

Designing Cloud-Based Gameplay Automation: Exploratory Software

Testing, Game State-Analysis, and Test-Driven Development (TDD)

Applied to Robotic Process Automation (RPA)

David Lebertus Andrade

Northcentral University (National University), USA

Abstract

Robotic Process Automation (RPA) technology has

become a popular way to automate repetitive tasks.

This exploratory study looks at how RPA could be

applied to the automation of real-time cloud-based

gameplay, interfaces, and scenarios. The techniques

used to design a demonstration were drawn from Test

Driven Development (TDD), exploratory software

testing, and game-state analysis. The resulting use-

case demonstrates how to design, implement, and test

the automation of cloud-based gameplay in practice

by utilizing cloud-based gaming platform Google

Stadia, Microsoft Power Automate RPA, and a

popular arcade style fighting game (Mortal Kombat

11). When broken down, gameplay consists of a series

of states and state transitions [1]. Diagraming

automatable scenarios can be effectively used to

produce a model for understanding and automating

in-game tasks. Just as software testers find patterns

when creating test cases or testing paths, games often

have these same repeatable sequences that can be

identified and understood and have limited variability

of scenarios as they have already been mapped out as

part of the general testing before the software was

released [2]. Thus, by applying exploratory testing

and game-state analysis the patterns can be easily

captured and reproduced in the RPA automation and

applied to real-time gameplay. An analysis of the use-

case indicated directions for future research that

included: a) adding more automations paths to

execute other gameplay scenarios, b) developing

enhanced error handling and decision processing to

avoid state-lock, c) evading known anti-cheat systems,

and d) the implementation of adversarial Artificial

Intelligence (AI) and Machine Learning (ML).

1. Introduction

Gameplay consists of a series of states and state

transitions [1]. Many of these same principals are

applied to the automation of software and user

interface testing used in business software testing. In

fact, in Exploratory Software Testing, applying

scenario-based exploratory testing is one technique

used by software testers because it mimics the way

that a real user would behave [2]. However, instead of

testing the software randomly to find bugs, this

exploratory study discussed automating certain

scenarios that contain very specific sequences of

actions just as software testers would find when they

create their test cases or testing paths. Just as

Whittaker describes, “certain actions make sense to

repeatedly test”, and cloud-based games often have

these “repeatable sequences that can be identified and

understood and have a limited variability of scenarios

because they had already been mapped out as part of

the general testing scenarios before the software was

released” [2]. These states in a game are observable

and can be thought of as the different steps in a game’s

progression, such as “start”, “play”, “pause”, “win”,

and “lose” [1]. Each state has its own set of conditions

that must be met for a state transition to occur [1]. For

example, to win a game, a player must first reach the

end goal after which the gameplay transitions to the

next game-state are invoked, like a cut scene, credit

scene, sub-menu, or a main menu appearing. Often

some kind of player input is required to get to the next

state in the game and continue the game with a new

set of conditions for gameplay.

Furthermore, the Test-Driven Development

(TDD) technique of unit testing can also be utilized in

the design of Robotic Process Automation (RPA), by

testing for specific outcomes from the scenarios that

are candidates for automation [4]. Thus, when applied

to gaming, testing for resulting states that often occur

in a game like “win” or “lose” can be the foundation

for designing more complex and detailed automation

code in the RPA. Automation can then be designed

around the test cases to provide proper input to allow

the game to continue or start over depending on the

states that were reached, i.e. the end state was “lose”,

so the game now requires input to continue like “press

‘a’ to continue”. Software with a known set of states

and possible transitions between states is a strong

candidate for this type of technique for Individual

Specification Based Software Testing [3]. Using state

transition diagrams allows a clear portrait of all the

testing paths that must be exercised [3].

Diagraming automatable scenarios were used to

produce a system for understanding and automating

in-game tasks. By identify lower-level challenges for

implementation, like challenges that carry rewards for

the player when they are completed, was how those

scenarios were chosen to be automation candidates.

The cost of the time spent to build the automation vs

International Journal of Intelligent Computing Research (IJICR), Volume 13, Issue 1, 2022

Copyright © 2022, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2022.0137 1125

the reward that the player normally receives for

completing those scenarios was another way to

determine which path to automate. There was the

possibility that some of the pressure would be taken

off the player who would otherwise have to perform

the manual completion of these states to achieve

specific goals in the game and, if successful, validate

the time spent on building the automation with RPA.

Therefore, this study demonstrated how breaking

gameplay scenarios into repetitive tasks, applying

TDD, exploratory testing, and game state-analysis for

testing task-based scenarios were applied to the

utilization of RPA to automate cloud-based gameplay

demonstrated on cloud-based gaming platform

Google Stadia, an arcade-style fighting game called

Mortal Kombat 11 and Microsoft Power Automate,

RPA.

