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Armis Labs

Armis Labs revealed a new attack vector endangering major mobile, desktop, and IoT operating
systems, including Android, iOS, Windows, and Linux, and the devices using them. The new
vector is dubbed “BlueBorne”, as it spreads via the air and attacks devices via Bluetooth.
BlueBorne allows attackers to take control of devices, access corporate data and networks,
penetrate secure “air-gapped” networks, and spread malware to other devices. The attack does
not require the targeted device to be set on discoverable mode or to be paired to the attacker’s
device. In addition, the targeted user is not required to authorize or authenticate the connection
to the attacker’s device.

Armis Labs has identified eight vulnerabilities which can be used as part of the attack vector so
far. These vulnerabilities are fully operational, and were successfully turned into exploits, as we
will demonstrate in future blog posts. These are the vulnerabilities:

Linux kernel RCE vulnerability - CVE-2017-1000251

Linux Bluetooth stack (BlueZ) information Leak vulnerability - CVE-2017-1000250
Android information Leak vulnerability - CVE-2017-0785

Android RCE vulnerability #1- CVE-2017-0781

Android RCE vulnerability #2 - CVE-2017-0782

The Bluetooth Pineapple in Android - Logical Flaw CVE-2017-0783

The Bluetooth Pineapple in Windows - Logical Flaw CVE-2017-8628

Apple Low Energy Audio Protocol RCE vulnerability - CVE-2017-14315

®NO oA WN S

This research paper explores the attack surface around each of the vulnerabilities, explaining the
areas in Bluetooth’s implementations in which they were found. In addition, it provides a detailed
explanation of the internal workings and an impact analysis of each vulnerability. We hope our
research will encourage and help others to audit other Bluetooth stacks, and reveal additional
weak spots in the major implementations of Bluetooth stacks.
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Introduction to Bluetooth

Bluetooth is the leading and most widespread protocol for short-range communications.
According to estimates, more than 8.2 billion Bluetooth devices are currently in use, and the
number grows by the day. Bluetooth is implemented in a very wide range of devices, from the
most popular consumer products (Smartphones, Wearables), to the most common appliances in
enterprises (PCs, Smart TVs, Printers), and even in the critical infrastructure of our lives - medical
appliances, cars, and many more. Bluetooth is managed, licensed and maintained by the
Bluetooth Special Interests Group (SIG), which includes members from several large technology
companies such as Microsoft, Intel, Apple, IBM, and more.

Though it was first introduced to the world in 1998, Bluetooth continues to develop with BLE and
Mesh topology as the most interesting examples. BLE (Bluetooth Low Energy) is the cool new
variant of Bluetooth, and is rapidly gaining ground in the market as it allows a new generation of
devices, such as “smart” sensors and remote controls, which have limited power supply and
bandwidth to connect to existing Bluetooth devices such as smartphones and PCs. Aside from
BLE, a new feature was introduced in Bluetooth 5.0 - Bluetooth Mesh. This new feature changes
the topology of Bluetooth connections by allowing low level devices to interconnect and form
larger networks with a more elaborate and dense structure. The linked nature of the Mesh
topology enables a Bluetooth network to spread far and wide and allow devices on the far ends
of it to communicate. This new feature is an attempt by the Bluetooth SIG to compete with other
rising short-range wireless protocols (like Zigbee, Z-Wave, LoRa and others) in handling the ever
expanding realm of smart lIoT devices and its unique requirements.

The recent developments in Bluetooth, together with its long history, are what make this protocol
the backbone of short range connectivity in the vast majority of devices in the market. The
growing reliance on wireless connectivity throughout our lives is likely to turn this protocol into an
even bigger part of them, and of the devices we use.

So, what seems to be the problem?

Bluetooth is complicated. Too complicated. Too many specific applications are defined in the
stack layer, with endless replication of facilities and features. These over-complications are a
direct result of the immense work, and over-engineering that was put into creating the Bluetooth
specification. Just to illustrate this point: while the WiFi specification (802.11) is only 450 pages
long, the Bluetooth specification reaches 2822 pages.

Bluetooth’s complexity kept researchers from auditing its implementations at the same level of
scrutiny that other highly exposed protocols, and outwards-facing interfaces have been treated
with. The result of the lack of review is a large number of vulnerabilities, such as those which we
are disclosing here. The complications in the specifications translate into multiple pitfall junctions
in the various implementations of the Bluetooth standard.
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An example of the unnecessary complexity of Bluetooth is fragmentation, a common concept in
many protocols, and a soft spot in every implementation. The Bluetooth specification has no less

than 4 different fragmentation layers implemented throughout the stack, as illustrated in this

diagram taken from the specification:
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Bluetooth Core Specification v5.0, Vol 3, Part A, Section 7.3.3, Page 1831

Aside from the fragmentation layer that only exists inside the the host machine (The USB Driver
layer), from the radio layer (Link Controller) to the L2CAP layer Bluetooth has a total of 3
fragmentation layers (and additional fragmentation layers exist in some of Bluetooth’s services as

well):
e Air packets fragmentation in the Link Controller;
e HCl layer fragmentation (ACL level continuation);
e | 2CAP segmentation.

The absurdity goes even further, as in some Bluetooth's services, a fragmentation mechanism
can be spotted in every one of Bluetooth's layers along the way. Such is the case of SDP - a

o
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packet will be fragmented by the SDP continuation mechanism, and then by L2CAP's
segmentation mechanism, and then again by ACL continuation, and one last time by the
fragmentation mechanism done the Link Controller.

Past research of Bluetooth

Previous works focused on finding potential issues in the Bluetooth specification itself, showing
the weakness of the encryption key exchange procedures in Bluetooth versions up to v2.1. Once
Bluetooth introduced the “Secure Simple Pairing” - a feature that fixed many of the known pairing
issues in the specification, the focus of the security community shifted away from Bluetooth. In
more recent years, Bluetooth Low Energy emerged, causing renewed interest of the community
in Bluetooth as a whole. That said, a thorough inspection of the various implementations of the
Bluetooth stacks hasn’t been performed.

This work is an initial step in revealing the potential flaws in Bluetooth stacks. However, as the
Bluetooth stack is such an immense piece of code, the work we are presenting might be only the
tip of the iceberg.

Demystifying Discoverability

Bluetooth is turned on by default on many devices, and most users prefer to leave it on since it is
a convenient way of connecting headphones, keyboards, and other various loT devices over the
same familiar interface of the OS. Different types of Bluetooth connections exist, one of which is
pairing between them.

In most OSs, when the user is actively trying to pair to a device, his machine is discoverable over
Bluetooth by nearby peers. In any other case, discoverability is disabled. However, a Bluetooth
enabled device is almost always listening for unicast traffic targeted to it, even when it is not set
on discoverable mode (this is called “Page scan mode”). For this reason, to establish a
connection the initiating party only needs to know the BDADDR (Bluetooth device address, MAC
address) of the target device. Once an attacker acquires it, and is in physical proximity of the
device (RF range) he or she can reach the surprisingly wide attack surface of its listening
Bluetooth services.

Discovering BDADDRs of non-discoverable devices is considered difficult by some, including the
specification itself which describes it as one of the "Four different entities are used for
maintaining security at the link layer" (Bluetooth Specification Core v5.0, page 1649). The
assumed difficulty arises due to the complexity of the Bluetooth protocol at the lower layers and
the assumed lack of hardware capable to do so by “sniffing” the air. However, it is very easy to
discover the BDADDRSs, even of non-discoverable devices.

Open source hardware like the Ubertooth has been available for a number of years. This tool
allows researchers to sniff and monitor the protocol in the physical and link layers (by sniffing the
air for Bluetooth packets). Since the “Monitor Mode” of Bluetooth is very limited in tools widely
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accessible for researchers, the introduction of Ubertooth reduced the barrier of entry for many
(ourselves included).

Even though Bluetooth connections are encrypted, the packet headers (which are plaintext)
contain enough information from which the BDADDRs of communicating devices can be derived.
If a machine generates any Bluetooth traffic, an attacker in physical proximity can derive its
BDADDR and use it to send unicast traffic to the device.

LSB 68/72 54 0-2745 MSB
ACCESS
CODE HEADER PAYLOAD

Figure 6.1: General Basic Rate packet format.
Structure of a Bluetooth classic packet in the air. The “Access Code” contains the 24-bit LAP part of a BDADDR

If the device generates no Bluetooth traffic, and is only listening, it is still possible to “guess” the
BDADDR, by sniffing its WiFi traffic. This is viable since WiFi MAC addresses appear unencrypted
over the air and due to the widely accepted norm of OEMs and hardware manufacturers that the
MAC:s of internal Bluetooth/WiFi adapters are either the same, or only differ in the last digit (one
being +1 of the other).

Attack Surface Analysis

Having established the relative simplicity of obtaining the Bluetooth address of a device, we can
now dive into the wide attack surface that exists in every Bluetooth stack, throughout the
protocol’s layers. We will review the Bluetooth layers, from L2CAP, to SMP, to SDP, and then to
the higher layers we’ve examined: BNEP, and PAN. In each layer we will describe our findings
and explain the vulnerabilities we’ve disclosed.
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Basic blocks in the Bluetooth stack, indicating the location of various vulnerabilities

Widespread Bluetooth Stacks

In some sense, a Bluetooth stack is the equivalent of TCP/IP stack, only for Bluetooth
communications. Unlike other low level communication protocols such as Ethernet, WiFi, and
6LoWPAN, Bluetooth does not rely on TCP/IP stack for all the high level applications protocols.
Instead, a wide range of protocols and applications were defined by the Bluetooth SIG, and are
referred to collectively as the Bluetooth Stack.
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Image X - The Bluetooth stack architecture

The Bluetooth stack constitutes a full alternative to the classic 7 layer stack of TCP/IP - starting at
the physical layer, and spanning up to the application layer. The lower layers of the stack - the
physical and link layers - are implemented in Bluetooth chips. These chips communicate with a
“Host”, which is the actual operating system of the device, through Bluetooth’s HCI
(Host-Controller interface) protocol. All protocols above this layer (such as L2ZCAP, AMP, SMP,
SDP, and RFCOMM) are implemented on the host’s side. Each modern operating systems has
only one Bluetooth stack, unlike drivers of network adapters which have different versions for
each hardware piece. This means that any vulnerability found in one of these stacks automatically
affects all devices running that specific OS, endangering numerous devices in the market.

