24th International Workshop on Radiation Imaging Detectors

25-29 June 2023, Oslo Science Park, Norway

Instrumentation for FLASH Radiotherapy

University Medical Center Groningen

Francesco Romano

Istituto Nazionale di Fisica Nucleare – Sezione di Catania, Italy and Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, The Netherlands

francesco.romano@ct.infn.it

f.romano@umcg.nl

Decreasing toxicity maintaining tumor control: FLASH effect

FLASH radiotherapy: a promising cancer treatment modality under development \rightarrow almost instantaneous delivery of a high radiation dose in a few radiation pulses of ultra-high dose rate (UHDR)

Numbers of FLASH radiotherapy

CONVENTIONAL RADIOTHERAPY

<u>Dose:</u> ~2 Gy/fract. (x 30 fractions) <u>Dose Rate:</u> ~ Gy/min <u>Irradiation Time:</u> few minutes

FLASH RADIOTHERAPY

<u>Dose:</u> > 8 Gy (x 1 fraction?) <u>Dose Rate:</u> > 40 Gy/s <u>Irradiation Time:</u> <200 ms

Are these numbers telling the whole story?

Realization of FLASH radiation beams

Radiation Year type	Machine	Energy (MeV)	Average dose rate (Gy/s)	Dose per pulse (Gy/pulse)	Pulse repetition rate (Hz)	Field size	Purpose	Dosimetry method	e-	Modified clinical
1995 Photon ³⁰	Brookhaven National Laboratory (USA)	0.08 mean	310–620	Not provided	52 MHz	4 × 0.02/0.04 mm 0.075/0.2 × 7 mm	Rat neuro-study	IC, RCF, TLD		LINACS
2014 Electron ⁴	Kinetron Linac ³⁷ (Switzerland)	4.5	60	5 × 10 ⁶	19	Ø 1.2 cm 1.8 cm × 2.0 cm	Mouse study (bilateral thorax irradiation)	Chemical dosimetry with blue methyl viologen	e-	Research LINACs
2017 Electron ⁵	Oriatron 6e Linac (Switzerland)	6	100	5 × 10 ⁶	100	Ø 1.7 cm	Mouse study (brain irradiation)	TLD		Research Linkes
2017 Electron ¹⁷	Varian 21EX (USA)	9 and 20	35–210	1.7×10^{6}	182	1–5 cm @ 90%	Feasibility study	EBT2 RCF		
2018 Photon ⁷	European Synchrotron Radiation Facility	0.102 mean	37	1.2 × 10 ⁴ Gy/s instantaneous	Continuous	2 × 2 cm (reference size)	Mouse study (brain irradiation)	IC ³⁹		
	(France)									Isochronous
2018 Proton ²⁰	IBA isochronous cyclotron (France)	138–198	40	N/A	106.14 MHz (quasi- continuous)	~1.2 cm @ 90%	Feasibility study	Cylindrical IC, EBT3 RCF	þ	cyclotrons
2019 Electron ¹⁸	ELEKTA Precise Linac (Sweden)	8	30–300	Not provided	200	Ø 2 cm (at the highest dose rate)	Feasibility study	EBT3 RCF		
2019 Electron ⁶	Kinetron Linac and Oriatron 6e (Switzerland)	4.5 and 6	300	5 × 10 ⁶	Not provided	Ø 2.6 cm or 1.8–4.5 cm rectangular	Mini-pig (skin) and cat (nasal tumor) study	TLD, alanine pellets, EBT3 RCF	a	
2019 Electron ³¹	Oriatron ERT6 Linac (Switzerland)	5.6	150	1 × 10 ⁶	100	Ø 3.5 cm 1.3 depth @ 90%	Human patient treatment (skin)	Alanine pellets, EBT3 RCF		Synchro cyclotrons
2019 Proton ²¹	Varian isochronous cyclotron (USA)	245	40	N/A	Quasi- continuous	$1 \text{ cm} \times 3 \text{ cm}$	Mouse study (whole thorax irradiation)	Not provided		
2020 Proton ²²	IBA isochronous cyclotron (USA)	230	80	N/A	106.14 MHz (quasi- continuous)	~2 cm FWHM	Mouse study (abdomen irradiation)	Plane-parallel IC	γ	Synchrotrons
2020 Proton ²⁴	Mevion	70	100–200	0.16-	648	~1.2 cm FWHM	Feasibility study	Plane-parallel IC, ions		eynem et ens
	synchrocyclotron (USA)			0.32 Gy/pulse (8– 16 × 10 ³ Gy/s instantaneous)		(5 mm @ 90% isodose)		FC, MC simulation, and RCF		
	synchrocyclotron (USA)			0.32 Gy/pulse (8– 16 × 10 ³ Gy/s instantaneous)		(5 mm @ 90% isodose)		FC, MC simulation, and RCF		