2. Robotic Process Automation

Robotic Process Automation (RPA) is a

technology that has been gaining popularity in recent

years to automate repetitive tasks. RPA can be used

for a wide variety of applications, from simple data

entry to more complex process automation. This study

investigated one area where RPA could potentially be

utilized and that is for automating cloud-based

gaming platform gameplay with RPA.

Most traditional gameplay typically requires the

player to input a series of commands to navigate

menus or perform movement within the game

environment. This input can be very repetitive and

time-consuming, particularly for skilled players who

want to execute more complex sets of commands or

reach more challenging levels later in the game. The

outcome of a player executing these repetitive

challenges are often some kind of reward, “rank”,

“level-up”, “points”, “tokens”, or “experience(xp)”

for performing a task, move, or macro-task within the

game-state engine that is essentially a loop of

obtainable progress from the repetition of the task

being initiated, i.e. digging for gold, braking bricks to

get to a secret level, or exploring a labyrinth with

hidden rewards.

However, there are some potential challenges with

using RPA for these purposes, let’s consider two

things. Firstly, RPA is sophisticated with the right

attention to detail but out of the box is not yet

sophisticated enough to perfectly mimic human input

in real-time, so there may be some errors in the

execution of moves in a gaming if being automated

without any testing or understanding of what is

needed to accomplish the automation candidate

process. Secondly, RPA would be reliant on the game-

state itself remaining unchanged - if the game is

updated or patched, or if there are a large amount of

unforeseen input required and/or the baseline of the

game-state is altered enough from the original

baseline path then the RPA bot may no longer work

correctly because it is being used to observe the state

and then perform a task based on that task’s state’s

original specified context. i.e. if the words appear on

the screen “Press Enter to Continue” then the RPA bot

will need to send “Enter” to progress to the next state.

However, if the game input changes each time the

state is encountered then it would require additional

programming or attention to cover all of these test-

case scenarios to provide adequate and reliable

coverage in the event of changes. For example, if you

have a 4-button controller that can input “A”, “B”,

“C”, and “D” and depending on the result of the

previous state the RPA needs to read “Press A to

Continue” or “Press D to Continue”, recognize the

state and apply the correct automation input either A

or D.

RPA shows high potential in this area with the

availability of computer vision and screen input

readers to be applied to automating certain types of

gameplay processes by recording the input of a human

player and then playing it back at high speeds. Even

having the feature in some RPA platforms to add

Artificial Intelligence and Machine Learning to the

automations makes this area of RPA a good area for

further research. This could allow a player to automate

non-repetitive gameplay states or even execute

complex combinations without having to input any

commands themselves. However, a much simpler

approach to the automation of gameplay was explored

in this study, focused on simple game-states and

transitions as path-testing and looping through desired

state operations to determine the automation paths

taken to keep the game transitioning from state to

state.

Overall, RPA has the potential to be a useful tool

for automating gameplay in cloud-based games. It is

also important to consider the limitations of the

technology before using it for this purpose. This study

explored how cloud-based platform gameplay could

be automated using game state testing and Robotic

Process Automation RPA tools, specifically with

Microsoft Power Automate.

3. Microsoft Power Automate

Microsoft Power Automate is a low-code no-code

platform that enables users to create automated

workflows and processes [5]. With Power Automate,

users can quickly and easily automate repetitive tasks,

freeing up time for more important work [6]. Power

Automate includes many powerful features, such as

Robotic Process Automation (RPA), which can

automate complex tasks and processes [5]. RPA is

particularly useful for businesses that need to

automate high-volume or time-consuming tasks.

Overall, Microsoft Power Automate’s RPA is an

extremely valuable tool for businesses of all sizes. It

can help businesses save time and money by

automating repetitive tasks and processes, freeing up

International Journal of Intelligent Computing Research (IJICR), Volume 13, Issue 1, 2022

Copyright © 2022, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2022.0137 1126

human resources to turn their attention on more high

value and more complex tasks. Additionally, Power

Automate's RPA features can further boost efficiency

by automating complex tasks that require a relatively

lower level of effort or are repetitive in nature but

produce a predictable set of results. There are a few

different approaches that can be taken when it comes

to automating business processes. One option is to use

programmable RPA, which involves using software

development style programming patterns to automate

tasks that would otherwise be performed by humans.

Another option is to use a low-code or no-code RPA

platform like Microsoft Power Automate. With Power

Automate, a users can create automation paths that

include UI and interface interactions, without having

to write any code, thus it being called a low-code-no-

code solution [5].