The first significant stack is Linux’s BlueZ stack, which was used by early Android versions, and is
still in use by Linux and other OSs derived from it, such as Samsung’s Tizen OS. Later on, Android
developed its own stack, called Bluedroid or Fluoride, used in all Android devices from version
4.2 onwards. Windows has its own Bluetooth stack, since Windows XP, and Apple created two
variations of the Bluetooth stack, one for iOS, and the other for OSX.

L2CAP

Overview

On the host side, the lowest layer in the Bluetooth stack is L2ZCAP. This layer is responsible for
managing connections to the various Bluetooth services. The underlying transport of L2ZCAP is
ACL - Asynchronous Connection-Oriented Logical transport. ACL is simply the packet-oriented,
unreliable transport layer over which almost all Bluetooth data is transmitted. L2ZCAP manages
connection-oriented channels over ACL, which are logical end-to-end transports identified by
Channel IDs in the packet’s body. The role of those Channel IDs can be compared to the port
used in TCP (or UDP) applications, and in general L2CAP can be seen as Bluetooth’s equivalent
of TCP, as it also implements QoS and flow-control features. L2CAP also implements (yet another)
fragmentation and reassembly mechanisms - and thus enables transport of large SDUs (Service
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Data Units - L2CAP lingo for “large packets” - used by the various services over L2CAP).

The Bluetooth specification reserves specific CIDs (Channel IDs) for fixed purposes - as an
example, CID 1 will always refer to the signaling channel in which control packets are passed (and
through them - new connections can be established). Other CIDs are managed and allocated
dynamically. The various services over Bluetooth often have fixed PSMs (Protocol/Service
Multiplexer - another L2CAP term meaning port number), and an endpoint wishing to connect to
these services would send an L2CAP ConnectionRequest message to that specific PSM. In
response to this message a dynamic CID would be allocated to identify the connection to that
specific service.

When creating a new L2CAP connection, the two endpoints attempt to coordinate an agreed
upon configuration by passing packets called configuration requests and configuration responses
back and forth. A configuration request contains several elements which determine the exact
type of connection features which will be used.

Mutual configuration

The configuration process takes place using configuration requests and responses, referred to in
the specification as L2CAP_ConfReq and L2CAP_ConfResp messages. These messages are
passed on the signaling channel, with both endpoints dispatching configuration requests to one
another as part of the initial handshake, and replying with configuration responses. The
configuration response contains a status code which informs the initiator whether his
configuration was accepted or rejected. Each endpoint negotiates its own configuration, meaning
the configuration parameters of both endpoints need to be agreed upon.

Figure A.1 illustrates the basic configuration process. In this example, the
devices exchange MTU information. All other values are assumed to be
default.

Device A Device B
L2CA L2CA
LP LP
L2CA_ConfigReq —

Option=0x01 [

[MTU=0x00000100] m\—*\ L2CA_Configind
L2CA_ConfigRs
/// Resu\t:Succe?s g
L2CA_ConfigCfim «— | | L2CAP_ConfigRsp
L2CA_ConfigReq
// Option=0x01
L2CA Configind «— % | L2caP configReq IMTU=0x00000200]

L2CA_ConfigRsp —

Result=Success I

\—\
L2CAP_ConfigRsp ™I~ | 2CA_ConfigCfn

TIME

Figure A.1: Basic MTU exchange
Excerpt from Bluetooth Spec, page 1902
In the example above , Device A requests a Maximum Transmission Unit (MTU) of Ox100, which
Device B accepts, followed by a request from Device B for an MTU of 0x200, which Device A
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accepts as well. Two MTU parameters were agreed upon in this transaction - the maximum
message size of outgoing messages from Device A to Device B is 0x100, and the the maximum
message size of outgoing messages from Device B to Device A is 0x200.

While the above example is a simple exchange of parameters, a device might also choose to
reject an offered configuration request due to “unacceptable parameters”. To ease
re-negotiation, its configuration response may contain an alternative, acceptable value for the
parameter it wishes to change. For example, in the following code-snippet (from BlueZ, the Linux
Bluetooth stack), the requested MTU value is checked against a minimum value (chan->omtu is
initiated to a default when the connection is established):

if (mtu < L2CAP_DEFAULT_MIN_MTU)
result = L2CAP_CONF_UNACCEPT;
else {
chan->omtu = mtu;
set_bit(CONF_MTU_DONE, &chan->conf_state);
}
12cap_add_conf_opt(&ptr, L2CAP_CONF_MTU, 2, chan->omtu);

Excerpt from net/bluetooth/I2cap_core.c

If the requested MTU value is valid, it is committed to the current connection settings and the
MTU configuration state is marked as "done" in the channel object, otherwise, the reply value is
set to UNACCEPT and the value is discarded. In either case, an MTU element is added to the
configuration response, reflecting a valid setting to the other side in case the configuration is
rejected.

The above procedure is called “The standard configuration process” of L2ZCAP connections. In
this configuration process the endpoints will respond to a configuration request with a response
that either accepts or rejects the offered configuration. If a configuration was rejected, the
endpoints will continue to negotiate until they reach an agreed upon configuration.

However another type of configuration process exists - the lockstep configuration process. This
process is required to facilitate the Extended Flow Specification (EFS) feature of L2ZCAP, which
allows devices to establish a more comprehensive connection. The EFS feature parameters will
need to be validated with each of the endpoints local Bluetooth controller, and so the endpoints
response to a configuration request may be “Pending”. Once both EFS parameters have been
exchanged between the endpoints, and the validation of EFS is achieved, a final response will be
returned by each of the endpoints.

BLUEBORNE TECHNICAL WHITE PAPER 2023 ARMIS, INC 11
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Linux kernel RCE vulnerability - CVE-2017-1000251

BlueZ vulnerability - configuration response parsing

The vulnerability lies in BlueZ’s implementation of L2ZCAP’s EFS feature, in 12cap_parse_conf_rsp,
which was introduced in kernel version v3.3-rc1, and thus affects all version from there on.
I2cap_parse_conf_rsp can be seen here in abbreviated form:

static int 1l2cap_parse_conf_rsp(struct 1l2cap_chan *chan, void *fsp, int len,
void *data, ul16 *result)

{
struct 1l2cap_conf_req *req = data;
void *pEF = req->data;
/...
while (len >= L2CAP_CONF_OPT_SIZE) {
len -= 12cap_get_conf_opt(&rsp, &type, &olen, &val);
switch (type) {
case L2CAP_CONF_MTU:
// Validate MTU...
120ap_add_conf_opt(&-, L2CAP_CONF_MTU, 2, chan->imtu);
break;
case L2CAP_CONF_FLUSH_TO:
chan->flush_to = val;
12cap_add_conf_opt (&pEH, L2CAP_CONF_FLUSH_TO,
2, chan->flush_to);
break;
//
}
}
//
return ptr - data;
}

Excerpt from [2cap_parse_conf_rsp (net/bluetooth/I2cap_core.c)

This function receives a configuration response buffer in the rsp argument, and its length in the
len argument. It extracts elements from the buffer one by one using the I12cap_get_conf_opt
function, until the len argument runs out. Each element it unpacks from the configuration
response is validated and then packed back onto a response buffer, which is pointed to by the
data argument.

However, the size of this response buffer is not passed into the function.

Essentially, all elements in the rsp would be copied onto the data buffer via &. (offset to
I2cap_conf_req.data) regardless of the target’s buffer size.

Note that the size of the incoming response is not limited - elements can be duplicated, which
allows an attacker to control the size of the rsp buffer, and as a result the amount of data copied
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onto data. The origin of the data buffer - [2cap_parse_conf_rsp is called from two locations, both
in a function called |2cap_config_rsp, which, as its name implies, handles configuration response
messages. Both invocations are similar, so both can be used to exploit this vulnerability

switch (result) {
case L2CAP_CONF_SUCCESS:

break;
case L2CAP_CONF_PENDING:
set_bit(CONF_REM_CONF_PEND, &chan->conf_state);
if (test_bit(CONF_LOC_CONF_PEND, &chan->conf_state)) {
char buf[64];

len = 12cap_parse_conf_rsp(chan, [rsp >data, 1len,
buf, &result);

goto done;
Excerpt from I2cap_config_rsp (net/bluetooth/I2cap_core.c)
The switch examines the result value, which was previously unpacked from the configuration
response packet, and can thus be controlled by an attacker. The response buffer is a small stack
buffer, named buf, declared in the scope of the if statement which leads to the call.

The configuration for the current channel is then tested for the “Pending” state (as described
above in the lockstep configuration process). So to access this flow, an attacker needs his target
to be in the “Pending” state, which he can do by triggering the following code path:

if (remote_efs) {
if (chan->local_stype != L2CAP_SERV_NOTRAFIC &&
efs.stype != L2CAP_SERV_NOTRAFIC &&
efs.stype != chan->local_stype) {
// We don’t want this branch, easy to avoid
} else {
/* Send PENDING Conf Rsp */
result = L2CAP_CONF_PENDING;
set_bit(CONF_LOC_CONF_PEND, &chan->conf_state);

Excerpt from /2cap_parse_conf_req (net/bluetooth/I2cap_core.c)

This action is simple - an attacker only needs to send a configuration request with an EFS
element, setting the stype field to L2CAP_SERV_NOTRAFIC.

BLUEBORNE TECHNICAL W
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After the “Pending” state is achieved, the next configuration response sent with the result field
set to L2CAP_CONF_PENDING will trigger the vulnerability, leading buf[64] to be overwritten with
an arbitrarily sized buffer.

