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2Outline

• Edge Computing

- Conventional vs. In-Memory

• Analog In-Memory Computing for Neural Network (NN)

• Neural Network for event reconstruction

Motivation

ANNA ASIC

• Neural Network training and quantization

• Analog implementation as capacitive crossbar array

• Circuit challenges and non-idealities

• Energy Efficiency



3Edge Computing

Conventional Von Neumann Computing

In-Memory Computing (IMC)

• Power hungry data movement
• Long memory access latency
• Limited memory bandwidth

• Parallel data processing
• Negligible data movement
• Operations inside memory elements
• Energy efficient
• Programmable 



4Analog IMC for Neural Network inference
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NN basic operation Multiply-and-Accumulate (MAC) 

Analog accelerator exploits Ohm’s law and Kirchhoff’s laws:

• Multiplication: non-volatile memories, used also for weight storage

• Accumulation: current or charge summation on a wire

MAC operation

 Low power
 Throughput and speed improvements (high parallelism)
 Monolithic integration with CMOS IC

Digital approach:
• Intensive and constant dataflow

• Pipeline multiple full-adders

Zj = ∑wi,1Xi



5Neural Network for Event Reconstruction 

Crossbar array of programmable switched capacitors

Analog operations performed directly on analog signals coming from photodetectors

No need for signal ADC and FPGA for embedded processing

Interaction coordinates directly at the output of the ASIC

Analog Neural 
Network ASIC 

(ANNA)

Front 
End

X
Y

Radiation

SiPM array

Monolithic
Scintillator

ANGER CAMERA ASIC

NN for the localization of the radiation event from detector signals for
nuclear medical imaging (e.g. Anger Camera for PET).

ANNA application



6NN software training and performance
Monolithic
scintillator

(51x51x10 mm3)

8x8 SiPM matrix

Gamma rays
• Simulated dataset for training

• NN with 64 inputs, 2 hidden layers of
20 neurons each, 2 outputs

• Training in MATLAB with weights
quantization (5-bit resolution)

Resolution [mm] x y Total

FWHM (2D PSF) 1.58 1.81

r50% 0.79 0.79 1.84

r90% 2.44 2.44 4.83

MAE 1.16 1.13 1.80

• FWHM: of the 2D PSF of the
reconstruction error

• r50% and r90%: 50% and 90%
percentile of the normalized error
distribution

• MAE: mean absolute error

Mean error [mm]
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7Analog Neural Network implementation

. . .

. . .

. . .

C1,1

. . .

Vin,1

Multiply

Sum

Ci,j

A A

CF CF

Vin,2

Vin,64

. . .

Vout,1 Vout,20

Vout,j = ∑
Ci,j
CF

Vin,i

weight

MAC:

4 bits weight + 1 bit sign

Activation function: clipped ReLU 
implemented within the op-amp feedback line



8Analog Neuron operation
Charge-redistribution approach
1) Charge only C with Vin to minimize energy consumption E = 𝐶𝐶𝑉𝑉2

2) Charge is redistributed among all capacitors closing Ss

3) Only the capacitors corresponding to the desired weight are connected to the integrator, while the others are
disconnected by means of their respective switch.

Positive weight
Negative weight

Step 1 Step 2 Step 3

The output is Vout,j =
Vin,i

15
Cij
CF



9Analog Neuron Layout

Capacitor bank Switches & SRAM

140.7 µm

72
.5

 µ
m

Proof of concept: implementation in CMOS 0.35 µm with CLSB = 100 fF

SRAMs to store weight



10Weight Programming

SRAM
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SRAM array

Q Q

Q Q

• Weight programming by means of SPI

• Stored data Q, plus additional logic, to
close/open capacitor bank switches

• Timing signals provided by programmable
Ring Counters

SRAM Q
C

. . .

. . .