Finally, creating automation paths in Microsoft

Power Automate can help save time and improve

efficiency by automating repetitive tasks. The

demonstration in this study was made using Microsoft

Power Automate to handle the automation of game-

state transitions and testing gameplay paths running

on the Cloud Gaming Platform by Google, Stadia.

4. Cloud Gaming Platform-Google Stadia

Google Stadia is a cloud gaming platform that

allows you to play video games on any device with an

internet connection [7]. Cloud gaming platforms have

been gaining in popularity in recent years, as they

offer gamers a more convenient and affordable way to

play their favorite games without having to buy an

expensive physical video game console. They also

allow for the players to access their games from any

computer or mobile device with an adequate internet

connection. There are now several different cloud

gaming services available, each with their own

personalized technology, exclusive games, and user

experience built in. Four of the most popular cloud

gaming platforms include Microsoft's Xbox Cloud

Gaming service, PlayStation's PS Now, Nvidia's

GeForce Now, and Google Stadia.

Google Stadia was launched in November of 2019

and, at the time of this study, was available in 14

countries [7]. Google Stadia uses streaming

technology to deliver games to any device, so a player

can start playing instantly without having to download

or install anything [8]. Players can also save their

progress in the cloud and pick up where you left off

on any other supported device [8]. Google Stadia

supports 4K High-Dynamic-Range HDR gaming at

60 Frames Per Second FPS, and will eventually

support 8K HDR gaming at 120 FPS [8]. The platform

currently has over 30 games available, including

popular titles like Red Dead Redemption 2, Assassin's

Creed Odyssey, and Borderlands 3. Google Stadia

was constantly adding new games and features, so

there was always something new to explore with

Google Stadia [7]. However, on September 29th of

2022, Google announced that it would be

discontinuing the Stadia service and shutting down

the servers January 18th, 2023 [9]. This study

demonstrated the automation of game-state transitions

by utilizing the Google Stadia platform to play a

popular arcade style fighting game called Mortal

Kombat 11, but theoretically the same concept could

be applied to any cloud-based gaming platform or

game.

5. Mortal Kombat 11

Mortal Kombat 11 is an arcade style fighting video

game developed by NetherRealm Studios [10],

published by Warner Bros [11]. Interactive

Entertainment. It is the eleventh installment in the

Mortal Kombat franchise and was released on April

23, 2019 [11]. Mortal Kombat 11 was the first game

in the series to use Unreal Engine 4 [11], the 4th

generation computer graphics game engine developed

by Epic Games [12]. In Mortal Kombat two players

fight against each other using various attacks,

including special moves that are triggered by

keyboard or controller button inputs. There are 37

playable characters in Mortal Kombat 11, 25 in the

base game, 2 unlockable, and 12 in Downloadable

Content which includes 5 guest characters from other

popular movie franchises licensed by Warner

Brothers [11]. Each character with their own unique

move sets and fatalities. The game also introduces a

system called "Custom Character Variations", which

allows players to create their own version of existing

fighters with their own special moves and equipment.

Mortal Kombat 11 also introduced Custom Character

Variations, which allows players to customize their

characters' special moves, abilities, and outfits [11].

The game features a single-player story mode, as well

as online and offline multiplayer modes, and an

extensive story mode campaign that allows for many

different outcomes and scenarios. The online

multiplayer mode supports both ranked and casual

matches, while the offline multiplayer mode supports

local play with up to two players.

One of Mortal Kombat 11's most unique features

is the AI Battles. AI Battles are essentially single-

player matches against computer-controlled

opponents. However, these AI Battles are not simply

carbon copies of the multiplayer experience. Instead,

they feature unique rulesets and objectives that make

them distinct from traditional Mortal Kombat

gameplay. In AI Battle, a player makes a team of three

fighters from the entire roster, and then customize

their gear and move sets [13]. Players also can

customize which moves the AI will utilize in the

fights, with various sliders focusing on Grappling,

Combos, Zoning, and Rushdown [13]. For example,

one AI Battle may task the player with defeating as

many opponents as possible within a certain time

International Journal of Intelligent Computing Research (IJICR), Volume 13, Issue 1, 2022

Copyright © 2022, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2022.0137 1127

limit. Another AI Battle may task the player with

surviving against an endless wave of increasingly

difficult opponents. There are also AI Battles that

focus on specific characters or character types, such

as "Only Klassic Fighters" or "Only Female Fighters."

The AI Battles are a great way to practice Mortal

Kombat 11's mechanics and learn the ropes of the

game. AI Battles provide a unique challenge for

experienced players who are looking for something

different from the usual multiplayer experience.

