Status of Particle Flow Algorithms (PFA) **Calorimeter R&D**

Adrián Irles on behalf the CALICE Collaboration IFIC (UV/CSIC)

IAS PROGRAM

Online Program

High Energy Physics

January 14-21, 2021

Particle Flow Calorimetry R&D

Mainly organised within the

Collaboration

More than 300 physicists/engineers from ~60 institutes and 19 countries coming from the 4 regions (Africa, America, Asia and Europe)

All projects of current and future high energy colliders propose highly granular calorimeters

Jet energy resolution

$$\sigma_{Jet} = \sqrt{\sigma_{Track}^2 + \sigma_{Had.}^2 + \sigma_{elm.}^2 + \sigma_{Confusion}^2}$$

Lepton Collider goal is around dE_{jet}/E_{jet} - 3-4% (e.g. 2x better than ALEPH)

In a "typical jet" the energy is carried by

- ► Charged particles (e[±], h[±],µ[±]): 65%
 - Most precise measurement by Tracker
- **►** Photons: 25%
 - Measurement by Electromagnetic Calorimeter (ECAL)
- ► Neutral Hadrons: 10%
 - Measurement by Hadronic Calorimeter HCAL and ECAL

Particle Flow Algorithm

Choose the best information in our detector

Particle Flow Algorithms

Concept

- ▶ Base the measurement on the subsystem with best resolution for a given particle type (and energy)
- Separation of signals by charge and neutral particles in the calorimeters
- ► Single particle separation

Challenges

- Complicated topology by (hadronic) showers
- Overlap between showers compromises correct assignment of calorimeter hits
 - -> Confusion term
 - Need to minimize this term as much as possible

Requirements for PFA oriented detectors

Jet energy measurement by measurement of individual particles

Maximal exploitation of precise tracking measurement

- large radius and length
 - to separate the particles
- large magnetic field
 - To increase separation of neutral/charged particles at calorimeters
 - to suppress very large, low-momentum beam-related backgrounds"
- "no" material in front of calorimeters
 - Low material budget on the tracker + stay inside coil
- small Molière radius of calorimeters
 - to minimize shower overlap
- high granularity of calorimeters
 - to separate overlapping showers
- And fast timing calorimeters

Particle flow as privileged solution for experimental challenges

=> Highly granular calorimeters!!!

Emphasis on tracking capabilities of calorimeters

CALICE – History and steps

Physics Prototypes

2003 - 2012

- Proof of principle of PFA calorimeters
- Large scale combined beam tests
- Validation of G4 Physics lists

Technological Prototypes

2010 - ...

Engineering challenges

This talk

(LC) detector

Goal: ~10⁸ calorimeter cells to compare:

ATLAS LAr ~ 10⁵ cells

CMS HGCAL ~107 cells

Technological premises

Highly integrated (very) front end electronics

e.g. SKIROC (for SiW Ecal)

Size 7.5 mm x 8.7 mm,

64 channels

- Analogue measurement
- On-chip self-triggering
- Data buffering
- Digitisation

... all within one ASIC

Miniaturisation of r/o devices

- Small scinitllating tiles
- (Low noise) SiPMs

Power pulsed electronics

to reduce power consumption...

Compactness -> no space left for active cooling systems

Large surface detectors

Si Wafer

RPC layers

Many things that look familiar to you today were/are pioneered/driven by CALICE

A. Irles, 21st January 2021

IAS HEP2021

Technological solutions for final detector I

SiW Ecal

Semi-conductor readout Typical segmentation: 0.5x0.5 cm²

Analogue Scintillator HCAL and ECAL

Optical readout
Typical segmentation: 3x3cm²

Semi Digital HCAL

Gaseous readout
Typical segmentation: 1x1cm²

Integrated front end electronics

No drawback for precision measurements NIM A 654 (2011) 97

CALICE SIW-ECAL

CALI

- new technological prototype with tungsten absorber
 - Si pads: 5 × 5 mm² (ILD design)
 - 15 modules layers × 1024 channels/layer ≈ 15000 cells (~as CMS)
- going to test beams again in 2021 (DESY)
- ► All components designed to fit the requirements of a Lepton Collider Detector
 - Ultra compact digital readout systems
 - Same granularity as ILD