Timing signal



11Circuit challenges

Integrator
• Large dynamic range (0 – 3.3 V), low power

• Very low offset error

• Stability for different input capacitance (NN weight)

• Electronic noise

Analog Switches
• Charge injection and clock feedthrough

• Parasitic capacitances



12Analog Switches (1/2)

Control

IN OUT

Control

IN OUT

Dummy switches

• Analog switches implemented as transmission gates (TG)

• Two non-idealities:

1) Charge injection: added or subtracted charge from
drain/source in an asymmetric way, depending on
impedance

2) Clock feedthrough: added charge due to gate-
source and gate-drain capacitances

 Solution
- Dummy switches to absorb charge from TG
- Cadence optimization tool to set widths and lengths

that minimize injected charge

𝑄𝑄𝑐𝑐𝑐 = 𝑊𝑊𝑊𝑊𝐶𝐶𝑜𝑜𝑜𝑜(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑡𝑡𝑡)



13Analog Switches (2/2)
• Additional parasitic capacitors added by switches

• Errors during input sampling and charge redistribution
phases

• Estimated from post-layout simulations

 A corrective factor K can be calculated and added to neural
network Matlab model, to take it into account during training

Vout,ideal =
Vin
15

Cij
CF

Vout,real =
Vin
15

Cij
CF

CLSB + Cp,top

CLSB + Cp,top/15 + Cp,bottom/15
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Post layout

Schematic

K correction

Vout,real = 𝑲𝑲 Vout,ideal

Vout

𝑲𝑲



14Integrator (1/3)
 Low power, rail-to-rail class A amplifier 

• Offset at integrator differential input  subject to a huge amplification

Offset error

Vout =
Vin
15

Cij
CF

+ V𝑜𝑜𝑜𝑜𝑜𝑜 1 +
Cij
CF

with Voff = 96 μV ± 5mV

 Offset compensation phase to minimize its effect

1) The offset is sampled on a 1.5 pF capacitor
2) The capacitor is flipped and the offset subtracted from V+

AVoff

Voff = 187 μV ± 125μV

1) 2)

MC post-layout offset



15Integrator (2/3)

Variable input capacitance

• Variable input capacitance Cij (from 0 to 97.5 pF)  large variability of feedback factor

β =
CF

Cij + CF
1
β
 from 3.5 dB to 54 dB 

 Programmable Miller compensation to always ensure fast and stable response

- Can be chosen among four capacitances or a combination of them (25 fF, 50 fF, 100 fF, 400 fF)

- Capacitance settings stored in SRAM cells

- Target phase margin of 67° ± 7°



16Integrator (3/3)
Electronic noise

𝝈𝝈𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐,𝟏𝟏 = 𝜎𝜎𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝑘𝑘𝑘𝑘𝑘𝑘
2 + 𝜎𝜎𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝑂𝑂𝑂𝑂𝑂𝑂

2 ≈ 595 𝜇𝜇𝜇𝜇 (1 input)

Transient noise simulations on a single-input neuron to estimate noise contributions to integrator output:
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 Matlab simulation: given set of input signals and
noise σ = 5 mV at the output of each neuron, to
consider contribution of all inputs

Std. of the predicted coordinates to evaluate effect
of noise on the NN performances

𝝈𝝈𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐,𝟔𝟔𝟔𝟔 = 64 ∗ 595𝜇𝜇𝜇𝜇 ≈ 4.7 𝑚𝑚𝑚𝑚 (max 64 inputs)

𝜎𝜎𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝑘𝑘𝑘𝑘𝑘𝑘 ≈ 440 𝜇𝜇𝜇𝜇  kTC noise contribution

𝜎𝜎𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝑂𝑂𝑂𝑂𝑂𝑂 ≈ 400 𝜇𝜇𝜇𝜇  op-amp only noise contribution



17Energy Efficiency
• Energy consumption during NN inference at fclock = 10 MHz, estimated from post-layout simulations

• Input buffers and integrators are powered on only when needed to save energy

Fig. of merit Estimate

I/O latency 4.6 µs 

I/O total operations 3566

Total consumption 38.12 nJ

Efficiency 775.21 MOP/s

Analog energy efficiency 135.74 GOP/J

Total energy efficiency 93.55 GOP/J



18Full Neural Network ASIC Simulation

• Preliminary full neural network ASIC schematic simulation in CADENCE

• Input event (64 SiPM voltage signals) with position of interaction (0mm, 5mm)

• The two output voltages represents the predicted x, y coordinates



19Conclusions
 Fully analog neural network able to perform 5-bit MAC operations in the charge domain (ASIC)

 ASIC prototype with 𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 in CMOS 0.35 µm node  

 Energy Efficiency estimated for inference ≈ 93.55 GOP/J

 Inference in a more efficient way in terms of computational cost and energy, compared to a fully-
digital implementation

 Will be submitted soon for fabrication.

 Energy consumption estimated for inference ≈ 38.12 nJ

 Can be monolithically integrated in the front-end ASIC

 Can be applied to several detector challenges where NN are adopted (charge sharing correction etc…)



Thank you!
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