Realization of FLASH radiation beams

Year	Radiation type	Machine	Energy (MeV)	Average dose rate (Gy/s)	Dose per pulse (Gy/pulse)	Pulse repetition rate (Hz)	Field size	Purpose	Dosimetry method	e-	Modified clinical LINACs
2020	Proton ³²	IBA isochronous cyclotron (USA)	227.5	130	N/A	106 MHz (quasi- continuous)	$1.6 \times 1.2 \text{ cm}^2 \text{ ellipse}$	Mouse (partial abdomen irradiation)	Plane-parallel IC, FC, MC simulation, EBT3 RCF		
2020	Photon ³³	ANSTO Australian Synchrotron	0.07 and 0.09 mean	40–350 (at treat- ment depth and fil- tration)	200 (at 20 mm reference depth and filtration)	Continuous	2 × 2 cm (reference dosimetry size)	Rat study (brain cancer irradiation)	Pinpoint IC (reference), silicon semiconductor, and MC	e-	Research LINACs
2021	Proton ²⁵	Mevion synchrocyclotron (USA)	60	120–160	0.22 Gy/pulse (9.3 × 10 ³ Gy/s instantaneous)	750	Ø 1.1 cm FWHM (5 mm @ 90% isodose)	Feasibility of SOBP beam using a synchrocyclotron	IC, FC, MC simulation, and EBT-XD RCF	р	Isochronous
2021	Electron ³⁴	Varian Clinac 2100 C/D (USA)	10	240–260	0.81 Gy/pulse	360	Ø 1–1.5 cm	Feasibility of UHDR at the machine's isocenter	EBT-XD RCF		eyelettens
2021	Proton ³⁵	Research isochronous cyclotron (Germany)	68	75	N/A	20 MHz	Ø 1.3 cm	Preclinical setup for mouse irradiation	IC and RC	р	Synchro cyclotrons
2021	Proton ³⁶	COMET ³⁸ isochronous cyclotron (Switzerland)	170—250	9000 (for a single spot)	N/A	72.85 MHz	\sim 2.3–5 mm (16 \times 1.2 cm ² by scanning)	Feasibility study	FC		
2021	Helium ion ²⁶	Synchrotron (Germany)	145.74 MeV/u	185	N/A	Quasi- continuous	1 cm ² (by spot scanning)	In vitro study of dose, LET, and O ₂ concentration	Parallel-plate IC	γ	Synchrotrons
2021	Carbon ion ²⁷	Synchrotron (Germany)	280 MeV/u	70	N/A	Quasi- continuous	1 cm ² (by spot scanning)	Dosimetry and in vitro study	IC and EBT3 RCF	10115	

> 40 Gy/s

FLASH Radiotherapy: open questions

Is the FLASH effect only dependent on the average dose-rate along the irradiation duration?

Which physical parameters could be more relevant?

Total dose \rightarrow D (>8 Gy) T (<200ms) \rightarrow Average dose rate \rightarrow D/T (> 40 Gy/s) Dose-per-pulse? \rightarrow d (\rightarrow relevant for ion chambers) Dose rate (averaged) in the pulse? \rightarrow d/t (< MGy/s) Instantaneous dose rate? $\rightarrow \dot{d}$

....open questions (for physicists):

Are we able to accurately perform absorbed dose measurements for FLASH Radiotherapy with the level of accuracy required for <u>clinical translations</u>?

All relevant parameters? Which detectors? For different beam pulse structures?

Are we able to accurately *real-time monitor* the dose delivery at the irradiation point?

