014 /0.010 0.048	219	0.0016%			
	v2	Marike Schwi		0.063/0.031	VTX Upg	סדר rade for Belle II;	0 002304			

26 June 2023

28 / 16