This vulnerability allows an attacker to overflow a 64 byte buffer on the kernel stack by an
unlimited amount of data, so long as it conforms to the structure of a valid L2ZCAP configuration

response.

1 0.000000 localhost () remote () L2CAP Sent Information Request (Extended Features Mask
2 0.008413 remote () localhost () L2CAP Revd Information Request (Extended Features Mask
3 0.009816 localhost () remote () L2CAP Sent Information Response (Extended Features Mask, Success)
4 0.011136 remote () localhost () L2CAP Revd Information Response (Extended Features Mask, Success)
5 0.014622 remote () localhost () L2CAP Revd Information Request (Fixed Channels Supported)
6 0.015161 localhost () remote () L2CAP Sent Information Request (Fixed Channels Supported)
7 0.021135 localhost () remote () L2CAP Sent Information Response (Fixed Channels Supported, Success)
8 0.022179 remote () localhost () L2CAP Revd Information Response (Fixed Channels Supported, Success)
9 0.026212 localhost () remote () L2CAP Sent Connection Request (SDP, SCID: 0x0040)
10 0.052361 remote () localhost () L2CAP Rcvd Connection Response - Success (SCID: 0x0040, DCID: 0x0040)
11 0.053369 remote () localhost () L2CAP Revd Configure Request (DCID: 0x0040)
12 0.055024 localhost () remote () L2CAP Sent Configure Request (DCID: @x0040)
13 0.059948 L2CAP Sent Configure Response - Pending (SCID: @x0@4@) [Malformed Packet]
14 0.060875 remote () localhost () L2CAP Revd Configure Response - Pending (SCID: 0x0040)

» Frame 13: 959 bytes on wire (7672 bits), 959 bytes captured (7672 bits) on interface @

Bluetooth

» Bluetooth HCI H4

» Bluetooth HCI ACL Packet

» Bluetooth L2CAP Protocol

>

Capture of the attack process - note the malformed “Pending” configuration response

Exploitability

Today, a stack overflow like the vulnerability described above doesn’t automatically translate into
code execution. Modern Operating Systems have mitigation techniques specifically to prevent
memory corruption vulnerabilities resulting in code execution. Despite this, the Linux Kernel is
lagging behind in implementing some modern mitigations in its default configuration. Both stack
canaries - which protect against stack overflows, and KASLR (kernel address space layout
randomization) are lacking in most devices running Linux today. This makes the stack overflow
presented above easy to exploit - as we demonstrate in the demo video.

It should be mentioned that testing and triggering this vulnerability was not an easy task, and
required direct use of the ACL layer to send malformed L2CAP packets. Since no Bluetooth
stack provides this to the user a minimal stack implementing the HCI, ACL and L2CAP layers had
to be created. The high barrier of entry for testing highly exposed kernel code paths is also
detrimental to security. We will be releasing the testing framework we developed, alongside an
exploit code of this specific vulnerability in a future blog post. This testing framework could assist
researchers in further exploration and pentesting of Bluetooth stacks.

Watch a video of the Linux exploit here.

Impact

In BlueZ'’s case, L2CAP is included as part of the core Linux kernel code. This is a rather
dangerous choice. Combining a fully exposed communication protocol, arcane features like EFS
and a kernel space implementation is a recipe for trouble. This vulnerability is a classic stack
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overflow occurring in the context of a kernel thread. This provides an attacker with a full and
reliable kernel-level exploit for any Bluetooth enabled device running Linux, requiring no
additional steps. Moreover, each compromised host can be used to launch secondary attacks,
making this vulnerability wormable.

SDP

Overview

SDP (Service Discovery Protocol) is a core layer in Bluetooth, that is a part of every stack. Its
purpose is to allow devices to discover the various services and applications that a Bluetooth
device supports. In addition, SDP is responsible to translate the fixed UUIDs (Universal Unique
Identifiers) of the Bluetooth services, to PSMs (Protocol Service Multiplexer - Bluetooth’s
equivalent of a L2ZCAP port number) that can be a dynamically selected number. The retrieved
PSM is then used to create an L2CAP connection to the discovered service.

To discover services, an SDP client sends an SDP request, and an appropriate response is
returned. SDP defines yet another fragmentation mechanism for the SDP responses returned by
an SDP server, called “SDP Continuation”.

The SDP continuation works differently than normal fragmentation:

1. First an SDP client will send an SDP request;

2. If aresponse to this request exceeds the MTU of the established L2CAP connection, a
fragment of the response will be returned, and a “continuation state” structure will be
prepended to the SDP response.

3. To receive the remaining fragments, the SDP client will send the same request again,
appending to it the “continuation state” he received in the last response (this type of
request is called a continuation request).

4. The SDP server would then return the next fragment of the response.

5. This flow would be repeated until all fragments are delivered.

It is unclear why Bluetooth required another fragmentation layer, as two additional fragmentation
layers are defined below SDP - implemented in L2CAP (that calls it “segmentation”), and in the
ACL layer. Moreover, the specification leaves one important detail in the SDP continuation
mechanism up to the implementers - the specific structure of the continuation state. The
specification describes this driely:

“The format of the continuation information is not standardized among SDP servers. Each
continuation state parameter is meaningful only to the SDP server that generated it.”

Bluetooth Specification v5.0, Vol 3, Part B, page 1926

This decision in the specification of SDP is quite odd since the returned continuation state is not
used by the SDP client directly, and its purpose is to be used internally by the server, upon
processing of continuation requests. This can lead to the abuse of the continuation state, since
the client is left to return it unchanged on each continuation request. Two similar abuses of this
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nature led to two information leak vulnerabilities discovered in the Bluetooth stacks of both Linux
and Android

Linux Bluetooth stack (BlueZ) information Leak vulnerability - CVE-2017-1000250

This vulnerability is a direct result of the scenario described above - and is a very common
mistake in implementations of fragmentation mechanisms. Since the SDP continuation struct is
defined by the implementation, BlueZ decided to define this structure as its continuation state:

typedef struct {
uint32_t timestamp;
union {
uint16_t maxBytesSent;
uint16_t lastIndexSent;
} cStateValue;
} sdp_cont_state_t;

SDP Continuation Struct, as defined in BlueZ (src/sdpd-request.c)

This structure is comprised of a timestamp, which conveniently leaks the machine’s timestamp,
and an index representing the total number of bytes that were sent so far.

Since an attacker can control the continuation state sent on each request, he can change the
index in the continuation struct, and cause the SDP server to return an out of bounds read from
the response buffer:

} else {
/* continuation State exists -> get from cache */
sdp_buf_t *pCache = sdp_get_cached_rsp(cstate);
if (pCache) {
uint16_t sent = MIN(max, pCache->data_size -
cstate->cStateValue.maxBytesSent);
pResponse = pCache->data;
memcpy (buf->data,
pResponse + cstate->cStateValue.maxBytesSent,
sent) ;
buf->data_size += sent;
cstate->cStateValue.maxBytesSent += sent;
if (cstate->cStateValue.maxBytesSent == pCache->data_size)
cstate_size = sdp_set_cstate_pdu(buf, NULL);
else
cstate_size = sdp_set_cstate_pdu(buf, cstate);
} else {
status = SDP_INVALID_CSTATE;
SDPDBG( "Non-null continuation state, but null cache buffer");

Excerpt from SDP Search Attribute Request handler - service_search_attr_req (src/sdpd-request.c)
This code from the Search Attribute Request handler of BlueZ SDP Server fails to validate
maxBytesSent in cstate (the continuation state), and allows the above memcpy to copy data
beyond the allocated size of pResponse. The only thing an attacker needs to do to achieve this
information leak, is to avoid the if that validates all data has been sent (maxBytesSent ==
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data_size) - and this can be easily done since he controls maxBytesSent. Since pResponse is
allocated in the heap this information leak can lead to disclosure of highly sensitive data.

BlueZ is comprised of two parts - one running in the kernel (as has been seen in the L2ZCAP
vulnerability), and the other in the userspace. The bluetoothd process contains all of BlueZ’s user
parts (essentially all layers of the stack above L2CAP). This process holds critical data that can be
leaked using this vulnerability, such as encryption keys used in Bluetooth communications,
enabling an attack that very much resembles heartbleed.

Android information Leak vulnerability - CVE-2017-0785
Android’s SDP server defines a similar continuation state structure:

typedef struct {
uint16_t cont_offset;
} sdp_cont_state_t;

SDP Continuation Struct used in Android’s Bluetooth stack

In this case, only a continuation offset (that has similar meaning to the index used in BlueZ) is sent
in the continuation struct. Although the code of Android’s SDP server search request handler
does perform some validations on cont_offset, an information leak is still achievable. In the
following excerpt, num_rsp_handles will hold the total number of handles (that are the sdp
records) of the SDP response:

/* Check if this is a continuation request */
if (*p_req) {

if (cont_offset != p_ccb->cont_offset) {
sdpu_build_n_send_error(p_ccb, trans_num, SDP_INVALID_CONT_STATE,
SDP_TEXT_BAD_CONT_INX) ;
return;

}

rem_handles =
num_rsp_handles - cont_offset; /* extract the remaining handles */
...
/* Calculate how many handles will fit in one PDU */
cur_handles =
(uint16_t) ((p_ccb->rem_mtu_size - SDP_MAX_SERVICE_RSPHDR_LEN) / 4);

if (rem_handles <= cur_handles)
cur_handles = rem_handles;
else /* Continuation is set */

{

p_ccb->cont_offset += cur_handles;
is_cont = true;

}

'%or (xx = cont_offset; xx < cont_offset + cur_handles; xx++)
UINT32_TO_BE_STREAM(p_rsp, rsp_handles|[xx]);

Excerpt from SDP Search Request handler - process_service_search (stack/sdp/sdp_server.c)
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The code holds a copy of the cont_offset in its connection object (p_cch), and validates that the
received cont_offset is equal to the current state of the connection. So a simple abuse of
cont_offset is not achievable (as done in BlueZ). However, since each continuation request is
essentially a new request which only has a continuation state appended to it, the code can be led
to a state confusion by changing the parameters of the request between two consecutive
requests.