Pulse duration and instantaneous dose for different accelerators at UHDRs

F. Romano et al. Med. Phys. (2022)

Reference dosimetry in Radiotherapy

The present Code of Practice fulfils the need for a systematic and internationally unified approach to the calibration of ionization chambers in terms of absorbed dose to water and to the use of these detectors in determining the absorbed dose to water for the radiation beams used in radiotherapy. The Code of Practice provides a methodology for the determination of absorbed dose to water in the low-, medium- and high-energy photon beams, electron beams, proton beams and heavy-ion beams used for external radiation therapy. The structure of this Code of Practice differs from TRS-277 and more closely resembles TRS-381 in that the practical recommendations and data for each radiation type have been placed in an individual section devoted to that radiation type. Each essentially forms a different Code of Practice including detailed procedures and worksheets.

Depending on the dose rate:

- Ion recombination processes
- Ion collection efficiency *f* decreases
- For conv: 97%-100%

IAEA TRS-398

Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water

Pedro Andreo, Dosimetry and Medical Radiation Physics Section, IAEA David T Burns, Burcau International des Poids et Measures (BIPM) Klaus Hohlfeld, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany M Saifall Hug, Thomas Jefferson University, Philadelphia, USA Tatsuaki Kanai, National Institute of Radiological Sciences (NIRS), Chiba, Japan Fedele Laitano, Ente per le Nuove Tecnologie L'Energia e L'Ambiente (ENEA), Rome, Italy Vere Smyth, National Radiation Laboratory (NRL), Christchurch, New Zealand Stefaan Vynckier, Catholic University of Louvain (UCL), Brussels, Belgium

PUBLISHED BY THE IAEA ON BEHALF OF IAEA, WHO, PAHO, AND ESTRO

INTERNATIONAL ATOMIC ENERGY AGENCY IAEA 05 June 2006 (V.12)

FLASH Radiotherapy: dosimetric challenges

Ionization chambers: <u>recommended by protocols</u> <u>for reference dosimetry</u> for Radiotherapy

Tools and methods established in dosimetry for conventional RT are not suitable for FLASH-RT:

- Alternative active detectors to be developed
- New protocols for reference dosimetry

Other commercially available detectors

Uncertainties in dosimetry:

 \rightarrow under/over/not estimate different biological response between conventional irradiation and ultra-high dose rate irradiation

 \rightarrow no proper assessment and investigation of the FLASH effect.

Possible dosimetric approaches for FLASH RT: passive detectors

Dosimeter	Real time	ln vivo dosimetry	Absolute/ reference dosimetry	Beam monitoring	Spatial resolution	Temporal resolution	2D dosimetry	Accuracy at conventional dose rates ^a	Other considerations
lon chamber	Yes	No	Yes	Yes	Several mm	10–200 µs	Array	1%–2%	Significant ion recombination at UHDRs
Semiconductor	Yes	Yes	No	Yes	Sub-mm (or µm)	1–10 ns	Yes	2%–5%	Angular dependency, radiation damage, LET dependence
TLD	No	Yes	Yes	No	Several mm	N/A	No	3%–10%	Energy dependence, time consuming, LET dependence
OSLD	No	Yes	Yes	No	Sub-mm to mm	N/A	Array	3%–5%	Energy dependence, quenching in high LET fields
Scintillator	Yes	Yes	Potentially	Potentially	Sub-mm to mm	ns to µs	Array and sheet	3%–5%	Quenching in high LET fields, Cherenkov radiation
Gas scintillator	Yes	No	No	Yes	Sub-mm	N/A	Yes	1%	Beam centroid measurement
Calorimeter	Yes	No	Yes	No	cm to several mm	ms–10 ms	No	<1% at the primary standard level	Bulky, not easy to use, correction factors, time consuming
Film	No ^b	Yes	Potentially	No	Tens of µm	N/A	Yes	3%–5%	Quenching in high LET fields
Fricke	No	No	Yes	No	cm to sub-mm	N/A	Potentially	<1% at primary standard level	Time consuming, complexity
Faraday cup	Yes (for charge measurements)	No	Yes	No	N/A	<µs	No	2%–5% for commercial devices; 1%–2% for dedicated equipment ^c	Measures the total collected charge (other detectors are required for dose determination)
Nuclear track detector	No	Yes	No	No	mm; sub-mm with specialized equipment	N/A	Yes	5%–7%	Time consuming, energy dependence, LET dependence
Alanine	No	Yes	Yes	No	mm	N/A	No	2%–7% for doses larger than 10 Gy	Decreased accuracy for doses less than 10 Gy (minimum 2 Gy)
Integrated current transformer	Yes	Potentially	No	Yes	N/A	sub-µs	No	<1% for charge measurements	Lack of 2D measurements, only charge measurements