Whether a player is a Mortal Kombat novice or a

seasoned veteran, the availability of AI combatants

presents unique automated gameplay scenarios with a

variety of modes, customization, and rewards for

continued gameplay. These features made the

character specific in-game AI a perfect candidate for

automating the game-states of Mortal Kombat 11.

Specifically, to test if RPA can be applied, since the

AI will play the actual arcade style fighting game by

producing the adversarial gameplay. Then, the RPA

will only need to work about analyzing the game-

states and identifying the state transition from one

battle to the next, and effectively “keep the game

going” just as if a human player were interacting

directly with the system. The AI combatants in the

Klassic Towers game mode make the perfect

candidate for applying game-state testing and

applying these advanced automation techniques that

we will explore further in the next section, Game State

Testing.

6. Game-State Testing

What is gameplay? How does it work? Gameplay

consists of a series of states and state transitions [1].

Game-state testing is a type of software testing where

the game's state is checked for validity at specific

points during gameplay. This can be done manually or

automatically. Game state testing is a valuable tool for

catching errors early in development [1]. Creating

test-cases that exercise different paths through the UI

elements can ensure that the game continues to work

as intended and that all possible states are reachable

[3].

Game states can be thought of as the different

steps in a game, such as “start”, “play”, “pause”,

“win”, and “lose”. Each state has its own set of

conditions that must be met for the state-transition to

occur. For example, to win a game, the player must

first reach the end goal by going from “play” to “win”

or “lose” before continuing to the next sate and before

reaching the “end” state as illustrated in Figure 1.

Figure 1. Example of a simple game state transition

The Mortal Kombat 11 game-state testing was

interested in checking if certain states have been

reached during gameplay and to let the RPA send the

necessary game input based on the specific game-state

transition reached. To demonstrate the game’s state,

test-paths and test-cases are created that exercise

different paths through the UI elements to see if a

certain state has occurred. If a certain state has

occurred, then the automation would continue. In

automation it is important to have a very clear

understanding of the game's state-machine. The

game's state-machine is a representation of all the

possible states that the game can be in and the

transitions between those states [1]. If a state was

missed in the test coverage, then there is a risk that the

automation will break and require a human to re-

evaluate the state to make the decision on what input

to send the game for it to progress.

Creating a successful use-case, making test cases

that cause the game to continue its intended path, and

recursively scanning the screen for UI Elements,

messages, or certain images from the game to see if a

state changing event has occurred was key to

successfully capture state and allowed the automation

to respond accurately with the correct input to

continue through the state-transition when those

certain scenarios/path conditions existed.

Figure 2. Player Manual Input required to launch “Klassic Tower” with menu options displayed

Start Play Win End

• Warning

• Intro screen

• "Press any
button"

Start

• Konquer -
*Default
Selected

• Fight

• Kustomize

• Learn

• Kombat Kard -
Button

• Options-Button

• Store - Button

• Quit - Button

Main Menu

• Story

• Towers of Time

• Kassic Towers -
-> -> -> A

• Krypt

• Kombat Kard -
Button

• Options-Button

• Store - Button

• Quit - Button

Konquer

• Novice - Default
- A

• Warrior

• Champion

• Endless

• Survivor

Klassic Towers

• Scorpion -
Default -A

Character Select
Screen

• Loadout
Default

• AI Fighter Off -
X

• On A to Select

Choose Variation

• Medium -
Default - A

Choose difficulty

• AI Play

Play

International Journal of Intelligent Computing Research (IJICR), Volume 13, Issue 1, 2022

Copyright © 2022, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2022.0137 1128

Once in the tower “Play” game-state is reached

through manual input the AI character will continue a

battle until a “Win” or a “Lose” state is reached. To

continue the game Power Automate will need to

detect that the “Win” game-state has been reached and

pass the correct input in-order for the game to progress

to the next match in the tower. This can also be

represented graphically using the screen captures

from the game in its different observable states as seen

below in Figure 3.

Figure 3. Mortal Kombat 11 game-state and

transition image captures

Once the fighting in the tower begins, here is how

that state diagram can be represented.

Figure 4. Game States for Play and Win.

Here are some of the corresponding observable states

from the gameplay.

At this point in the game-state diagram the loop

continues these iterations until the final state was

reached which is the “end” state, this meant that the

player won both rounds.

However, the automation had to also consider that

the AI player might not win. So, the game-state

diagram must incorporate the possibility of a loss as

seen in Figure 7.

