
Overview of Serialization Technologies

Jim Pivarski

Princeton University – DIANA-HEP

March 28, 2018

1 / 24

45 years of serialization formats in (and out of) HEP

1970 1980 1990 2000 2010 2020

ZEBRA
(1983)

YBOS
(CDF r1)

ZOO
proposal
(1994)

Objectivity
(c.1994‒1998)

HYDRA
(1973)

ZBOOK
(1974)

BOS
(1975)

ROOT
(1995)

CWN
in PAW
(1989)

FORTRAN C++

MonetDB
(2002)

C-Store
(2005)

Dremel
(2010)

Parquet
(2013)

Arrow
(2016)

ProtoBuf
(2001) Avro

(2009)

2 / 24

The two most significant features, setting HEP apart

Hierarchically nested structures

For example: event contains jets,
For example: jets contain tracks,
For example: tracks contain hits. . .

It’s important that the nested objects have
variable length, since structs of structs of
integers are not really nested: they compile
to constant offsets, just like flat data.

Fortran (pre-90) didn’t have this feature,
so physicists had to add it.

Columnar representation

For example: all values of muon pT are
contiguous in serialized form, followed by
all values of muon η, all values of muon φ,
and all #muons per event.

Thus, you can read muon pT without
reading jet pT .

Easy for flat data: it’s just a transpose.

There are several techniques for solving it
in general (hot CS topic in early 2000’s).

3 / 24

20 questions to ask about any file format

Expressiveness

I Hierarchically nested or flat tables?
I Has schema (strongly typed) or dynamic?
I Schema evolution, if applicable?
I Language agnostic or specific?

Performance
I Rowwise or columnar?
I Compressed/compressible?
I Robust against bit errors?
I Serialized/runtime unity?

220 yes/no combinations = 1 million formats

Accessibility

I Human readable, binary, or both?
I Immutable/append only/full database?
I Partial-write recovery?
I Parallel readable?
I Parallel writable?
I Streamable?
I Random accessible?
I Database-style indexing?
I RPC protocol?

Community

I Has specification?
I Independent implementations?
I Size of user base?

4 / 24

Expressiveness: Hierarchically nested or flat tables?

Hierarchical nesting could be seen as a special case of graph data, but it’s an
important special case because hierarchical types may have strongly typed schemas
and special contiguity properties, such as rowwise vs. columnar.

Hierarchical
event 1

MET

muons

1

2

jets...

px

py

pz

py

pz

px

x

y

event 2

MET

muons

1

jets...

px

py

pz

x

y

event 3

MET

muons

1

2

jets...

px

py

pz

py

pz

px

x

y

3

py

pz

px

Flat table
column 1 column 2 column 3

row 1

row 2

row 3

row 4

row 5

row 6

(conversion to a flat table is lossy!)

Haves: ROOT, Parquet, Avro, JSON, XML, and many others. . .

Have nots: CSV, SQLite, Numpy, high-performance HDF5. . .
5 / 24

Expressiveness: Has schema (strongly typed) or dynamic?

Same issue as in programming languages: can we express the data type once for all
elements of a collection or do we have to express it separately for each element?

Haves: ROOT, Parquet, Avro, and many others. . .

Have nots: JSON, BSON (binary JSON), MessagePack, and many others. . .

Just as in programming languages, there are arguments for and against schemas, and
they’re helpful in some situations, harmful in others.

In HEP, we know the schema in advance for reasonably large blocks of event data and
want the performance advantages of schemas. Without a schema, every object must
be accompanied by type metadata (even if it’s just a reference). Repeated field names
account for most of JSON and BSON’s bloat (it’s not because JSON is text!).

6 / 24

Expressiveness: Schema evolution, if applicable?

If a schema is used to compile runtime objects, then a mismatch between an old
schema and a new schema can render old data unreadable. Schema evolution is a set
of rules to automatically translate data schemas into container objects.

Haves: ROOT, ProtoBuf, Thrift, Avro, all in very different ways

Have nots: Objectivity, Java serialization (without manual effort). . .

Inapplicables: Any schemaless format (e.g. JSON) and any format without fixed
containers: Google FlatBuffers (runtime indirection), OAMap (JIT)

Schema evolution isn’t a well-defined dichotomy, but a spectrum of techniques filling
the continuum between static typing (assert types at the earliest possible time) and
dynamic typing (assert types at the latest possible time). ROOT’s typing is not strictly
“static” because it uses a JIT-compiler to compile Streamer Rules.