Possible dosimetric approaches for FLASH RT: passive detectors

Radiochromic films

•

Alanine

Relative dosimetry

Not suitable for clinical routine

Absolute dosimetry

Possible dosimetric approaches for FLASH RT: ionization chambers

Dosimeter	Real time	In vivo dosimetry	Absolute/ reference dosimetry	Beam monitoring	Spatial resolution	Temporal resolution	2D dosimetry	Accuracy at conventional dose rates ^a	Other considerations
lon chamber	Yes	No	Yes	Yes	Several mm	10–200 µs	Array	1%–2%	Significant ion recombination at UHDRs
Semiconductor	Yes	Yes	No	Yes	Sub-mm (or µm)	1–10 ns	Yes	2%–5%	Angular dependency, radiation damage, LET dependence
TLD	No	Yes	Yes	No	Several mm	N/A	No	3%–10%	Energy dependence, time consuming, LET dependence
OSLD	No	Yes	Yes	No	Sub-mm to mm	N/A	Array	3%–5%	Energy dependence, quenching in high LET fields
Scintillator	Yes	Yes	Potentially	Potentially	Sub-mm to mm	ns to µs	Array and sheet	3%–5%	Quenching in high LET fields, Cherenkov radiation
Gas scintillator	Yes	No	No	Yes	Sub-mm	N/A	Yes	1%	Beam centroid measurement
Calorimeter	Yes	No	Yes	No	cm to several mm	ms–10 ms	No	<1% at the primary standard level	Bulky, not easy to use, correction factors, time consuming
Film	No ^b	Yes	Potentially	No	Tens of µm	N/A	Yes	3%–5%	Quenching in high LET fields
Fricke	No	No	Yes	No	cm to sub-mm	N/A	Potentially	<1% at primary standard level	Time consuming, complexity
Faraday cup	Yes (for charge measurements)	No	Yes	No	N/A	<µs	No	2%–5% for commercial devices; 1%–2% for dedicated equipment ^c	Measures the total collected charge (other detectors are required for dose determination)
Nuclear track detector	No	Yes	No	No	mm; sub-mm with specialized equipment	N/A	Yes	5%–7%	Time consuming, energy dependence, LET dependence
Alanine	No	Yes	Yes	No	mm	N/A	No	2%–7% for doses larger than 10 Gy	Decreased accuracy for doses less than 10 Gy (minimum 2 Gy)
Integrated current transformer	Yes	Potentially	No	Yes	N/A	sub-µs	No	<1% for charge measurements	Lack of 2D measurements, only charge measurements