The num_rsp_handles is calculated each time a request is received, based on the total size of
the specific response. The response’s size may vary based on the requested service search that
is being performed, and unlike cont_offset, num_rsp_handles is not saved in the connection
object and validated to remain the same throughout the reading of the response fragments. As a
result of this state confusion, an underflow of rem_handles can be achieved:

rem_handles = num_rsp_handles - cont_offset;

The code assumes that num_rsp_handles, and cont_offset both refer to the same response that
is being sent in fragments. Due to the induced state confusion, and since rem_handles is
uint16_t, the code will now assume a very large response is needed (up to 64KB) - and the
for-loop that follows will copy out of bounds bytes from rsp_handles to an outgoing response
packet.

To sum up, this info leak can be triggered by an attacker in this flow:

1. A search request is performed to some service.

2. Due to this request, a response is returned with a continuation state. The size of this
response will be defined by the MTU of the connection, as seen in the code excerpt
above, so an attacker holds some control over the fragments’ size as well.

3. A second request is performed to a different service, and the continuation state from the
previous response will be prepended to this request. This second search request will be
of a service that will return a smaller response size than the previous response - and this
will lead to the described state confusion.

4. A validation of cont_offset will be attempted, but it will pass successfully (since the same
cont_offset was appended to the second request).

5. Due to fact num_rsp_handles in this second request is smaller than the one in the first
request, an underflow of rem_handles will be achieved.

6. The code will now assume a very large response is needed - and the for-loop that follows
would copy bytes from rsp_handles to an outgoing response packet.

7. From this point on, an attacker can repeat sending the same request, and prepend the
returned cont_offset - continuing to read more and more out of bound bytes from
rsp_handles.

Similar to the information leak vulnerability in BlueZ, this vulnerability can lead to the disclosure of
a large part of the memory - in this instance from the process stack. This data can potentially
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include encryption keys, address space and valuable pointers (of code, or data), that can be used
to bypass ASLR while exploiting a separate memory corruption vulnerability.

Conclusion

Fragmentation is always a soft spot in implementations of protocols. However the faulty design of
SDP’s fragmentation mechanism makes it a terribly hard mechanism to implement without bugs.
Even when specific validations are put in place (as in Android’s implementation) - eliminating all
bugs that can be a result of convoluted state confusions is almost an impossible mission.

SMP

Overview

SMP (Security Management Protocol) enables the various security mechanisms of Bluetooth -
authentication, authorization, and bonding (also known as “pairing”).

SMP is responsible for the process of pairing two devices, and for the authentication mechanisms
used when paired devices are connecting to each other. Bluetooth’s security mechanisms have
evolved a great deal since it’s initial versions - and SMP specifically has gone through a lot of
changes. Most of the security flaws in Bluetooth were found in this layer of the protocol, mainly in
the PIN code exchange mechanism which existed until version 2.1. This version introduced a new
authentication mechanism called SSP (Secure Simple Pairing). SSP was almost a complete
do-over of SMP’s security mechanisms. One of the confusing alterations of SSP was changing the
term “Pairing”. Prior to SSP “Pairing” referred to the exchange and storage of long term keys
between devices to create a long term bond between them. Since SSP was introduced, “Pairing”
was split in two: “pairing” refers to key exchange, and “bonding” to storage of keys. This resulted
in a new type of pairing - short term pairing which exists only during a single Bluetooth
connection, without bonding.

The substantial change introduced in SSP was new key exchange mechanisms. Early versions of
Bluetooth used a rather naive mechanism: An exchange of a PIN codes (that could unfortunately
be derived if captured over the air). Devices that lacked an interface to insert a PIN code just
opted for a default PIN code that was hard coded into the device. SSP uses modern key
exchange mechanisms (known as “Diffie-Hellman Key Exchange”), and offers various methods for
validating the safe passage of the exchanged keys to validate that the exchange was not
intercepted by a third party.

These new mechanisms still do not resolve the problem of devices that lack user interface, and
thus can’t insert a PIN code or verify a safe passage of one on their display. SSP’s authentication

mechanism for such devices is “Just Works”, the weakest mechanism of the lot. For this reason,
using “Just Works” is a last resort in SMP.

Here is how it (just) works:
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When performing a Secure Simple Pairing procedure, the two endpoints exchange messages to

gather their mutual 10 capabilities.

Host A LM-A LM-B Host B
( Step 5: 10 Capability Exchange )
HCI_IO_Capability Request
¢
HCI_IO_Capability_Request_Reply
-
‘ HCI_Command_Complete
LMP_IO_capability_req
|
HCI_IQ_Capabilitiy Response
Bo-
HCI_IO_Capabilitty_Request
>
HCI_IO_Capability_Request_Reply
<
HCI_Command_Complete
>
‘ LMP_IO_capability_res

HCI_IO_Capability_Response

<

Figure 4.12: 10 capability exchange
Bluetooth Specification, Version 5.0, Vol 2, Part F, page 1436

Each endpoint will answer these two questions:
e What type of interface it holds
e What type of authentication it requires

The interface options are the following:

10_Capability: Size: 1 Octet
Value Parameter Description
0x00 DisplayOnly
0x01 DisplayYesNo
0x02 KeyboardOnly
0x03 NolnputNoOutput
0x04 — OxFF Reserved for future use

And the authentication requirements possibilities are those:
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Authentication_Requirements: Size: 1 Octet

Value Parameter Description

0x00 MITM Protection Not Required — No Bonding. Numeric comparison
with automatic accept allowed.

0x01 MITM Protection Required — No Bonding. Use 10 Capabilities to deter-
mine authentication procedure

0x02 MITM Protection Not Required — Dedicated Bonding. Numeric compar-
ison with automatic accept allowed.

0x03 MITM Protection Required — Dedicated Bonding. Use IO Capabilities to
determine authentication procedure

0x04 MITM Protection Not Required — General Bonding. Numeric Compari-
son with automatic accept allowed.

0x05 MITM Protection Required — General Bonding. Use |0 capabilities to
determine authentication procedure.

All other values Reserved for future use ‘

The “authentication requirement” that the endpoints exchange determines if they are creating a
bond (a long term exchange of keys), and whether they require “MITM Protection” (Man in the
middle protection - a high security level against interception eavesdropping of communications).

SSP defines in what method the two endpoints,which might have different interfaces, exchange
keys:

Device A (Initiator)

NolnputNoOutput

Display Only = DisplayYesNo KeyboardOnly
Numeric Numeric Passkey Entry: | Numeric
Comparison Comparison Responder Comparison
with auto- with auto- Display, with automatic
matic confir- matic confir- Initiator Input. confirmation on
DisplayOnly | mation on mation on both devices.
both devices. | device B only.
Un- Un- Authenticated Unauthenticated
authenticated | authenticated
Numeric Numeric Passkey Entry: | Numeric
Comparison Comparison: Responder Comparison
with auto- Both Display, Display, with automatic
matic confir- Both Confirm. | Initiator Input. confirmation on
mation on device A only and
device A only. Yes/No confirma-
DisplayYes tion whether to
No pair on device B.
Device B does not
show the confir-
= mation value.
S
. Un- Authenticated | Authenticated Unauthenticated
g authenticated
[
£, Passkey Passkey Passkey Entry: | Numeric
f, Entry: Initia- Entry: Initiator | Initiator and Comparison
‘;’ Keyboard tor Display, Display, Responder with lautomatm
2 Only Responder Responder Input. conflrma_tlon on
Input. Input. both devices.
Authenticated | Authenticated | Authenticated Unauthenticated

Table 5.7 (partially displayed), Bluetooth Specification v5.0, Vol 3, Part C, page 2016
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When one of the endpoints lacks an interface for key exchange (NolnputNoOutput), the chosen
key exchange mechanism is “Numeric Comparison with automatic confirmation”, which is also
called “Just Works”. The table above also mentions which of these methods results in an
“Authenticated” key, and which does not. An “Authenticated” key is one that the user was able to
validate safe passage of.

If one of the endpoints requested “MITM Protection”, an “Unauthenticated” key cannot be used, if
not - “Just Works” will be chosen for the key exchange.

It “Just Works” (but sometimes it doesn’t)

As stated above, “Just Works” is a subset of another authentication mechanism in SSP called
“Numeric Comparison” that is used when devices are not limited by their IO capabilities. After
establishing that “Just Works” will be the authentication mechanism, the endpoints will perform
an altered version of the “Numeric Comparison” key exchange procedure. In the ordinary
“Numeric Comparison” a shared “secret” PIN code is exchanged between the endpoints using
Diffie-Hellman, and the user validates that the same PIN code appears on each of the devices
screen. However, in “Just Works” at least one of the devices lacks a user interface, so validating
the PIN code is not an option. Instead an “Automatic confirmation” will be performed by the
devices. If one of the devices has sufficient 10 capabilities (“DisplayYesNo”), it may authorize the
pairing - but it will not display the PIN code, as there is no way to validate it’s safe passage.

The Bluetooth specification notes this about Just Works:

“The Just Works association model uses the Numeric Comparison protocol but the user is
never shown a number and the application may simply ask the user to accept the connection
(exact implementation is up to the end product manufacturer).