▶ Very dense PCBs aka FEV with 1024 readout channels (with digital, analogue, clock signals) in a 18x18 cm board

FEV COB

FEV13

Highly compact objects with minimal space for the components needed to assure the integrity of the signals & a proper power management

CALICE SiW-ECAL: performance at MIP level

Trigger thresholds uniform at around 1/2 MIP

MIP Detection efficiency ~100%

PFA requires small pixel size, large segmentation and pattern at low energy:

- a) Access to small signals -> Low self-trigger thresholds (with zero supression and high S/N ~10 at MIP) ✓
- b) Tracking in calorimeters -> High MIP detection efficiency 🗸

CALICE Sc-ECAL

A 32-layer prototype is under construction in China. Option for CEPC and ILC electromagnetic calorimeters.

45×5×2mm³ scintillator strips 2.45×1.9×0.85 mm³ SiPM

Test beams at DESY early 2021

Strips could be read at both ends of longer strips to increase accuracy and provide redundancy.

CALICE – Analogue HCAL

38 layers 72×72×2.5 cm³ / layer 22,000 tiles

SiPM under the tiles for better uniformity and light collection

each cell also provides time information with ~1ns resolution

a true 5D "pixel" detector: x,y,z,E,t

Semi Digital-HCAL

2 m² RPC assembled

Scalable gas distribution

- ▶ 48 layers × 26 mm, also made of glass RPC.
- 96 × 96 channels per layer, i.e.
- ~440000 1×1 cm² readout channels.
- ► Semidigital readout
 - 3 tunable energy thresholds 0.1MIP -5 MIP 15 MIP
 - thresholds coded into 2 bits → pads with few, many or lots of hits.
- Optimize hadronic shower reconstruction via choice of thresholds.
- Better linearity response, improved energy resolution.

Technological solutions for final detector II

SiW Ecal

Semi-conductor readout

Analogue Hcal and Scintillator Ecal

Optical readout

Semi-digital Hcal

- Realistic detector dimensions
 - Structures of up to 3m in length (more than 10000 cells)
 - With compact external components
- Challenge for the power pulsing techniques (for the power consumption management)

Technological solutions for final detector III

Current detector interface card - AHCAL

Current detector interface card and thin detection unit – SiW Ecal

Current detector interface card - SDHCAL

- "Dead space free" granular calorimeters put tight demands on compactness
- Current developments within CALICE meet these requirements
 - Unique successes in worldwide detector R&D
- Can be applied/adapted wherever compactness is mandatory
- Components will/did already go through scrutiny phase in beam tests

High granularity calorimeters: more than "only" PFA

- study of first hadronic interaction in the SiW-ECAL (physics prototype)
 - NIM A 937 (219) 41-52

► SDHCAL using 6 variable discriminnating BDT for Particle Identification [JINST 15 (2020) P10009]

The unprecedented granularity of the proposed calorimeters offers also unprecedented capabilities to study the development of showers

High granularity calorimeters: more than "only" PFA

Clock frequency 5 MHz, Powering pulsing

- ► Hit time resolution: Results from 2018 beam test of AHCAL with muons
 - Encouraging results (1-2 ns resolution)
 - Distinction between slow and fast components in the showers (neutral vs charged)

- ➤ **SDHCAL**: Separation of 10 GeV between neutral hadron and charged hadron [CALICE-CAN-2015-001]
 - More than 90% efficiency and purity for distances ≥ 15 cm

The unprecedented granularity of the proposed calorimeters offers also unprecedented capabilities to study the development of showers

Summary and more

- ▶ We are in a very exciting moment for the PFA calorimeters prototyping
 - High level integration (meeting the very tight technical requirements of the future colliders)
 - Discussed projects are near (or already) in the phase of building large scale (~m³) technological prototypes.
 - Proven stable operation of prototypes in beam test: common test beams campaigns to start in 2021-22
- ► Looking forward for a lepton collider soon!