Possible dosimetric approaches for FLASH RT: ionization chambers

Possible dosimetric approaches for FLASH RT: ionization chambers

Possible dosimetric approaches for FLASH RT: calorimeters

Dosimeter	Real time	ln vivo dosimetry	Absolute/ reference dosimetry	Beam monitoring	Spatial resolution	Temporal resolution	2D dosimetry	Accuracy at conventional dose rates ^a	Other considerations
lon chamber	Yes	No	Yes	Yes	Several mm	10–200 µs	Array	1%–2%	Significant ion recombination at UHDRs
Semiconductor	Yes	Yes	No	Yes	Sub-mm (or µm)	1–10 ns	Yes	2%–5%	Angular dependency, radiation damage, LET dependence
TLD	No	Yes	Yes	No	Several mm	N/A	No	3%–10%	Energy dependence, time consuming, LET dependence
OSLD	No	Yes	Yes	No	Sub-mm to mm	N/A	Array	3%–5%	Energy dependence, quenching in high LET fields
Scintillator	Yes	Yes	Potentially	Potentially	Sub-mm to mm	ns to µs	Array and sheet	3%–5%	Quenching in high LET fields, Cherenkov radiation
Gas scintillator	Yes	No	No	Yes	Sub-mm	N/A	Yes	1%	Beam centroid measurement
Calorimeter	Yes	No	Yes	No	cm to several mm	ms–10 ms	No	<1% at the primary standard level	Bulky, not easy to use, correction factors, time consuming
Film	No ^b	Yes	Potentially	No	Tens of µm	N/A	Yes	3%–5%	Quenching in high LET fields
Fricke	No	No	Yes	No	cm to sub-mm	N/A	Potentially	<1% at primary standard level	Time consuming, complexity
Faraday cup	Yes (for charge measurements)	No	Yes	No	N/A	<µs	No	2%–5% for commercial devices; 1%–2% for dedicated equipment ^c	Measures the total collected charge (other detectors are required for dose determination)
Nuclear track detector	No	Yes	No	No	mm; sub-mm with specialized equipment	N/A	Yes	5%–7%	Time consuming, energy dependence, LET dependence
Alanine	No	Yes	Yes	No	mm	N/A	No	2%–7% for doses larger than 10 Gy	Decreased accuracy for doses less than 10 Gy (minimum 2 Gy)
Integrated current transformer	Yes	Potentially	No	Yes	N/A	sub-µs	No	<1% for charge measurements	Lack of 2D measurements, only charge measurements

Possible dosimetric approaches for FLASH RT: calorimeters $\rightarrow expertise of PSDLs$

Charge liberated in the medium results in an energy cascade - the liberated energy ends up as heat \rightarrow measured as a temperature rise

$$D_m = c_m \Delta T$$

Where c_m stands for the specific heat capacity of the material and ΔT for the temperature rise.

- Water calorimeters: bulky systems typically used as a primary standard for metrology
- The temperature rise of water is very small:

 $\Delta T (water) = 2.4 \times 10^{-4} \text{ K/Gy}$

 Graphite calorimeters: higher temperature rise as respect to water (c_m six times smaller)

Graphite calorimeters

- A core needs to be thermally isolated from the surrounding graphite by one or more air or vacuum gaps → nested configuration
- Correction factor to be applied:
 - o for the effect of gaps (vacuum or air)
 - Volume average correction factor due to the finite size of the core

rack of DMMs!

- o <u>heat transfers</u>
- o pre-post-drift extrapolation

Calorimeters for FLASH RT: portable!

Conventional Radiotherapy

FLASH Radiotherapy

A. Subiel and F. Romano, Br. J. Radiol. (2023)

Calorimeter type	Beam & energy	Average dose rate	Dose-per-pulse	Pulse duration	Uncertainty (<i>k</i> = 1)	References	
Transfer standard graphite calorimeter	200 MeV electrons	0.2–50 Gy/s	0.03–5.3 Gy/pulse	Approx. 100 ns	1.2% (no uncert. budget)	McManus et al. Scientific Reports (2020)	National Physical Laboratory
Small portable graphite calorimeter	15–40 MeV laser- driven protons	10 ⁹ Gy/s (one ps pulse delivered)	1–3 Gy/pulse	Approx. ns	Not stated	H. Palmans et al. PMB (2009) F. Romano et al. Journal of Physics (2020)	National Physical Laboratory
Aluminium calorimeter*	50 MeV electrons	1–9 Gy/s	0.2–1.8 Gy/pulse	2.5 μs	0.5% (no uncert. budget)	A. Bourgouin, Frontiers in Physics (2020)	Canada Nac·cnac
Aerrow graphite calorimeter*	20 MeV electrons	3–28 Gy/s	0.6–5.6 Gy/pulse	2.5 μs	1.06 %	A. Bourgouin, Med. Phys. (2022)	McGill UNIVERSITY
Al-core secondary standard calorimeter	6 MeV electrons	180 Gy/s	Approx. 0.45 Gy/s	4 μs	1.25%	G. Bass et al., Br. J. Radiol. (2023)	NATIONAL Physical Laboratory