Bluetooth Specification, Version 5.0, Vol 1, Part A, page 245

So despite the obvious need to authorize a new pairing, the spec leaves it up to the various
implementations to define how and if the user should accept a new paired device (whether it is
short-term pairing or a long-term one).
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Android’s Bluetooth stack for example implements this decision as follows:

/* If JustWorks auto-accept =*/
if (p_ssp_cfm_req->just_works) {
// Pairing consent for JustWorks needed if:
// 1. Incoming (non-temporary) pairing is detected AND
// 2. local IO capabilities are DisplayYesNo AND
// 3. remote IO capabilities are DisplayOnly or NoInputNoOutput;
if (is_incoming && pairing_ch.bond_type '= BOND_TYPE_TEMPORARY &&
((p_ssp_cfm_req->loc_io_caps == HCI_IO_CAP_DISPLAY_YESNO) &&
(p_ssp_cfm_req->rmt_io_caps == HCI_IO_CAP_DISPLAY_ONLY ||
p_ssp_cfm_reg->rmt_io_caps == HCI_IO_CAP_NO_IO))) {
BTIF_TRACE_EVENT(
"%s: User consent needed for incoming pairing request. loc_io_caps:
"%d, rmt_io_caps: %d",

__func__, p_ssp_cfm_req->loc_io_caps, p_ssp_cfm_req->rmt_io_caps);
} else {
BTIF_TRACE_EVENT("%s: Auto-accept JustWorks pairing", __func__);
btif_dm_ssp_reply(&bd_addr, BT_SSP_VARIANT_CONSENT, true, 0);
return;
}

Excerpt from btif_dm_ssp_cfm_req_evt in Android’s Bluetooth stack (btif\src\btif_dm.c)

The user will need to accept a JustWorks pairing procedure only if these terms are met:

- The pairing is non-temporary (involving a long-term key exchange - “Bonding”)

- The local (the Android’s) IO capabilities are DisplayYesNo, and the remote 10 capabilities

are limited (Display Only, or no 10).

So in case of a temporary pairing procedure, Android will auto-accept, and an attacker will be
able to elevate his credentials within Android’s Bluetooth stack - as he bypassed the
authentication process, while his victim is completely unaware. To reiterate, an attacker can force
a temporary pairing to a victim device without any user interaction.
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In an empirical testing performed against a Windows machine, the same behavior was detected:

vo. Time Source Destination Length Protocol Info
170.822494 host controller 6 HCI_CMD Sent Authentication Requested
190.828453 controller host 9HCI_EVT Rcvd Link Key Request
200.828496 host controller 10 HCI_CMD Sent Link Key Request Negative Reply
220.830456 controller host 9HCI_EVT Rcvd I0 Capability Request
= 230.830474 host controller 13 HCI_CMD Sent I0 Capability Request Reply
250.841548 controller host 12 HCI_EVT Rcvd IO Capability Response
260.978520 controller host 13 HCI_EVT Rcvd User Confirmation Request
270.978637 host controller 10 HCI_CMD Sent User Confirmation Request Reply
291.404705 controller host 10 HCI_EVT Rcvd Simple Pairing Complete
301.440446 controller host 26 HCI_EVT Rcvd Link Key Notification
311.441453 controller host 6 HCI_EVT Rcvd Authentication Complete
321.441483 host controller 7 HCI_CMD Sent Set Connection Encryption
341.484461 controller host 7HCI_EVT Rcvd Encryption Change
351.484519 host controller 6 HCI_CMD Sent Read Encryption Key Size
431.500984 localhost () LiteonTe 78:.. 17 L2CAP Sent Connection Request (BNEP, SCID: ©0x0040)
451.506067 LiteonTe_78:0.. localhost () 21 L2CAP Rcvd Connection Response - Pending (SCID: 0x0040)

461.507364 LiteonTe 78:0.. localhost Connection Response - Success (SCID: 9x©040, DCID:..

v Bluetooth HCI Command - IO Capability Request Reply
Command Opcode: IO Capability Request Reply (©x@42b)
Parameter Total Length: 9
BD_ADDR: LiteonTe_78:0d:d8 (c8:ff:28:78:0d:d8)
I0 Capability: No Input, No Output (3)
0OB Data Present: O0B Authentication Data Not Present (@)
Authentication Requirements: MITM Protection Not Required - No Bonding. Numeric Comparison, Automatic Accept Allowed (©)

Wireshark capture of “Just Works” procedure with “Auto-Confirm”, against a Windows 10 machine

As seen in the Wireshark capture above, an attacker is able to connect and authenticate his
connection to a Windows machine via Bluetooth. The attacker chooses to reply to the IO
Capability request with: “NolnputNoOutput, MITM Protection Not Required - No Bonding”, and
thus the “Just Works” authentication mechanism is chosen. Since the Windows machine
automatically confirms the procedure, an Authentication Complete message is almost instantly
delivered back to the attacker’s machine.

Now that the attacker is authenticated (even if only with a short-term key), he can access some of
the high-level services each machine implements. In the example above, this short-term
authentication allows the attacker to access the BNEP service (detailed in the next section). We
also found that many other services will allow an L2CAP connection to reach the “Connected”
state, once the authentication is achieved through “Just Works”. This is true both for Android and
Windows, and perhaps other unexamined stacks that might behave in the same manner.

In many cases, the exposed services will eventually reject access to higher-level features that are
meant to be accessed via a fully paired device (one that has performed “bonding”). However,
these validations depend on the individual services - and not on the common underlying layer of
SMP. This widens the potential attack surface, as more code flows can be reached in each of the
many services implemented in each stack.

Conclusion

It is clear that the “Just Works” mechanism has it merits, as it allows the key exchange through a
safe and modern procedure (Diffie-Hellman). It is also obvious that without any IO, a device
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cannot authenticate a PIN code, and thus the mechanism has no MITM protections. Despite this,
when one of the parties in a pairing procedure does have IO capabilities, which is the common
case, it should be required to confirm the pairing by the end user of this device.

It is unclear if the “auto-confirm” behaviour observed in Android and Windows is intentional, or
just a quirk in Bluetooth that these stacks haven’t figured out how to use yet. As we will
demonstrate in the next sections, this dark corner of Bluetooth’s SSP led us to discover a
significant number of vulnerabilities in the services that are now exposed due to this behaviour in
Android and Windows.

BNEP

Overview

The BNEP (Bluetooth network encapsulation protocol) service facilitates network encapsulation
(usually IP based) over Bluetooth. In most cases, this is used to allow internet tethering (sharing)
over Bluetooth.

Above BNEP lays the PAN profile that implements the network layer, and the various roles that
exist in an IP based network created over Bluetooth. The purpose of the BNEP service in this
hierarchy is mostly to encapsulate various forms of Ethernet packets over an L2ZCAP connection.
For this purpose various messages are defined in BNEP for encapsulating compressed and
uncompressed Ethernet headers.

Ethernet Header Ethernet Payload
14 Bytes ... 0-1500 Bytes
L2CAP Header BNEP Header Ethernet Payload
4 Bytes At least 1 Byte 0 - 1500 Bytes

BNEP Specification, Version 1.0, page 13

The above figure demonstrates how the BNEP header is translated into the Ethernet header,
based on the specific type of BNEP message used. So basically, BNEP is a simplified, and
abbreviated form of Ethernet that is just transmitted over Bluetooth.

Other than the various encapsulation messages, BNEP also supports the BNEP control message.
The control message facilitates the creation of a PAN connection (the network layer that lives on
top of BNEP) and various flow control features.
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0 4 8 12 16 20 24 28 3

BNEP Type =
O0x01

E| BNEP Control Type Control Packet based on Control Type ..

BNEP control message format, BNEP Specification, Version 1.0, page 17

To enable multiple control messages in a single L2ZCAP message, an optional extension header
may also be appended to the BNEP header. Each "extension bit" (The “E” in the above figure)
turned on in the BNEP header marks the start of an extension header which will include an
additional control message

0 4 8 12 16 20 24 28 3
Extension , :
T ipe E| Extension Length Extension Payload ...

BNEP extension header format, BNEP Specification, Version 1.0, page 39

In Android's stack, two RCE vulnerabilities were found in the code flow that handles incoming
BNEP control messages.

Android RCE vulnerability #1 - CVE-2017-0781
The first vulnerability lies in the following call to memcpy:

UINT8 *p = (UINT8 *)(p_buf + 1) + p_buf->offset;

type = *p++;
extension_present = type >> 7;
type &= Ox7f;

switch (type)

case BNEP_FRAME_CONTROL :
ctrl_type = *p;
p = bnep_process_control_packet (p_bcb, p, &rem_len, FALSE);
if (ctrl_type == BNEP_SETUP_CONNECTION_REQUEST_MSG &&
p_bcb->con_state != BNEP_STATE_CONNECTED &&
extension_present && p && rem_len)

p_bcb->p_pending_data = (BT_HDR *)osi_malloc(rem_len);
memcpy ( (UINT8 *) (p_bcb->p_pending_data + 1), p, rem_len);

Excerpt from Android’s BNEP message handler: bnep_data_ind
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The above code flow is the process of handling incoming BNEP control messages. The
BNEP_FRAME_CONTROL is the switch case for BNEP control messages. This specific flow is an
attempt to handle a unique use case: since multiple control messages may pass in a single
L2CAP message (using the extension bit), the state of the BNEP connection may change between
one control message to the other. If for example a SETUP_CONNECTION_REQUEST is sent as
the control message, any following control messages might expect to be parsed while the code
is in CONNECTED state (and not its initial state which is IDLE). Switching to the CONNECTED
state requires the a successful completion of the authentication process (as described in the
previous section), and since this process is asynchronous, the state in this context will still be
IDLE. The solution for this problem is to parse the remaining control messages at a later time -
once the authentication process is complete, and the state of connection has transitioned to
CONNECTED.

For this purpose, the above code saves the remaining unparsed message for later use (in
p_pending_data). However, a simple mistake lies in this code:

First the p_pending_data buffer is allocated on the heap, with size rem_Jen. Later, a memcpy is
made to p_pending_data + 1 with the size rem_Jlen. Thus the memcpy will overflow the buffer by
sizeof(p_pending_data) bytes! One may wonder how such a mistake can go unnoticed, as it
causes a heap corruption every time this code is triggered. Additionally, this causes an inherent
memory leak since the previous p_pending_data pointer is never freed before another allocation
occurs. It is very likely that this code did never actually run, not during real world usage, and
probably not even during coverage testing.

The field p_pending_data is of type BT_HDR, which is 8 bytes long. Additionally, rem_Jlen, which
controls the size of the allocation, is under the attacker’s control, since it’s the length of the
remaining un-parsed bytes in the packet, as well as the source for the memcpy (p) which points to
the attacker-controlled packet.