Generally, we’d like to delay “hard compiling” types until after we’ve seen the data
schema and before we run over a million events. JIT is a good solution.

7 / 24

https://root.cern.ch/root/SchemaEvolution.pdf

Expressiveness: Language agnostic or specific?

A serialization format may be specialized to a given language and (eventually) handle
every data type in that language. This is true of ROOT, which covers almost all of
C++’s types. Good for optimizing data types to the code, rather than serialization.

Alternately, it could define a type system typical of programming languages but not
aligned with any one language. These types are then mapped onto each language
without a full bijection (e.g. all ProtoBuf types can be expressed in C++, but not all
C++ types can be expressed in ProtoBuf). Good for cross-language interoperability.

Agnostic: ProtoBuf, Thrift, Avro, Parquet, Cap’n Proto, OAMap, SQL schemas

Specific: ROOT, Pickle (Python), Kryo (Java, for Spark to send data to jobs)

Language-specific formats are actually pretty rare: it was hard to find examples!

8 / 24

Performance: Rowwise or columnar?

Columnar representation allows more efficient access to a subset of attributes (the only
ones used in an analysis, for instance) because network → computer, disk → memory,
memory → CPU, and memory → co-processor pipelines all cache contiguous bytes.

Hierarchically nested example: vector<vector<pair<char, int>>>

logical data [[(a,1), (b,2), (c,3), (d,4)], [], [(e,5), (f,6)]], [], [[(g,7)]]]

outer stops [3, 3, 4]

inner stops [4, 4, 6, 7]

1st attribute [a, b, c, d, e, f, g]

2nd attribute [1, 2, 3, 4, 5, 6, 7]

The “stops” column is a running total number of entries at each closing bracket of that
level of hierarchy. The attribute data (leaves of the tree) are stored without boundaries.

Haves: ROOT (only one level deep), Parquet, ORC (database file), OAMap. . .
Have nots: JSON, ProtoBuf, Thrift, Avro, Google FlatBuffers, and many others. . .

9 / 24

Performance: Compressed/compressible?

Of course you can take any file and compress it, but it sure is convenient if compression
is a built-in option. Compression trades read and write throughput for serialized size.

0.1

1

10

100

0.1 1 10 100

R
ea

d
10

 b
ra

nc
he

s
[s

ec
]

File size [GB]

Highest cluster/row group (100000 events), warmed cache

uncompressed ROOT
lz4 ROOT

gzip ROOT
lzma ROOT

uncompressed Parquet
dict-encoded Parquet

gzip Parquet

Some packed encodings skirt the
boundary between compressed and
uncompressed. Parquet’s tightly
packed data is smaller and slower
without explicit compression than
ROOT with lz4 compression.

Haves: ROOT, ProtoBuf,
Thrift, Avro,
Parquet, HDF5, and
many others. . .

Have nots: JSON, CSV. . .

10 / 24

Performance: Robust aginst bit errors?

In large datasets, bit errors can occur. Robustness consists of three questions:

I Can a bit error be detected, for instance using a CRC?

I Can a bit error be repaired with replication in the file? (I’ve never heard of this.)

I If bad data has to be skipped, how much has to be skipped? A page or a whole file?

Since compression increases sensitivity to bit errors (can scramble an entire
compression frame), compression formats often have CRC features built in. The
question is whether the file format saves CRCs and whether readers check them.

Haves: ROOT, HDF5, Avro, Parquet, mostly through using the compressor’s
CRCs. As far as I know, these do not include robustness in object
headers, just bulk data.

Have nots: JSON, CSV. . . Hard to be sure a format with compression doesn’t use
the CRC.

11 / 24

Performance: Serialized/runtime unity?

This is new; increasingly relevant as storage class memory becomes mainstream:

Is the byte-representation of serialized data equal to the byte-representation of
runtime objects? That is, are data structures zero-copy, zero-conversion?

It allows, for instance, a memory-mapped file to be used directly as runtime data.
mmap (1 system call) is often faster than fread (many system calls) and deserializing
data can be a throughput bottleneck, depending on what you do with it afterward.

Links: SNIA SSSI, DAX direct access, PMEM development kit, MMU mapping.

Haves: This is a design goal of the Apache Arrow project, particularly for Spark,
Pandas, and R DataFrames. “Feather” is memory-mapped Arrow on
disk. Apache Drill (SQL) highlights their lack of “row materialization.”
OAMap (raw data or Arrow backend). Cap’n Proto, Google Flatbuffers.

Have nots: Most data formats, including ROOT.