Secondary standard calorimeter

- Developed by NPL
- Simple usage and low cost
- 2 mm graphite core
- 1 single termistor connected to the Wheatstone bridge to measure the temperature increase
- IBA PPC05 ion chamber geometry (same holders)
- Tested at CPFR in Pisa (SIT e_FLASH linac)

INFN FRIDA

SINGLE PULSE TEMPERATURE RISE

App 100-40, pulse length= 4 us

Possible dosimetric approaches for FLASH RT: calorimeters vs ion chambers

radiotherapy

• less expensive than calorimeters

Possible dosimetric approaches for FLASH RT: scintillators

Dosimeter	Real time	In vivo dosimetry	Absolute/ reference dosimetry	Beam monitoring	Spatial resolution	Temporal resolution	2D dosimetry	Accuracy at conventional dose rates ^a	Other considerations
lon chamber	Yes	No	Yes	Yes	Several mm	10–200 µs	Array	1%–2%	Significant ion recombination at UHDRs
Semiconductor	Yes	Yes	No	Yes	Sub-mm (or µm)	1–10 ns	Yes	2%–5%	Angular dependency, radiation damage, LET dependence
TLD	No	Yes	Yes	No	Several mm	N/A	No	3%–10%	Energy dependence, time consuming, LET dependence
OSLD	No	Yes	Yes	No	Sub-mm to mm	N/A	Array	3%–5%	Energy dependence, quenching in high LET fields
Scintillator	Yes	Yes	Potentially	Potentially	Sub-mm to mm	ns to µs	Array and sheet	3%–5%	Quenching in high LET fields, Cherenkov radiation
Gas scintillator	Yes	No	No	Yes	Sub-mm	N/A	Yes	1%	Beam centroid measurement
Calorimeter	Yes	No	Yes	No	cm to several mm	ms–10 ms	No	<1% at the primary standard level	Bulky, not easy to use, correction factors, time consuming
Film	No ^b	Yes	Potentially	No	Tens of µm	N/A	Yes	3%–5%	Quenching in high LET fields
Fricke	No	No	Yes	No	cm to sub-mm	N/A	Potentially	<1% at primary standard level	Time consuming, complexity
Faraday cup	Yes (for charge measurements)	No	Yes	No	N/A	<µs	No	2%–5% for commercial devices; 1%–2% for dedicated equipment ^c	Measures the total collected charge (other detectors are required for dose determination)
Nuclear track detector	No	Yes	No	No	mm; sub-mm with specialized equipment	N/A	Yes	5%–7%	Time consuming, energy dependence, LET dependence
Alanine	No	Yes	Yes	No	mm	N/A	No	2%–7% for doses larger than 10 Gy	Decreased accuracy for doses less than 10 Gy (minimum 2 Gy)
Integrated current transformer	Yes	Potentially	No	Yes	N/A	sub-µs	No	<1% for charge measurements	Lack of 2D measurements, only charge measurements

Scintillators

Plastic scintillator fiber (d =

1 mm)

- Plastic scintillators:
- Minimal to no saturation at high dose per pulse (DPP) and dose rates
- ✓ Water and tissue-equivalent
- Allow sampling the pulse time structure
- Fibers: compact, easy-to-use, cost-effective, real-time detector prototypes for precise local dose measurements