Figure 5. Play, Win, Transition and Play States

Observed in gameplay

Figure 6. Round two play state to win state

Figure 7. Lose State, reply until a win is obtained

• AI move
execution

• Various
Senerios

PLAY

• Various
Scenerios

• Performance
Rewards

• KONTINUE - A

WIN • Next
Opponant in
tower

Tower
Tranisiton

• AI move
execution

• Various
Senerios

Play

• AI move
execution

• Various
Senerios

PLAY

• Various Scenerios

• Performance
Rewards

• Retry - Default - A

Lose
• AI move execution

• Various Senerios

Play

International Journal of Intelligent Computing Research (IJICR), Volume 13, Issue 1, 2022

Copyright © 2022, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2022.0137 1129

In this scenario the automation looped through the

states until a win state is reached. This had the

potential for becoming an endless loop, but in the use-

case it was only interrupted with manual intervention

if the AI fighter continued to lose. In order to switch

characters and try again, a human player needed to

select a different character and attempt the match

again. For future research a path could be added that

will recognize a certain threshold of losses and

automatically go back to the main screen to choose a

new character, or custom loadouts. This could be

implemented using an accumulator variable that

tracks the number of times the “lose” state is reached.

Additionally, there are some other unpredictable

states that would appear on the game-state transitions

like “Congratulations” and “Rewards” however this

was be covered in this test-case by setting up the RPA

to also look for the word “KONTINUE” just as it

would for the Win and Lose transitions and have it

send the appropriate input to continue, which was

always “Enter”. After collecting this information, the

next step was to begin building the automation. In the

next section, a step-by-step guide is provided on how

this basic automation was built.

7. Building the Automation

After identifying the automatable paths for “play”

“win” and “lose” on the Klassic Tower gameplay

building the automation began. Desktop flows in

Microsoft Power Automate interacted with

applications’ UI elements and are also able to use

visual indications to help users quickly recognize

desktop and even web UI elements that may appear on

the screen [14]. However, to identify the game-states

and execute actions in the game it was necessary to

identify images that appeared on the screen like

menus, buttons, or specific inputs to trigger transitions

to the next game state. This was achieved by using the

“capture image” and “if image actions” in Power

Automate [15]. After images are identified, Power

Automate’s conditionals, like if/else, can execute the

keyboard input needed or any other associated actions

that will need to take place to successfully automate a

block of actions based on values or states being used

[16].

The following figures and descriptions will

demonstrate how to build the automation for the

scenarios discussed in the previous section, for

automating the continuous towers matches using

images from the game, and if/else conditions in Power

Automate to successfully loop through the game

states.

Power Automate will create the Flow and bring

you into the Developer Action stage where the

automation is built (see Figure 10).

For the first automation function a loop was used.

Search Loop on the left-hand Actions pane and select

it. Then set “start from:” to 0 and “end to:” to 1000

and “Increment by:” to an integer value of 1. The

variables produced are automatically set to

“LoopIndex” and will be used as the accumulator for

the loop (see Figure 11).

First, launch Power Automate

Figure 8. Launching Power Automate

User prompted to enter a Flow name, entered “Mortal

Kombot”

Figure 9. Build a new Flow

Figure 10. Power Automate Flow Developer Stage

Next, an if statement action is needed to check for

images containing the game’s UI elements that appear

after a “Win” or “Loss” to trigger the automated

keyboard input to allow the game to continue. In this

case an image of the “KONTINUE” UI element will

be used (see Figure 12). Because this element is not

the only one that could appear, an alternate form of

the KONTINUE UI element image as it appeared

when a congratulations state was reached was added

for additional test coverage (see Figure 13).

International Journal of Intelligent Computing Research (IJICR), Volume 13, Issue 1, 2022

Copyright © 2022, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2022.0137 1130

Figure 11. Loop action settings

Figure 12. if image action with “KONTINUE” ui

element image captured

Figure 13. Adding additional image capture to

identify when “Congratulations” state is reached

It is also necessary to capture the “RETRY” UI

element image in case the “Lose” state was reached

and in that case the automation needed to play again

until the win state was reached. In that case “Enter”

was also the same input so whether “Kontinue” or

“Retry” occurred the input expected would always be

the same “enter” to progress (see Figure 14).

Additionally, it was verified that the image search

is set to search the whole screen, set the tolerance and,

in Advanced, the Advanced image matching

algorithm was used to enhance Power Automate’s

ability to match the UI element being displayed on the

screen with higher accuracy [15]. The Basic algorithm

achieves better results with images less than 200x200

pixels, while the Advanced algorithm is more

effective with bigger images and more robust to color

changes [15].

Figure 14. Retry image added to identify that a lose

state has been reached

Now the automation had to send the keystrokes on

either “Kontinue” or “Retry” appearing on screen. So

inside of the If image action a “Send Keys” action was

added (see Figure 15).