Many other topics could not be covered in this talk but you may find some extra material in the back up slides

- ► CALICE R&D inspired CMS high granularity solution HGCAL. Common testbeams with the AHCAL prototype.
- ► Further spin-offs
 - ALICE FOCAL, DUNE ND, Belle II Claws
- Optimization and development of different PF algorithms (Pandora, Arbor, April, Garlic...)
- Detector performance comparisons require also high level of PF algorithm developments.
- ▶ Other technological solutions (i.e. SiW-ECAL for SiD detector)
- ► The next decade: high precision (ps) timing calorimeters?
- Original target of the CALICE calorimeters were the linear colliders but also they are directly applicable to circular colliders

Back-up slides

Spinoffs of CALICE R&D I: CMS HGCAL

Spinoffs of CALICE R&D II

FOCAL MAPS ECAL:

Ultrahigh granular calorimeter is under consideration for ALICE (and also SiD-ILC, FCC-hh...)

Numbers for FOCAL assuming $\approx 1 \text{m}^2$ detector surface

	LG	HG
pixel/pad size	≈ 1 cm²	≈ 30x30 µm²
total # pixels/pads	≈ 2.5 x 10 ⁵	≈ 2.5 x 10°
readout channels	≈ 5 x 10 ⁴	≈ 2 x 10 ⁶

- · Recent Testbeams with
- MIMOSA for HG
- Prototype with ALPIDE under construction

► TestBeam in Nov2019 & Feb2020

- 24 layers,
- 48 ALPIDE sensors,
- 24M pixels

New ALPIDE CMOS sensor based 3cm×3cm area 24 layer stack

Spinoffs of CALICE R&D III

- SiPM-on-Tile and scintillator strips as active material for DUNE Near Detector
- Similar requirements on compactness as lepton collider detectors
 - Study of adaptation of CALICE technologies ongoing
 - Including first discussions on engineering level

SiD - Si-W ECAL

Design configuration: "(20+10)", i.e.
20 thin W layers (2.5 mm)
10 thick W layers (5.0 mm) + 30 Si layers

arXiv:1306.8329 - ILC TDR 4: Detectors

Energy leakage of electromagnetic particles estimated by analyzing the patterns in total energy deposition in each layer using neural networks.

(18+6) vs (60+0) GEANT4 models, with:

- energies range: 20 300 GeV
- incidence angles $\theta = 0^{\circ} 45^{\circ}$
- azymuthal angles φ = 0° 30°

Design performance possible with 16+8 configuration:

2020.10.21

F.Corriveau (IPP/McGill) - AWLC 2020 - Particle Flow Calorimetry

Common beam tests

SiW ECAL/SDHCAL (2018)

CALICE meets CMS Common beam tests since 2017

- Common beam tests benefit from common approach within CALICE
- But also from wider networking activities such as EUDAQ2 of AIDA2020
- More common beam tests to come after CERN shutdown

FCC Week - November 2020

Some challenges at Circular Colliders

Power pulsing at LC <-> No power pulsing at Circular Colliders => Strong heat dissipation

 A water-based cooling system inside copper tubes in contact with the ASICs to absorb excess heat.

O Temperature distribution in an active layer of the SDHCAL.

Example:

CALICE SDHCAL

Water cooling: h = 10000 W/m²/k

Thermal load: 80 mW/chip

IFIC

CEPC Xtal Calo Workshop - July 2020

Dual & high granularity (and timing) calorimetry

- ➤ See Cristal Calorimetry talks from yesterday.
- Another example: ADRIANO2 calorimeter (REDTOP detector)

ADRIANO2 merges the benefits of a dual-readout and of a CALICE-type calorimeter, creating the base for a new generation of high-performance detectors.

- Active mat.1: Plastic scintillator
- ➤ Active mat.2: heavy dense glass (only sensible to charged particles via Cherenkov rad). Fast detectors!
- ► Another example: ADRIANO2 detector

The next decade: ps timing in calorimeters

Pioneered by LHC Experiments, timing detectors are/will be also under scrutiny by CALICE Groups

Under development:

GRPC with PETIROC

- < 20ps time jitter
- · Developed for CMS Muon upgrade

Inverse APD by Hamamatsu

Gain ~ 50

Theory says, need comparatively small amplification

Inverse APD as LGAD?