Compression always spoils serialized/runtime unity. It’s not for archival data.
12 / 24

https://www.snia.org/forums/sssi
https://lwn.net/Articles/717953/
https://pmem.io/
http://scitechconnect.elsevier.com/memory-management-unit/

Accessibility: Human readable, binary, or both?

From ASDF: A new data format for astronomy (P. Greenfield, M. Droettboom, E. Bray):

[HDF5] is an entirely binary format. FITS headers are easily human-readable. Nothing like that is the
case for HDF5 files. All inspection of HDF5 files must be done through HDF5 software. With FITS,
it is quite possible to inspect the header with very primitive tools. The consequence of this for HDF5
is that the HDF5 toolset must be installed, and its software must be used if one wants to inspect the
contents of the HDF5 file in any way.

I find it fascinating that human-readability is such an important consideration in
astronomy that it’s an argument against HDF5, but HEP rarely considers it.

Human readable numbers with fewer than 4 or 8 characters may be viewed as a kind of
lossy compression, especially when combined with standard compression. . .

Binary: ROOT, BSON, and most formats mentioned in this talk

Human: JSON, CSV, YAML (basis of ASDF)

Both: FITS, ASDF, YAML (through !!binary), XML (through CDATA)

13 / 24

Accessibility: Immutable/append only/full database?

Can you add data to an existing file? It doesn’t count if you have to overwrite or
rewrite large sections of the file to “make room” for the new data.

Most file formats are intended as immutable artifacts: if you want a new version of the
data, you write a new file. In HEP, we often use data that way.

Append-only is an interesting case between immutability and full database-like access:
you can add records to the end, but not in the middle.

Closely related to the question of partial-write recovery: appendable formats can
usually be recovered up to the last good record.

Immutable: Parquet (all metadata in footer), JSON and most text formats. . .

Appendable: CSV, JSONLines (JSON \n JSON. . .), Avro, OAMap (raw data backend)

Database: ROOT (header describes seek keys; can add new keys, invalidate old ones),
HDF5, SQLite

14 / 24

Partial-write recovery?

If a writing process does not finish writing data, is the partially written data readable?

(Particularly important for DAQ systems that could crash and lose data forever.)

Haves: ROOT (with special-case handling in the reader), most rowwise
appendable formats like CSV, JSONLines, and Avro, OAMap because it
fills columns corresponding to innermost structures first

Have nots: Parquet (all metadata in footer; footer must be written), HDF5 (!!!)

15 / 24

Accessibility: Parallel readable?

Does the file format define chunks that can be understood independently of one
another? Could a writing thread spoil that independence?

Haves: The ROOT format, if treated as an immutable object, is parallel readable
at the basket level. uproot takes advantage of this, but ROOT’s Implicit
Multi-Threading (IMT) introduces synchronization points to coordinate
mutable state (protect against writing threads?).

Blosc, a meta-compression framework, decompresses data in CPU
cache-sized blocks faster than memcpy can copy uncompressed data.

HDF5 has parallel reading, as well as memory-mapped arrays in Numpy.

Have nots: Any variable-length data without seek keys: Avro, JSON. . .

Incidentally, parallel reading and writing are unsung features of memory-mapping: no
mutable state is introduced by a file pointer. Many thread-local pointers read from
different parts of the virtual address space.

16 / 24

https://github.com/scikit-hep/uproot
http://blosc.org/pages/blosc-in-depth/

Accessibility: Parallel writable?

Different from parallel reading: reading and writing are not symmetric!

Can a file format be written by independent threads? The positions of pages must be
determined before writing, before you know how large the data to save will be (because
it’s compressed). This may lead to overestimates and therefore “gaps” in the output
file, inflating its size.

Haves: Blosc, HDF5, memory-mapped arrays in Numpy. . .

Have nots: ROOT can compress baskets in parallel, but it must write them sequentially.

17 / 24

Accessibility: streamable?

Can a program make sense of data before the file is fully read and without seeking?

Some file access methods, like HTTP, have no ability to seek. For local disks,
sequential reads are much faster than random reads.

Haves: JSONLines, CSV, Avro

Have nots: ROOT (seek keys in header), Parquet (seek keys in footer)

18 / 24

Accessibility: Random accessible?

Can a program jump to a desired element of a large collection by entry number?

It doesn’t count if you have to deserialize the first N − 1 elements to find the location
of element N.

Haves: ROOT (lookup index included for variable-length data). Arrow and
OAMap (offset columns act as indexes to nested data). However, if data
are compressed, the entire basket/page/partition must be decompressed
to access a single element.