Figure 15. Adding send keys action to simulate

keyboard input

To configure the simulation of keyboard input

Sent Keys used “{Return}” to simulate someone

hitting the Enter key on the keyboard and thus

triggering the game state to move to the transition and

on to the next state of “play”. Also, the “send text as

hardware keys” switch needed to be enabled to mimic

the keyboard sending the input rather than the Power

Automate Desktop application.

Figure 16. The completed flow

International Journal of Intelligent Computing Research (IJICR), Volume 13, Issue 1, 2022

Copyright © 2022, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2022.0137 1131

The completed flow is given in Figure 16 which

was the foundation in allowing the game to progress

without the need for the player to interact after the

tower selection, character selection, and AI player

setting triggered. Thus, simple automation completed

our automation for this test-case and allowed for the

game to progress every time the player was presented

with a prompt that required the player to press the

“Enter” key to continue. In the next section we discuss

how the automation’s performance and reliability was

tested.

8. Testing the Automation

Using path-testing tables to capture results of each

of the initial tests helped to understand the results

from each observable match (see Figure 17).

Figure 17. Path Testing Table

The tables cover the results of each round of 5

matches within the novice tower, the characters

selected, difficulty, the results of the match [win or

lose], and the result of the automation [either success

or failure].

9. Results of Automation

By running the automation on the simplest

(novice) tower, documenting the number of times that

the game was looped through, and recording the

number of times manual user input was required to

progress the game, gave an estimate of how effective

the automation was at handling the different game

states. The Figure 18 shows the data collected from

the initial tests of the simple automation and the

completion of the Novice Tower with an AI

combatant.

The automation was successful in progressing the

game after each AI vs AI match through the Klassic

Tower and even continued the game in the event of a

loss. Because the custom characters selected had been

modified, their chances of winning the matches on the

Novice difficulty were already higher than an

unmodified character load-out and that facilitated in

the progression through the tower with little or no

losses or repeated matches due to loss.

The automation executed successfully 100% of

the time by identifying that the “Kontinue” button

appeared and sending the “Enter” key input to

progress regardless of a win or a loss state

encountered.

Figure 18. Data Collected from the initial Tests

10. Challenges in Further Testing

Building more test-cases and testing them

continued to see improvement in the coverage of

International Journal of Intelligent Computing Research (IJICR), Volume 13, Issue 1, 2022

Copyright © 2022, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2022.0137 1132

scenarios that could be automated.

• Unplanned menu options that would require user

input.

• Lack of character selection in the simple

automation path.

• Noticed that enter command was being sent in

some idol game-states without any on-screen ui

element that was a known trigger for automation.

However certain challenges still existed with

tuning the automation and covering all possible

scenarios. Specifically, image recognition and the

inclusion/omission of other on-screen elements in

order to get more accurate results was necessary. A

character selection automation was later added so that

once the tower was completed a new character could

be selected and another game be started without

player input.

11. Anti-Cheat and Security

With the rise of online gaming, cheating has

become an increasingly prevalent problem, and

cheaters and gaming tend to go hand-in-hand [17]. A

new question was raised during the study:

Is this type of automation considered cheating?

To combat cheating in the gaming industry, many

gaming platforms have implemented anti-cheat

systems that are designed to monitor and track

suspicious behavior during gaming sessions. Google

Stadia is no different, in-fact, Stadia had boasted one

of the most effective anti-cheat systems in the industry

[8]. Google Stadia used machine learning to identify

and flag suspicious behavior. This can range from

things like “aimbot” usage to more subtle forms of

cheating like “scripting” or “boosting”. Once a player

has been flagged, they can be banned from the

platform entirely [7]. Many players want to get ahead

in the competitive gaming leagues that they will go to

great lengths and great sums of money to implement

very sophisticated and technically complex cheats. In

March of 2019, police in China busted the world's

biggest gaming cheat manufacturer, seizing over $45

million in assets which was just a fraction of their

revenue [17]. This ranged from things like aimbots,

which are software that helps cheaters aim at targets

in first-person shooting games with highly accurate

precision, to even more subtle forms of cheating like

scripting, where scripts are ran on the local computer

to augment the game in favor of the layer, and

boosting, where higher ranked players access lower-

ranked players accounts to increase their rank for

profit. Purchasable hacks don't come with a small

price tag either, determined cheaters will often pay

monthly or even daily for access to the latest cutting-

edge aimbots for their games of choice [17]. Once a

player has been flagged for cheating, they can be

banned from a platform entirely. This system has

proven to be quite effective in deterring cheaters.