The overflow can be triggered by sending this specially crafted packet in a BNEP connection:

type ctrl_type len Overflow payload (8 bytes)

81 01 00 4 141 141 |14 |14 14 144

Figure 3

The type field consists of the extension_present bit (which is set), and the
BNEP_FRAME_CONTROL type (01). The ctrl_type field is set to
BNEP_SETUP_CONNECTION_REQUEST_MSG (01). This allows the flow to reach the vulnerable
memcpy call. It should also be noted that con_state is indeed not set to
BNEP_STATE_CONNECTED by default. Inside bnep_process_control_packet, the O sized len
passes all the checks, resulting in rem_len being decremented properly. As such, the memcpy
overflows the heap with the overflow payload bytes.
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Notably, since it’s possible to send an arbitrarily sized packet, the osi_malloc allocation size can
be controlled, since rem_len represents the size of the payload in the packet. This allows an
overflow of 8 bytes on the heap following a buffer of any chosen size, which makes exploitation
much easier.

Android RCE vulnerability #2 - CVE-2017-0782

The second vulnerability also appears in a flow that occurs under bnep_data_ind. This one lies
in the following integer underflow of rem_Jlen in the function bnep process control packet:

if (is_ext)
{
ext_len = *p++;
*rem_len = *rem_len - 1;

}

control_type = *p++;
*rem_len = *rem_len - 1;

switch (control_type)

{
default
i%'(is_ext)
{
p += (ext_len - 1);
*rem_len -= (ext_len - 1);
}
break;
}

Excerpt from Android’s processing of BNEP control packets: bnep_process_control_packet

This function handles the processing of all BNEP control messages, and the extension header to
parse additional sub-messages passed inside a parent control message. The BNEP specification
allows unrecognized extension messages to be ignored by the receiving side, and thus the
'default' case above tries to skip unrecognized control messages using the extension length from
the extension header.

The integer rem_Jlen is defined as a 16-bit unsigned short and represents the actual amount of
remaining unparsed bytes in an attacker-controlled packet. The value of ext_len is 8 bits
unsigned, and is part of the extension header that is also attacker-controlled. Thus a proper
rem_len can suddenly be underflowed to almost any value above OxffOO, making any further
handling of the packet that depends on rem_Jlen unsafe.
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For example, if rem_Jlen originally equals 10, and the attacker sets ext_len to be 12, the resulting
value will become:

rem_len -= (12 - 1) & rem_len -= 11 & rem_len == 10 - 11 == Bxffff

In the bnep_data_ind code, after the call to bnep_process_control_packet, the (now unsafe)
rem_Jlen is indeed used in a dangerous way:

while (extension_present && p && rem_len)

{
ext_type = #*p;
extension_present = ext_type >> 7;
ext_type &= Ox7F;
/* if unknown extension present stop processing */
if (ext_type)
{

break;
}
pt+t;
rem_len--;
p = bnep_process_control_packet (p_bcb, p, &rem_len, TRUE);

}

p_buf->offset += p_buf->len - rem_len;
p_buf->len = rem_len;

else if (bnep_cb.p_data_ind_cb)

{
(*bnep_cb.p_data_ind_cb) (p_bcb->handle, p_src_addr, p_dst_addr,

protocol, p, rem_len, fw_ext_present);
osi_free(p_buf);
}

Excerpt from Android’s BNEP message handler: bnep_data_ind

The resulting underflowed rem_len is then directly set to the len of the p_buf (the actual packet
structure). Additionally, the offset field of p_buf is affected. This is the offset of the first not-yet
parsed byte in the packet. Together, these fields define the amount of bytes left in the packet for
upper layers to handle. Following the values from our example above, if the original len was 15
(for example), the resulting offset will be affected as such:

p_buf->offset += (15 - Oxffff) & p_buf->offset += 16

Since now the offset is small, and the len is large, any upper layer code that handles this packet is
forced to deal with an exceptionally large payload. At this point, an attacker can bypass most, if
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not all, of the MTU restrictions of packet size. From hereon, the upper layers only assume that the
remaining payload is reasonably sized.

Immediately after, a call to bnep_cb.p_data_ind_cb (an upper layer handling callback) occurs
with the malformed p_buf as input. It’s thus possible to reach the following code path using the
crafted packet:

static void bta_pan_data_buf_ind_cback(
uint16_t handle, const RawAddress& src, const RawAddress& dst,
uint16_t protocol, BT_HDR* p_buf, bool ext, bool forward)

BT_HDR* p_new_buf;

if (sizeof(tBTA_PAN_DATA_PARAMS) > p_buf->offset) {

/* offset smaller than data structure in front of actual data */

p_new_buf = (BT_HDR*)osi_malloc(PAN_BUF_SIZE);

memcpy ((uint8_t*) (p_new_buf + 1) + sizeof (tBTA_PAN_DATA_PARAMS),
(uint8_t*) (p_buf + 1) + p_buf->offset, p_buf->len);

osi_free(p_buf);
Excerpt from Android’s PAN message handler: bta_pan_data_buf_ind_cback

As expected, there are no good checks on offset and len at this point. The only check here
verifies that offset is smaller than sizeof(tBTA_PAN_DATA_PARAMS) (that is 24), which is not a
problem. The osi_malloc, however, allocates a buffer p_new_buf of size PAN_BUF_SIZE (which is
4096) and the memcpy copies p_buf->len bytes into it, which were caused to become Oxffff
earlier. In short, this results in an overflow of OxfOOO bytes on the heap, following a 4096 bytes
sized buffer.

The source bytes of the overflowing memcpy are not under direct control of the attacker, as they
exceed the boundaries of the original packet by far. However, since they are copied from the
same area on the heap as the original packet, it should be trivial to create a heap-spray (in
advance) since the bytes of the received packets are indeed attacker-controlled. As a result,
grooming of the heap prior to the overflow can allow this vulnerability to cause remote code
execution.

To create the necessary conditions for reaching the vulnerable flow, the BNEP connection needs
to be in the BNEP_STATE_CONNECTED state. Therefore, first a valid
BNEP_SETUP_CONNECTION_REQUEST_MSG needs to be sent. Once this state is reached, the
vulnerability can be triggered with a packet such as the following example (6 bytes):

type protocol ext_type ext_len control_type

82 00 00 00 OA 10
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The type field indicates a BNEP_FRAME_COMPRESSED_ETHERNET packet type, and the flag
extension_present is set. Since this message is marked with the extension bit, the vulnerable
bnep_process_control_packet function will be called and the controlled ext_len will underflow
rem_len (as explained earlier). The control_type field is set to Ox10 to reach the default clause.
Once the underflowed rem_Jlen returns from this function, it would be copied to pbuf->len, and
affect pbuf->offset as well. Finally, the packet will be passed to the p_data_ind_cb which will lead
to bta_pan_data_buf_ind_cback in the current state, performing the overflowing memcpy.

Exploitability

As described above, both vulnerabilities can lead to heap overflows with data that is
attacker-controlled. In the first RCE vulnerability, an attacker can also control the allocation size of
the overflowed buffer, that can assist him with reliable heap shaping. With prior grooming of the
heap, both vulnerabilities can eventually lead to code control. An exploit of these vulnerabilities
can then execute a ROP chain that would enable an attacker to run any code he’d like in the
context of the Bluetooth stack.

The Bluetooth service in Android runs under Zygote (Android service manager), and is
surprisingly a 32-bit process (even when the OS and CPU are ARM-64 for instance). This makes
exploitation far easier as it limits the ASRL entropy significantly, and in some cases makes it
completely inert. More importantly, the service is immediately and automatically restarted by
Zygote once it crashes! This provides an attacker with infinite attack attempts, where the
reliability of the exploit only affects the time required for a successful run.

When combining the SDP information disclosure vulnerability (CVE-2017-0785) with one the
above vulnerabilities, a complete bypass of the ASLR mitigation can be achieved as well. Pointers
that are leaked from the stack can be used to allow an attacker to learn the base addresses of
the various sections of the Bluetooth process, and these can be used by an attacker to elevate
one of the heap overflow vulnerabilities to reliable code control.

We demonstrate these exploits in this video.

Impact

Successful exploitation results in remote code execution, under the privileges of the
com.android.bluetooth service. This service is exceptionally privileged on Android devices: It has
access to the filesystem (accessing the user’s phonebook, documents, photos, etc.), it has full
control of the network stack (that can allow exfiltration of data, MiTM connections and bridging of
networks) and it even has the ability to simulate an attached keyboard or mouse that can enable
an attacker to gain full control of a device. In addition, since this service has full control of the
Bluetooth interface itself, an attacker can also use the victim’s Bluetooth interface to attack other
devices in its proximity, making this attack vector wormable.
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PAN Profile

Overview

The next hierarchy in Bluetooth located above the various services, are the Bluetooth profiles.
The profiles are another level of abstraction in Bluetooth. For example - the PAN (Personal Area
Network) profile defines how a Bluetooth stack uses the BNEP service to create Bluetooth based
IP networks.

A Personal Area Network (PAN) is comprised of various roles for each of its connected members:

- PAN user (PANU):
Client of a NAP or client-type member of a GN (see below)
- Network Access Point (NAP):
Acts as proxy, router or bridge between an existing network infrastructure
(typically LAN) and (up to 7 active) wireless clients (PANUs).
+====================+
| LAN Infrastructure |
4====================+
I
|
dommmm oo +
| NAP |
R T +
/ | \
/ | \
/ | \
R + R + R +
| PANU | | PANU | | PANU |
B + e + - -- +

From the BlueZ documentation here.

In the general case of two devices in a Bluetooth tethering scenario, one should be the NAP
(access point, router) and the other is the PANU (the client).