Air fluorescence

Possible dosimetric approaches for FLASH RT: semiconductors

Dosimeter	Real time	ln vivo dosimetry	Absolute/ reference dosimetry	Beam monitoring	Spatial resolution	Temporal resolution	2D dosimetry	Accuracy at conventional dose rates ^a	Other considerations
lon chamber	Yes	No	Yes	Yes	Several mm	10–200 µs	Array	1%–2%	Significant ion recombination at UHDRs
Semiconductor	Yes	Yes	No	Yes	Sub-mm (or µm)	1–10 ns	Yes	2%–5%	Angular dependency, radiation damage, LET dependence
TLD	No	Yes	Yes	No	Several mm	N/A	No	3%–10%	Energy dependence, time consuming, LET dependence
OSLD	No	Yes	Yes	No	Sub-mm to mm	N/A	Array	3%–5%	Energy dependence, quenching in high LET fields
Scintillator	Yes	Yes	Potentially	Potentially	Sub-mm to mm	ns to µs	Array and sheet	3%–5%	Quenching in high LET fields, Cherenkov radiation
Gas scintillator	Yes	No	No	Yes	Sub-mm	N/A	Yes	1%	Beam centroid measurement
Calorimeter	Yes	No	Yes	No	cm to several mm	ms–10 ms	No	<1% at the primary standard level	Bulky, not easy to use, correction factors, time consuming
Film	No ^b	Yes	Potentially	No	Tens of µm	N/A	Yes	3%–5%	Quenching in high LET fields
Fricke	No	No	Yes	No	cm to sub-mm	N/A	Potentially	<1% at primary standard level	Time consuming, complexity
Faraday cup	Yes (for charge measurements)	No	Yes	No	N/A	<µs	No	2%–5% for commercial devices; 1%–2% for dedicated equipment ^c	Measures the total collected charge (other detectors are required for dose determination)
Nuclear track detector	No	Yes	No	No	mm; sub-mm with specialized equipment	N/A	Yes	5%–7%	Time consuming, energy dependence, LET dependence
Alanine	No	Yes	Yes	No	mm	N/A	No	2%–7% for doses larger than 10 Gy	Decreased accuracy for doses less than 10 Gy (minimum 2 Gy)
Integrated current transformer	Yes	Potentially	No	Yes	N/A	sub-µs	No	<1% for charge measurements	Lack of 2D measurements, only charge measurements

Solid state detectors: semiconductors

UHDR e- beams

M. Marinelli et al. Med. Phys. (2022)

G. Verona Rinati et al. Med. Phys. (2022)

Good stability (long-term response)

• High spatial resolution (< 1 mm)

Diamond detectors (FLASH diamond)

Silicon detectors

- More mature technology
- Linear response at UHDR
- Good stability (long-term response stability?)
- High spatial resolution (< 500 um)
- Pixellated and strip geometries

• Commercialized by PTW

• Water equivalent

stability?)

Linear response at UHDR

Silicon carbide detectors for dosimetry and monitoring

Characterization with Electron FLASH Linac accelerator @ CPFR

Experimental setup

- 10x10, 5x5, 3 mm² 10 um thick SiC with and without the substrate placed at the build-up connected to a Keithley electrometer
- Alanine dosimeters at the build-up
- 30,40,100 Applicator and Open Field
- RC circuit connected to the detector

Independence with the instantaneous dose rate and dose per pulse

1x1 cm²- 5x5 mm² Bias Voltage: 200 V

10 um thick free-standing membrane

F. Romano, G. Milluzzo^{*} et al., First Characterization of Novel Silicon Carbide Detectors with Ultra-High Dose Rate Electron Beams for FLASH Radiotherapy. Appl. Sci. 2023, 13, 2986. E. Medina et al., Radiation Hardness Study of Silicon Carbide Sensors under High-Temperature Proton Beam Irradiations. Micromachines 2023, 1, 0. G. Milluzzo et al., in prep for Medical Physics

Instantaneous dose rate measurements for FLASH?

- Temporal resolution from 1 to tens of ns, allowing for "intra-pulse" instantaneous dose rate measurements
- Different doses per pulse
- Different pulse duration

UHDR e- beams

Scintillators

Silicon detectors

Silicon carbide (SiC)

Real-time beam monitoring (@ SIT in Aprilia)

- Fast signals

- High temporal resolution

- Low beam perturbation

For UHDR electron beams in transmission ion chambers cannot be used \rightarrow new approaches!

Real-time beam monitoring for UHDR protons

For UHDR **proton** beams, <u>modified</u> ionization chambers can still work!

- Research facility

-Radiotherapy department - University Medical Center Groningen

-Proton FLASH beams: up to 190 MeV

FLASH Twin Beam - Reproduce clinical beams

- Mimic the beam temporal structure
- Flexible dose delivery system @ PARTREC
 - Flexible field/spot size, scanning speed, dose-rate
 - Scattered CW and pulsed beams
 - Pencil Beam Scanning
- Reproduce the Groningen Proton Therapy Center gantries
 - IBA Proteus Plus (230 MeV, PBS only)

thin ion chambers used

Summary and conclusions

- Radiochromic films to asses 2D dose distributions and alanine dose rate independent but passive detectors
- Ionization chambers still reference dosimeters for routine beam calibration measurements?
- Small portable calorimeters as an alternative reference instrument?
- Alternative dosimetric approaches with scintillators, silicon, diamond and SiC detectors for relative dosimetry (and beam monitoring?)
- Real-time beam monitoring needs additional challenges to be addressed
- 2D configurations for both real-time beam monitoring and dosimetry to be developed in the perspective of a clinical translation of FLASH radiotherapy
- New protocols and guidelines for beam dosimetry and characterization to be delivered and verified (international and national initiatives)