However, it's not perfect, and some clever players

have found ways to circumvent the system.

Nevertheless, Google Stadia was one of the best

options for fair and clean online gaming [17].

By keeping the automation in the study very

simple and limiting it to the automation of game

transitions and game-state analysis to substitute for

real-time player decision input in-game modes that

were already automated helped to justify an ethical

stance on how automation assisting the player is not

cheating. However, the idea of creating more complex

automation and automation that evades detection are

topics that could be explored in future research which

would directly relate to cheating and should be

considered cheating if they are giving the player an

unfair advantage in a one-on-one, one-on-many,

multiplayer gaming or competitive scenarios.

Additionally, the use of RPA tools like Microsoft

Power Automate did not seem to trigger any anti-

cheat protection built into the platform and are likely

not considered serious cheating tool themselves as

they were not specifically designed to create cheatbots

or have been proven method to give players an unfair

advantage in game. This is likely because RPA is new

or any overly technically complex solutions that

cheaters would seek out would pose a barrier to

deploy these types of solutions, requiring technical

experience with the software, a testing background,

and programming knowledge that would be better

served in more established cheating software written

in other mainstream programming languages.

12. Future State Discussion

The research study identified many ways that this

type of research can be expanded in relationship to the

foundations of the automation complexity and the

directions for future research topics. The following

are some of the opportunities for improvements:

• Automating other common functions:

i. Identification of additional automatable paths.

ii. Incorporate State Identification in complex

 automation.

• Enhancements of Mortal Kombat Characters with

custom load-out using RPA and Machine

Learning:

i. Collecting and leveraging data to make

 advanced decisions.

ii. Keeping matrix of player’s characters and

customizations to make decision on what

characters to play when different matches are

International Journal of Intelligent Computing Research (IJICR), Volume 13, Issue 1, 2022

Copyright © 2022, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2022.0137 1133

paired or what character to try after a loss

based on the character’s customizations and

probability of winning based on data collected

in previous character vs character scenario.

• Match Pairing using Artificial Intelligence:

i. Use match results to feed into adversarial

gameplay algorithms like min-max and alpha-

beta pruning, or Monte Carlo search to

determine the best player to put into towers or

individual matches.

Topics for future research included adding more

complex automation paths to execute other gameplay

scenarios, developing enhanced error handling and

decision processing to avoid state-lock, evading

known anti-cheat systems, and the implementation of

strategies like the application of Artificial Intelligence

(AI) and Machine Learning (ML) to further enhance

the automation.

13. Conclusion

In conclusion, Robotic Process Automation was a

powerful and highly customizable tool for automating

various interactions and gameplay scenarios within a

cloud-based game with little knowledge of

programming and a low barrier to entry to get started.

When designed and implemented correctly, RPA

could take on many of the repetitive or mundane tasks

that would otherwise require a human player's

attention. This could free up the player’s time by

automating away repetitive aspects of games that

require long time commitments but provide high

levels of reward for playtime and repetitiveness. Yet

players might still want to enjoy the gaming

experience without having to worry about the more

tedious elements of designing custom automations.

Ultimately, RPA can help to improve the mundane

aspects of certain gaming experiences for players

looking to collect items or rewards who are

knowledgeable and willing to commit some time to

building the automation.

Designing automation for a video game requires

careful consideration of the game's mechanics and

flow. In particular, the identification of key gameplay

states and transitions were essential to ensure that the

automation worked as intended. Game-state testing

was used to validate the automation and design the

logic for progressively automating the transitioning of

games states to the desired scenarios. RPA can

absolutely be used to automate gameplay. However,

was important to consider the design of the game

when automating gameplay. The game's design

should always be considered to ensure that the

automated gameplay does not take away from the

player's experience.

It was noted that when using automated gameplay

with game-state automation, it is important to make

sure that the automation does not interfere with the

game's mechanics or cause any issues for other

players as it could be considered cheating. As

discussed, Google Stadia's anti-cheat system is a good

example of how automated systems can be used

effectively to monitor and track suspicious behavior

on cloud-based gaming platforms [17]. Therefore,

automating cloud-based gameplay can be a useful tool

for gaming, but it is important to consider the design

of the game and the effects that the automation has on

the gameplay experience. Overall, this study

examined how automation could be designed and

implemented to execute various gameplay scenarios,

how error handling and decision processing can be

used to avoid state-lock, and how even well-known

anti-cheat systems could be evaded by a product that

was intended for enterprise or business use. We have

also considered how strategies like the application of

Artificial Intelligence (AI) and Machine Learning

(ML) would further enhance the automation of

gameplay.