Have nots: ProtoBuf, Thrift, Avro, and any rowwise format without a lookup index.
JSON, CSV, XML and any text-based format without a lookup index.

Uncompressed Parquet is not random accessible: its tightly packed
encoding prevents this. You have to decode an entire data page to find
an element by entry number (just as you would if it were compressed).

19 / 24

Accessibility: Database-style indexing?

Random accessibility allows you to jump to a desired entry number; database-style
indexing allows you to jump to or quickly select data by value.

It still counts if the search is not constant time but O(log N) (search through a tree).
It does not count if the search is O(N).

Haves: Parquet has metadata to indicate whether the data are sorted and what
the minimum/maximum values are in a batch (“zone maps”).

Have nots: ROOT, Avro, JSON. . . formats that aren’t actually used in databases.

20 / 24

Accessibility: RPC protocol?

Some formats were designed for archival files, some for Remote Procedure Calls
(RPC), but many function as both.

An important consideration in RPC is to be able to send messages as soon as they’re
ready, which usually favors rowwise formats over columnar formats. Spark-Streaming is
criticized because Spark’s columnar data representation forces it to send data in
“micro batches” (100 events per batch, for example).

RPC: JSON, ProtoBuf, Thrift, Avro, Cap’n Proto, and MessagePack were all
designed for RPC, but work as file formats.

Archival: ROOT, HDF5, Parquet, and Google Flatbuffers were designed to be file
formats. Objects defined by ROOT streamers (rowwise) could be
messages. Google Flatbuffers was retrofitted to support messaging.

Apache Arrow was designed to be an in-memory format, shared among processes. This
is mostly for large, immutable buffers of data, but it also has a messaging format for
sending batches of columnar data using Google Flatbuffers as the “envelope.”

21 / 24

http://sqlstream.com/2015/03/5-reasons-why-spark-streamings-batch-processing-of-data-streams-is-not-stream-processing/
http://sqlstream.com/2015/03/5-reasons-why-spark-streamings-batch-processing-of-data-streams-is-not-stream-processing/
https://github.com/google/flatbuffers/issues/3898

Community: Has specification?

Most data formats have specifications, human-readable documents describing what
every byte means. This allows for independent implementations and a chance to clarify
what the code is supposed to do (to determine what “wrong” means).

FITS https://fits.gsfc.nasa.gov/standard30/fits standard30aa.pdf

ProtoBuf https://developers.google.com/protocol-buffers/docs/encoding

Thrift UNOFFICIAL: https://erikvanoosten.github.io/thrift-missing-specification

Avro http://avro.apache.org/docs/current/spec.html

Parquet http://parquet.apache.org/documentation/latest

Arrow https://arrow.apache.org/docs/memory layout.html

HDF5 https://support.hdfgroup.org/HDF5/doc/H5.format.html

ROOT some class headers like TFile and TKey, but not nearly enough info to read data

The ROOT file format has no specification, by choice (to allow for rapid change).

22 / 24

https://fits.gsfc.nasa.gov/standard30/fits_standard30aa.pdf
https://developers.google.com/protocol-buffers/docs/encoding
https://erikvanoosten.github.io/thrift-missing-specification
http://avro.apache.org/docs/current/spec.html
http://parquet.apache.org/documentation/latest
https://arrow.apache.org/docs/memory_layout.html
https://support.hdfgroup.org/HDF5/doc/H5.format.html
https://root.cern.ch/doc/master/classTFile.html
https://root.cern.ch/doc/master/classTKey.html

Community: Independent implementations?

0

5

10

15

20

25

30

35

40

1980 1985 1990 1995 2000 2005 2010 2015 2020

nu
m

be
r

of
 im

pl
e

m
en

ta
tio

n
s

inception year

FITS (38)

netCDF (27)

ROOT (7)

ProtoBuf (20)
Thrift (15)

Avro (13)

Parquet (5)

Arrow (7)

HDF4 (31)

HDF5 (26)

ASDF (2)

Contrary to a HEP attitude
against “reinventing the
wheel,” it’s common to
reimplement I/O for
popular file formats in
different contexts.

ROOT has 7: two C++
implementations, one in
each of Java, Javascript,
Go, Python, and Rust.

(Few are well-developed.)

23 / 24

Community: Size of user base?

24 / 24

Community: Size of user base?

24 / 24

Community: Size of user base?

24 / 24

Community: Size of user base?

24 / 24

Community: Size of user base?

24 / 24

Community: Size of user base?

24 / 24

