Architecture of a Synchronized Low-Latency Network Node Targeted to Research and Education

<u>Christian Liss</u>¹, Marian Ulbricht¹, Umar Farooq Zia¹, Hartmut Müller² ¹InnoRoute GmbH ²Verilogic

19 June 2017

Handling Route®

OUR HISTORY: IP-CORE FOR DSL ACCESS MULTIPLEXERS (DSLAM)

First version of the **FlowEngine**:

- QoS packet processor on FPGA
- Very compact: Spartan-6 75T
- Full line speed, up to 10Gbps
- Store-and-Forward
- VDSL2 and G.fast

DECISION: CREATING AN UP-TO-DATE ROUTER, BASED ON FLOWENGINE

- Target Applications:
 - Research & Education: 5G, IoT ...
 - Small and Medium Businesses
 - Industrial Networks, e.g., Automation
- Product Outline:
 - Versatile & Affordable
 Ethernet Interfaces
 - Lowest Latency & Jitter
 - FPGA & Software
 - $_{\odot}$ Time Synchronization

REQUIREMENTS: 5G MOBILE NETWORKS & INDUSTRY 4.0

- Latency (100µs e2e) & Jitter (64ns e2e):
 many nodes in lines/trees/rings
 challenging control loops
 avoid bufferbloat
- Hierarchical time synchronization:
 - o Phase: timestamps
 - Frequency (4.7ppm to 2ppb): recovered clock + quality signaling
- 5G access networks require at least 1 Gbps/antenna
- Industry 4.0 networks (IT, OT) require 1 Gbps links (& slower for legacy devices)
- Engineers need free ports for monitoring, administration, ...
- Experimenters want a precise and robust device

13-Dec-16

- TSN for fronthaul
 32 or 64 hops
- Very low error rate

Confidential/Vertraulich – InnoRoute GmbH © all rights reserved

XEON servers with standard NICs

Easily available and scalable, but higher latency

STATE OF THE ART

Dedicated Switch/Router

Missing control & visibility for custom functionality or high latency

PC with one or two **NetFPGA** cards

High latency (store & forward) and few ports.

No frequency synchronization option. Huge latency for large frames

3µs

SOLUTION: TrustNode – 19" RACK-MOUNTABLE/DESKTOP NETWORK NODE

Versatile Local User Interface

Device, Status

GigE ports with SyncE Master/Slave support

GigE ports as SyncE Master

Confidential/Vertraulich – InnoRoute GmbH © all rights reserved

TRUSTNODE INTERFACES

GPS Clock Reference (programmable, stackable)

As little persistent state as possible \rightarrow Devices shared by researchers or students

Local Console to access the Atom

MAIN BOARD

Intel Atom E3845 SoC Quad-core with 4GB RAM

- •Control Plane
- •Software-based Data Plane

Xilinx Artix-200T FPGA Low-latency Data Plane

FPGA: DATAPLANE ARCHITECTURE

- 1. Ethernet PHYs
- 2. RGMIIs
- 3. Eth. RX MACs
- 4. RX FIFOs
- 5. RX Arbiters
- 6. RX Datapaths
- Buffer Manager/ Queue Manager/ Scheduler
- 8. TX Datapaths
- 9. TX FIFOs
- 10. Eth. TX MACs
- 11. RGMIIs
- 12. Ethernet PHYs

FPGA: DATAPLANE ARCHITECTURE

- 1. Ethernet PHYs
- 2. RGMIIs
- 3. Eth. RX MACs
- 4. RX FIFOs
- 5. RX Arbiters
- 6. RX Datapaths
- Buffer Manager/ Queue Manager/ Scheduler
- 8. TX Datapaths
- 9. TX FIFOs
- 10. Eth. TX MACs
- 11. RGMIIs
- 12. Ethernet PHYs

Network interfaces RX Network Orange boxes are processing Datapath modules RX Processing Don't drop unclassified traffic, Datapath except for noise \rightarrow no backpressure Shared in RX datapaths, filters, protections Memory Overprovisioning to keep jitter low TX Default is cut-through \rightarrow Processing Measures against TXF underrun Datapath TX Threshold-based backpressure from Network TX FIFOs Datapath Network interfaces

TRUSTNODE NETWORK-ON-CHIP: HEADER AND SEGMENTS

- 2 NoC header data slots are followed by 8 segment data slots (64B segments) → process new segments every 10 cycles more challenging for smaller last segments
 Precision scheduling
- Drop reason analysis
- ⁴⁸ Up to 16 FPGA PHY ports and up to 16 software network ports

NETWORK-ON-CHIP MODULES: GENERAL STRUCTURE & EXTENSIONS

- Segmented frames interleaved over Network-on-Chip. Segment size: 64 Bytes (Range: 1-128 Bytes)
- Timestamping of all received frames (125MHz clock, 20ns uncertainty)

MMI = Memory Mapped Interface: Software Control Interface

Each and every module optimized for latency

Confidential/Vertraulich – InnoRoute GmbH © all rights reserved

ANALYTIC WORST-CASE LATENCY MODEL

ANALYTIC LATENCY MODEL: CUT-THROUGH VS. STORE-AND-FORWARD

LATENCY & JITTER: FIRST MEASUREMENTS

- FPGA-only measurements (pin-to-pin)
- Low-speed, single-port, to have empty queues
- PHYs add additional 401-721ns

Constant
 latency & jitter
 above 127 Bytes
 (two segments)

CONCLUSION & SUMMARY

- Lowest-latency Gigabit Ethernet Switch/Router
- Processing at line rate
- More than 50% of the FPGA available for extensions
- Analytic model validated by measurements: port-to-port cut-through latency stable and below 3µs in case of empty output queues
- Low latency allows for multi-hop industrial/automotive/5G networks
- Precision allows for repeatable experiments
- Designed for usability

Special Versions:

- SODIMM up
 to 8GB
- SFP Ports
- GPIO Extender
- Admin Port

and many more ...

Contact Us

Christian Liss, Head of R&D

InnoRoute GmbH Marsstrasse 14a 80335 Munich Germany +49 89 4524199 - 02 liss@innoroute.de Visit us: www.Innoroute.de

CEO Andreas Foglar Registrations: Amtsgericht München VAT ID: DE 271566134 WEEE: DE 84823388