Thank you for your attention

Acknowledgements:

G. Milluzzo (INFN-CT), C. Okpuwe (INFN-CT), M. Camarda (STLab), N. Amato (STLab), S. Both (UMCG), A. Gerbershagen (UMCG), M.-J. van Goethem (UMCG), S. Brandenburg (UMCG), F. Di Martino (CPFR), J. Pensavalle (SIT), D. Del Sarto (CPFR), L. Masturzo (SIT), G. Felici (SIT), S. McCallum (QUB), M. McManus (NPL), A. Vignati (INFN-TO), E. Medina (INFN-TO), G. Bisogni (INFN-PI), E. Ciarrocchi (INFN-PI), A. Subiel (NPL), R. Thomas (NPL), H. Palmans (NPL)

francesco.romano@ct.infn.it

f.romano@umcg.nl

European initiatives

UHDpulse EMPIR project

6 Metrology institutes 3 Hospitals 5 Universities 5 Research institutes 6 Companies + Proton therapy network

Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates

Туре:	Joint Research	Project
Duration:	2019-2023	1
Start:	1. Sept. 2019	
Funding:	2.1 M €	UHDpulse
Coordinator:	Andreas Schülle	er (PTB)
Topic:	Tools for tracea	ble dose
	measurements	for:

- FLASH radiotherapy
- VHEE radiotherapy
- Laser driven accelerators

http://uhdpulse-empir.eu/

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

The European Metrology Programme for Innovation and Research (EMPIR):

- traceable reference standards and validated reference methods for dose measurements at ultra-high pulse dose rates
- characterization of detector systems, development of traceable and validated methods for relative dosimetry
- contribution to codes of practice

Follow-up normative project submitted soon

Italian initiatives

The INFN "FRIDA" project

The FLASH mechanism

WP3 Beam/dose monitoring

WP2

Beam delivery

WP4

Treatment planning

Units CT – F. Romano LNS - G. Cirrone MI – D. Giove PI – G. Bisogni RM1 – A. Sarti (PI) TIFPA – E. Scifoni TO – A. Vignati

Goal of "FRIDA" (FLASH Radiotherapy with high Dose-					
rate particle beAms) is to make a step forward in all the					
crucial areas Four WPs [mechanism modelling & rad-					
bio experiments; beam delivery; beam monitoring;					
treatment planning] working in parallel, >25 FTEs, 7 INFN					
units with know-how in the fields and a solid international					
network of research centres and companies (SIT, STLab)					
are the resources to accomplish the research program.					

•	Test few promising techniques for FLASH
	beam monitoring and dosimetry applications

- Adapting existing techniques for FLASH ٠ conditions
- **Developing from scratch some other** . novel approaches.

Task 1 Development and test of new Beam Monitoring systems	 Task 3.1.1: Air Fluorescence monitor (Roma1) Task 3.1.2: Integrating Current Transformer (LNS) Task 3.1.3: Silicon/Diamond detectors (To) Task 3.1.4: SiC detectors (in-kind) (CT)
Task 2 Development and test of new dosimetric systems	 Task 3.2.1: Portable Calorimeter (CT) task 3.2.2: Scintillator based dosimeter (PI) Task 3.2.3: SiC for relative dosimetry (in-kind) (LNS)
Task3 Intercomparisons, alibrations and codes of practice	 Task 3.3.1Dosimetric characterization of the beams with available BM systems (dual gap chamber, SEM, FC) and reference dosimeters (Faraday cup, alanine, RCF, IC)) Task 3.3.2 Intercomparisons and calibrations of the developed BMs and dosimeters Task.3.3.3 Dosimetric codes of practice for the dosimetry of FLASH beams