The Bluetooth Pineapple - Logical Flaw CVE-2017-0783 & CVE-2017-8628

As explained in the earlier section about SMP, an attacker can bypass authentication, and
perform short term pairing with an Android or a Windows device. This will allow him to obtain
some access to higher level services and profiles, and the PAN Profile is among these exposed
profiles in both Android and Windows stacks. Not all services in these operating systems are
exposed in the same manner, due to the fact that each service defines what “Security Level” it
requires for incoming and outgoing connections - and not all “Security Levels” allow the use of
“Just Works” as the underlying authentication mechanism.
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Going a little deeper, it’s possible to find the culprit for the rather low “Security Level”
requirement of the PAN Profile in Android’s Bluetooth stack:

#define PAN_SECURITY (BTM_SEC_IN_AUTHENTICATE | BTM_SEC_OUT_AUTHENTICATE |
BTM_SEC_IN_ENCRYPT | BTM_SEC_OUT_ENCRYPT)

Excerpt from Android Bluetooth stack source code (btif/include/btif_pan_internal.h)

Merely requesting BTM_SEC_IN_AUTHENTICATE is just about the minimum security requirement
that can be made. Relevant options include:

#define BTM_SEC_IN_AUTHENTICATE 0x0002 /* Inbound call requires authentication */

#define BTM_SEC_IN_AUTHORIZE 0x0001 /* Inbound call requires authorization #*/
#define BTM_SEC_MODE4_LEVEL4 0x0040 /* Secure Connections Only Mode =*/
#define BTM_SEC_IN_MITM 0x1000 /* inbound Do man in the middle protection */

Excerpt from Android Bluetooth stack source code (stack/include/btm_api.h)

Choosing a stronger combination of requirements would have prevented an attacker that has
authenticated through “Just Works” the ability to connect to the PAN Profile. Moreover, the
BTM_SEC_IN_AUTHORIZE would probably demand additional authorization when accessing this
service, that would have allowed the victim to reject (via a Ul dialog) an attacker’s connection.
We believe that in the Windows Bluetooth stack, this issue is most likely caused by a similar
misconfiguration in the code.

Due to this low “Security Level” requirement, an attacker can leverage the capabilities of the PAN
Profile on the targeted device without any authorization. When attempting to connect to the PAN
Profile using the obtained short-term key the following occurs:

No. Time Source Destination Protocol Length Info
12 3.511161 controller host HCI_EVT 26 Rcvd Link Key Notification
133.512163 controller host HCI_EVT 6 Rcvd Authentication Complete
14 3.512175 host controller HCI_CMD 7Sent Set Connection Encryption
153.556225 localhost.. LgElectr_2.. L2CAP 17 Sent Connection Request (BNEP, SCID: 0x0040)
16 3.576192 LgElectr_.. localhost .. L2CAP 21Rcvd Connection Response - Success (SCID: OX.
17 3.585289 localhost.. LgElectr_2.. BNEP 16 Sent Control - Setup Connection Request - ds..
18 3.618683 LgElectr_.. localhost .. BNEP 13Rcvd Control - Setup Connection Response - O..
I 193.651215 LgElectr_.. localhost .. L2CAP 17 Rcvd Disconnection Request (SCID: 0x0041, DC..
203.651378 localhost.. LgElectr_2.. L2CAP 17 Sent Disconnection Response (SCID: 0x0041, D..

» Frame 17: 16 bytes on wire (128 bits), 16 bytes captured (128 bits) on interface 0
» Bluetooth
» Bluetooth HCI H4
» Bluetooth HCI ACL Packet
» Bluetooth L2CAP Protocol
+ Bluetooth BNEP Protocol
@... .... = Extension Flag: False
.000 0001 = BNEP Type: Control (0x01)
Control Type: Setup Connection Request (0x01)
UIDD Size: 2
Destination Service UUID (PAN NAP)
Source Service UUID (PAN PANU)

Wireshark capture of connection attempt to the PAN Profile
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Passing the authentication allows the attacker to achieve a successful connection to the BNEP
service (open an L2CAP connection) and then the attacker tries to connect to the PAN profile
over the BNEP connection (SetupConnectionRequest). Interestingly, the initiator of the
connection chooses both the role of the initiating device, and of the remote device. In this case, a
connection where the attacker’s side is a PANU and the victim is the NAP was established, but
soon after was disconnected, probably because the victim’s device detected the tethering
feature was turned off. However, since an attacker can chose both roles for the PAN participants,
additional combinations can be attempted, as seen in this matrix of valid roles:

Role of the initiator
Role of the NAP GN PANU
acceptor NAP NO NO YES
GN NO NO YES
PANU YES YES YES

Table 1: Valid interactions between the three PAN profile roles

Personal Area Networking Profile v1.0, page 19.

By reversing the roles, and defining the attacker as the NAP and the victim as the PANU the
BNEP connection succeeds! This also works when both are set to NAP (even though this
combination is marked invalid in the above table). In this case, the victim device is forced to treat
the NAP as a new hot-plugged network interface, which results in a DHCP request from the

victim:

No. Time Source Destination Protocol Length Info
471.938969 localhost.. LgElectr_2.. L2CAP 17 Sent Connection Request (BNEP, SCID: 0x0040)
571.962701 localhost.. LgElectr_2.. BNEP 16 Sent Control - Setup Connection Request - dst: <P..
591.971280 LgElectr_.. localhost .. BNEP 13Rcvd Control - Setup Connection Response - Operat..
602.029279 LgElectr_.. localhost .. ICMPv6 114 Multicast Listener Report Message v2
612 068012 LgElectr localhost .. ICMPv6 114 Multlcast Llstener Report Message v2

"‘)ﬁa&““-@‘ S ... DRCP 3562 DRC i action S

632 371544 LgElectr localhost .. ICMPV6 82 Nelghbor 5011c1tat10n for feSO 825a 4ff fezd 465e
64 3.375238 LgElectr_.. localhost .. ICMPv6 74 Router Solicitation from 80:5a:04:2d:46:5e
653.378115 LgElectr .. localhost .. ICMPv6 134 Multicast Listener Report Message v2
897.081480 LgElectr_.. localhost .. DHCP 362 DHCP Discover - Transaction ID 0x36f496db
907.382734 LgElectr_.. localhost .. ICMPv6 74 Router Solicitation from 80:5a:04:2d:46:5e
917.749211 LgElectr_.. localhost .. ICMPv6 94 Multicast Listener Report Message v2
9211.3854.. LgElectr_.. localhost .. ICMPV6 74 Router Solicitation from 80:5a:04:2d:46:5e
9312.0926.. LgElectr_.. localhost .. DHCP 362 DHCP Discover - Transaction ID 0x36f496db

At this point, the attacker can set up a DHCP server and push malicious static routes, DNS
servers and WPAD. This is essentially equivalent to a WiFi pineapple attack over Bluetooth, only
without any user interaction.
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A DHCP response packet controlled by an attacker can look like this:

No. Time Source Destination Protocol Length Info
711.414910 LgElectr_.. localhost .. BNEP 13Rcvd Control - Filter Multi Addr Response - Oper..
721.488875 LgElectr .. localhost .. DHCP 362 DHCP Discover - Transaction ID 0x9c4710e

| 741.489762 localhost.. LgElectr_2.. DHCP 49 DHCP Offer - Transaction ID 0x9c4710e

| 761.507692 LgElectr_.. localhost .. DHCP 374 DHCP Request - Transaction ID 0x9c4710e
781.516109 localhost.. LgElectr_2.. DHCP 49 DHCP ACK - Transaction ID 0x9c4710e
811.615023 LgElectr_.. localhost .. ARP 46Who has 172.16.0.1? Tell 172.16.0.203

» Internet Protocol Version 4, Src: 172.16.0.1, Dst: 172.16.0.203
» User Datagram Protocol, Src Port: 67, Dst Port: 68
+ Bootstrap Protocol (Offer)
' Message type: Boot Reply (2)
Hardware type: Ethernet (0x01)
Hardware address length: 6
Hops: ©
Transaction ID: 0x09c4710e
Seconds elapsed: ©
| » Bootp flags: 0x0000 (Unicast)
Client IP address: 0.0.0.0
Your (client) IP address: 172.16.0.203
' Next server IP address: 172.16.0.1
Relay agent IP address: 0.0.0.0
Client MAC address: LgElectr_2d:46:5e (80:5a:04:2d:46:5€)
Client hardware address padding: 00000000000000000000
Server host name not given
Boot file name not given
Magic cookie: DHCP
» Option: (53) DHCP Message Type (Offer)
» Option: (54) DHCP Server Identifier
» Option: (51) IP Address Lease Time
» Option: (58) Renewal Time Value
» Option: (59) Rehinding Time Value
» Option: (1) Subnet Mask
» Option: (28) Broadcast Address
» Option: (6) Domain Name Server
- Option: (252) Private/Proxy autodiscovery
Length: 25
Private/Proxy autodiscovery: http://172.16.0.1/wpad.js
» Option: (3) Router
» Option: (255) End

A DHCP client daemon (running on a Windows or Android device) may respect many “options”
other than the assigned IP address. Settings like static routes, netmask, default gateway and
even the DNS servers are overridden by the last DHCP procedure performed by the daemon.
Other options like WPAD (a URL to a system-wide HTTP proxy configuration script) are also
respected on Windows. These can allow an attacker to open a pop-up browser window with an
attacker-controlled page.

Since an attacker can force a DHCP procedure to occur at will, the malicious settings will be the
latest ones, and thus the ones used by the victim machine.

Watch a video demonstration of the Windows exploit here.

Impact

The power of the WiFi Pineapple is well known - it can allow an attacker to be a Man in the
Middle on all traffic that is meant to be routed to a specific network, or to the internet - and thus
intercept, inject or alter sensitive data that is received by or sent from a targeted device.
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However the WiFi Pineapple has crucial limitations: It works by sniffing WiFi probe requests sent
by devices to open networks, and then masquerading as those networks and responding in their
name. So first the WiFi Pineapple needs to detect a probe request, that might not be sent by a
device that is already connected to a WiFi network, and even then it will only MiTM open
networks that have no encryption key. and thus can’t be authenticated by the connected device.

The above logical flaw demonstrates the ability to create a Bluetooth Pineapple, that is not
subject to those limitations at all. An attacker can force a connection to a targeted device,
regardless of its state (other than Bluetooth being turned on). The attack also does not depend
on the device being connected to open WiFi networks in the past.