In conclusion, RPA is a powerful tool that can be

used to automate many different aspects of gameplay.

With the right design and implementation, RPA can

help players take their game to the next level.

14. References

[1] Nystrom, R. (2014). State – Game Programming

Patterns / Design Patterns Revisited. Game Programming

Patterns, Genever Benning, https://gameprogrammingpatt

erns.com/state.html, (Access Date: July 24, 2022).

[2] Whittaker, J. A. (2009). Exploratory Software Testing.

Pearson Education.

[3] Bath, G., and McKay, J. (2014). The Software Test

Engineer’s Handbook. Rocky Nook.

[4] Muller, J. (3 February 2022). Test Driven Development

(TDD) – An Approach to Automation.’ Community Blog.

UiPath. https://www.uipath.com/community/rpa-communit

y-blog/understanding-test-driven-development-an-approac

h-to-automation., (Access Date: July 24, 2022).

[5] Microsoft. (2022). Take care of what's important.

automate the rest. Power Automate. Microsoft Power Plat -

form. https://powerautomate.microsoft.com/en-us/ (Access

Date: July 10, 2022).

[6] Microsoft Power Automate. (25 May 2021). Microsoft

Power Automate Overview. YouTube. https://www.youtub

e. com/watch?v=4z1A6YretuU (Access Date: July 10,

2022).

[7] Google. (n.d.). Stadia FAQ - Stadia help. Google. https:

//support.google.com/stadia/answer/9338946?hl=en (Acces

s Date: July 10, 2022).

[8] Google Developers. (8 May 2019). Stadia Streaming

Tech: A deep dive (google I/O'19). YouTube.

International Journal of Intelligent Computing Research (IJICR), Volume 13, Issue 1, 2022

Copyright © 2022, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2022.0137 1134

https://www.you tube.com/watch?v=9Htdhz6Op1I (Access

Date: July 10, 2022).

[9] Stadia. (2022, November 9). Stadia Announcement FAQ

- stadia help. Google. Retrieved November 27, 2022, from

https://support.google.com/stadia/answer/12790109

(Access Date: November 27, 2022).

[10] NetherRealm Studios. (n.d.). Games. NetherRealm

Studios. https://www.netherrealm.com/games/ (Access

Date: July 10, 2022).

[11] Mortal Kombat. (n.d.). Game info. Mortal Kombat 11

Ultimate. https://mortalkombat.com/game-info (Access

Date: July 10, 2022).

[12] Unreal Engine. (n.d.). The most powerful real-time 3D

creation tool. Unreal Engine. https://www.unrealengine

.com/en-US (Access Date: July 30, 2022).

[13] Williams, M. (2019, May 2). Mortal kombat 11's best

feature takes the tedium out of the towers of Time Grind.

USgamer.net. https://www.usgamer.net/articles/mortal-ko

mbat-11s-best-feature-takes-the-tedium-out-of-the-towers-

of-time-grind-#:~:text=In%20AI%20Battle%2C%20you%

20make,Combos%2C%20Zoning%2C%20and%20Rushdo

wn. (Access Date: July 10, 2022).

[14] Trantzas, G., Maniar, T., Leon, M., Melnykov, O.,

Rokontol., and Herbert. D. (16 December 2022.). UI

elements and controls – power automate. UI elements and

controls - Power Automate | Microsoft Docs.

https://docs.microsoft.com/en-us/power- automate/desktop-

flows/ui-elements (Access Date: July 24, 2022).

[15] Trantzas, G., Maniar, T., Leon, M., Melnykov, O., and

Herbert. D. (n.d.). Images - power automate. Images - Power

Automate | Microsoft Docs. https://docs.Microsoft .com/en-

us/power-automate/desktop-flows/images (Access Date:

July 31, 2022).

[16] Trantzas, G., Maniar, T., Leon, M., Melnykov, O., and

Herbert. D. (n.d.). Using conditionals - power automate.

Using conditionals - Power Automate | Microsoft Docs.

https://docs.microsoft.com/en-us/power-automate/desktop-

flows/use-conditionals (Access Date: July 31, 2022).

[17] DiBartolomeo, N. (2021, September 15). Stadia: The

ultimate anti-cheat. Quit The Build. https://www.quitthe

build.com/post/stadia-the-ultimate-anti-cheat (Access Date:

July 10, 2022).

15. Special Note

More information about the Mortal Kombot RPA

automation project and a video demo of the

automation that was built from the information

collected in this study can be found at

www.mortalkombot.ai

International Journal of Intelligent Computing Research (IJICR), Volume 13, Issue 1, 2022

Copyright © 2022, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2022.0137 1135