- Shot noise may be limiting factor
- Expect interesting comparison between inverse APD and LGAD as e.g. used by ATLAS
- Not that Members of CALICE are also members of ATLAS-HGTD

Expect interesting results on timing detectors from CALICE in coming years

R&D on materials

Position Sensitive Devices

Prototype of Crystal calorimeter

Megatiles for scintillator based calorimeters

- Tests in lab ...
- ... but also in beam tests
 - Megatiles and LG-Calo in 2019

CEPC Xtal Calo Workshop - July 2020

Pandora PFA

M. Thomson, J.B. Marshall Cambridge LC Group

A PFA is a set of algorithms for pattern recognition and particle reconstruction.

arXiv:1308.4537

However, there might be *confusion* in particle reconstruction, such as:

Hence constraints on both calorimeters and software.

F.Corriveau (IPP/McGill) - AWLC 2020 - Particle Flow Calorimetry

15

2020.10.21

Pandora PFA - Approach

"Implement a large number of 'decoupled' pattern-recognition algorithms, each of which looks to reconstruct specific particle topologies, whilst carefully avoiding causing confusion"

Pandora PFA - Performance

ILC: Tested with ILD-model Monte-Carlo $Z' \rightarrow jj$ events produced at rest at 4 energies

100-250 GeV jets:

resolution ~constant (barrel)

arXiv:1308.4537

limited by intrinsic term

high energy jets:

limited by confusion term

PFA robust wrt shower parameters

CLIC (higher energies and larger backgrounds): e.g. W vs Z separation (p_T , PID)

2020.10.21

e+e-→WW→uvaa $e^+e^- \rightarrow ZZ \rightarrow vvqq$ W/Z energies: 125-1000 GeV overlaid γγ→hadrons background (BX=beam crossing)

2σ separation without background ~1.75 with 60BX background

> CLIC Workshop 2013 17

F.Corriveau (IPP/McGill) -

AWLC 2020

Particle Flow Calorimetry

Arbor PFA

Shower development topology in an imaging calorimeter reminds of a tree structure.

Step 1: initial hit cleaning if necessary (e.g. noise) close pairs of hits are connected a connector is the outgoing vector between them

Step 2: a reference direction calculated from a hit position and the directions of its outgoing connectors the most likely incoming connector is kept → tree structure this structure can be iterated. Tree means no loop.

Step 3: some hits are seeds (no ingoing connector) or leafs (no outgoing connector) tracing from leaf to seed \rightarrow branches \rightarrow tree ideal case, a tree = a particle shower intuitive, effective is separating nearby showers

The algorithm is next applied to jets

Reconstructed energy for e.g. Higgs decay events

Jet energy resolution comparable to Pandora's

arXiv:1403.4784

200 — Arbor — Pandora

0 50 100 150 200

M_{WW}(GeV/c²)

2020.10.21

F.Corriveau (IPP/McGill) - AWLC 2020 - Particle Flow Calorimetry

APRIL: Algorithm for Particle Reconstruction at ILC from Lyon

APRIL ≈ Arbor PFA with modified cluster merging for SDHCAL

(Pandora PFA assumes linear responses as in AHCAL case)

SDHCAL energy reconstruction: $E_{reco} = \alpha_1 N_1 + \alpha_2 N_2 + \alpha_3 N_3$ where N_i are the number of hits for each threshold

CHEF 2019

F.Corriveau (IPP/McGill) - AWLC 2020 - Particle Flow Calorimetry

25

2020.10.21

APRIL

Tracks:

- 1) clustering done by Arbor with parameters set to avoid big clusters
- 2) remaining hits merged by efficient Nearest Neighbour clustering (mlpack)
- 3) keep only one backward connection per hit (minimal angles × distance)

Clusters:

- 1) cluster merging similar to above hit clustering
- 2) function of cluster orientations and distances
- 3) (work in progress, e.g. splitting/reclustering)

Results:

jet energy resolution in barrel at M_Z

APRIL: $4.2\% \rightarrow \text{competitive with Pandora (<60 GeV)}$

Pandora: 4.1%

"ideal PFA": 3.3%

CHEF 2019

2020.10.21

F.Corriveau (IPP/McGill) - AWLC 2020 - Particle Flow Calorimetry

Power pulsing

N.B. Final numbers may vary

- Electronics switched on during > ~1ms of ILC bunch train and data acquisition
- Bias currents shut down between bunch trains
 Mastering of technology is essential for operation of ILC detectors