Conclusion

The specification of the PAN Profile details the PAN’s security requirements from the underlying
Bluetooth stack layers. However, this document was last updated in 2003 and it’s latest version is
v1.0. In fact, the “Secure simple pairing” mechanism that is in use by Bluetooth today, and allows
short-term authentication through “Just Works”, did not even exist back then. The security
requirements in the PAN specification have not been updated. This may have contributed to the
rather low “Security Level” requirements defined by both Windows and Android stacks for the
PAN Profile.

Proprietary Protocols over Bluetooth

While most vendors rely on the services defined in the Bluetooth specification upon
implementing their Bluetooth stacks, certain vendors create their own proprietary protocol layers
within the stack - sometimes at its very core. Such is the case of Apple which implemented
multiple protocol layers that run alongside Bluetooth’s defined connection protocol layer -
L2CAP.

Apple’s proprietary protocols over Bluetooth

Although Apple’s iOS was not the major focus of our research, we observed a few interesting
details when reviewing its Bluetooth stack:

e Unlike Android and Windows, iOS does not allow silent authentication to take place via
“Just Works” - once an attacker attempts authentication through “Just Works”, the user of
the targeted device is informed that a device has initiated pairing with it, and only if the
user authorizes the pairing the authentication will succeed. This is of course more close to
what the designers of the Bluetooth specification had in mind, and is the logical way to
implement “Just Works”.

e Moreover, authentication of Bluetooth connections is more tightly coupled in iOS with the
creation of L2ZCAP connections - as it should be. In other stacks we reviewed, the
authentication process is something that can be initiated at various times in the life of a
Bluetooth connection. This can lead code flows of the stack’s services to be exposed to
unauthenticated connections, as they allow incoming packets to be parsed in parallel to
the completion of the authentication process. In iOS, however, the implementation of SMP
is a lot more strict: other than SDP, no L2CAP connection is allowed before the
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authentication process is completed successfully. This limits the attack surface to an
unauthenticated attacker significantly, making any possible vulnerabilities in the higher
layers of the stack unreachable.

Despite taking proper actions in the design and implementation of the security mechanisms of
SMP and L2CAP, Apple has also implemented proprietary protocols in the iOS stack that live in

parallel to L2CAP, which are not subject to the same security mechanism. So while the hardening
of security mechanisms in iOS’s Bluetooth stack reduces the exposed attack surface, the various

proprietary protocols embedded in it widens it.

As described in the section regarding L2CAP, fixed CIDs are reserved in the protocol for specific

purposes. CID number 1is used as the signaling channel, for example, and some others fixed
CIDs are defined as well:

Channel Logical Link
CID Description Characteristics Supported
0x0003 AMP Manager Protocol See [Vol 3] Part E, Section | ACL-U
22
0x0004-0x0006 | Reserved for Future Use Not applicable
0x0007 BR/EDR Security Manager | See [Vol 3] Part H ACL-U
0x0008-0x003E | Reserved for Future Use Not applicable
0x003F AMP Test Manager See [Vol 3] Part D, Section | ACL-U
2
0x0040-OxFFFF | Dynamically allocated Communicated using ACL-U,
L2CAP configuration AMP-U
mechanism (see Section
7.1)

Table 2.1: CID name space on ACL-U, ASB-U, and AMP-U logical links

L2CAP CID name space, Bluetooth Specification v5.0, Vol. 3, Part A, Section 2.1, page 1728

Apple’s proprietary protocols use the range of fixed CIDs that are reserved by the specification
for future use (specifically CIDs Ox2A, O0x2B and Ox3A, but possibly others as well). Using fixed
CIDs allows Apple to create a completely new hierarchy that replaces L2CAP (in some cases)

altogether.

For example, Apple’s use of the fixed CID Ox3A (which is called “Piped Dreams” in some of the
strings that are referenced in it’s code) has substantial code flows that are implemented in it, and
resembles L2CAP in many ways:

BLUEBORNE TECHNICAL WHITE PAPER

37



'ARMIS WHITE PAPER

Graph overview of Apple’s implementation of the “Pipe Dreams” protocol (in IDA)

Many of the code flows that are forked from the above function lead to the same handlers that
are related with creation of L2ZCAP connections. So it is possible that state confusions related to
the creation of L2ZCAP connections may be a result of the duplication of code that exists between
“Pipe Dreams” and L2CAP. Moreover, it is an entirely new attack surface that is specific to
Apple’s stack.

Since these protocols are proprietary, they are not documented, and we do not know the full
extent of their functionality purposes. However, in one of these protocol a critical remote code
execution vulnerability was found.

Apple’s LEAP - RCE in Apple’s Low Energy Audio Protocol - CVE-2017-14315

This vulnerability was found in a new protocol Apple invented, which operates on top of
Bluetooth, called LEAP (Low energy audio protocol). This protocol is designed to stream audio to
low energy audio peripherals, such as low energy headsets, or the Siri Remote for example.
Some documentation of this protocol has leaked through Apple’s patent filing. It appears that the
purpose of this protocol is to enable devices that only have Bluetooth Low Energy to stream
audio and send audio commands. However both LEAP and “Pipe Dreams” are still subject to
potential attacks by an attacker who connects via Classic Bluetooth connections to a targeted
device. Each of these protocols implement some validations that the incoming connections to
their fixed CIDs originate from a BLE connections, and not via BR\EDR (a.k.a “Classic”) Bluetooth
connections. However, these validations are not in the underlying layers of these protocols - but
rather in the individual handlers of their various message handlers.

LEAP, for example, allocates two fixed CIDs for it’s operation:

o CID Ox2A is reserved for LEAP’s signaling channel, and through it LEAP streams can be
created to transport LEAP audio data (presumably).
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e CID Ox2B is reserved for LEAP’s audio data packets that are streamed packets of
compressed audio.
Most of LEAP’s code lie in the processing of messages sent in its signaling channel. As
mentioned above - most of its code validates that incoming messages originate from BLE
connections - which limits its attack surface. However, these validations are not consistent across
all LEAP code.

In the LEAP handler for incoming audio data (in fixed CID 0x2B) this validation is insufficient. This

exposes this handler to attacks, and since it is a fixed CID that is not subject to the security
mechanisms of L2ZCAP or SMP, it is completely unauthenticated.

void leap_audio_handler(void *incoming_packet, size_t incoming_packet_length)

{
Joid *audio_chunk = new(0x68);
memcpy (audio_chunk, incoming_packet, incoming_packet_length);
z;udio_handle r_callback(audio_chunk, incoming_packet_length);
}

Psuedo code of LEAP’s audio data handler (based on reverse engineering of iOS v9.3.5)

We, # ; unsigned __int64
operator new(ulong)
X23_new_packet, XO

XZR, XZR, [X23_new_packet,#8]
Wg, #

W8, [X23_new_packet,# ]
W8, #

W8, [X23_new_packet, #0x

X8, qword_10031B9E@

WZR, [X23_new_packet, #0

X8, X8, #

X8, [X23_new_packet]

X21, [X23_new_packet,# 1

W19, [X23_new_packet,# 1

X0, X23_new_packet, # ; void *
X1, X20_packet ; void *

X2, X19_packet_size ; size_t
_memcpy

Excerpt of assembly code of the above leap_audio_handler (from iOS v9.3.5)

In the audio_handler_callback the code validates that this incoming packet was received from an
authenticated BLE connection. However by this point, the above memcpy could already result in
a heap overflow. This vulnerability is a very simple mistake: the code assumes that all incoming
LEAP audio chunks are limited to maximum Ox68 bytes - when this code is triggered through a
Bluetooth classic connection, the limitations of incoming packets are not as low, and can create a
significant overflow with data that is completely attacker controlled. Since this overflow can be
triggered multiple times, this vulnerability can lead to remote code execution in the context of
iOS’s Bluetooth stack.
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Impact

Due to the fact this vulnerability was mitigated in iOS version 10, a full exploit was not developed
by us. Despite this, this vulnerability still poses a great risk to any iOS device prior to version 10,
as it is does not require any user interaction or configuration of any sort on the targeted device,
and can be leveraged by an attacker to gain remote code execution in a very high privileged
context (the Bluetooth process).

40
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Final Notes

The vulnerabilities described above, and the related exploitation techniques are not very
complex. They demonstrate how protocols which are difficult to implement are susceptible to
bugs. Implementers of such a complex standard as Bluetooth have to heavily rely on guidelines
presented in the specification, which is severely outdated in certain parts, and completely lacking
in others. A researcher or attacker armed with domain-specific knowledge of obscure features
implemented in Bluetooth can tap into a relatively unexamined attack surface.

It is apparent from our findings that Bluetooth implementations have not received the same level
of scrutiny and research other outward-facing protocols have (like WiFi, or TCP/IP stacks). This
might be the result of Bluetooth’s relative complexity, and the high barrier of entrance for a
researcher attempting to research it. Another contributing factor are two common
misconceptions about Bluetooth: One is that connections in Bluetooth have to be of paired
devices (which they do not), and the other is that devices MAC address (BDADDR) are safely
hidden while they are not in discoverable mode (which they are not).

The result of the lack of proper inspection and testing of the Bluetooth implementations is a
major and comprehensive attack vector. While it is becoming harder to gain full control of devices
through the main processes, many ignore seemingly peripheral parts of it - such as the Bluetooth
stack. Attackers can target these sections of the device, and take control through them, as they
are an integral part of the operating system - either as part of the kernel itself, or as highly
privileged processes on top of it.. The security community needs to ensure no doors are left
open, and treat vulnerabilities such as those described here, which grant attackers a back route
to full control.

We hope this paper will be an initial step for a wider and more inclusive audit of the security
issues that might lie dormant in the various Bluetooth stacks that are part of the 8.2 Billion
Bluetooth devices that are in use today. We encourage other researchers to use this paper as a
guideline for the various pitfalls that might exist in implementations of Bluetooth stacks.
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