
HAL Id: hal-01098433
https://inria.hal.science/hal-01098433

Submitted on 14 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Stabilization of Nonlinear Systems through the
Reduction Model Approach

Frédéric Mazenc, Michael Malisoff

To cite this version:
Frédéric Mazenc, Michael Malisoff. Local Stabilization of Nonlinear Systems through the Reduc-
tion Model Approach. IEEE Transactions on Automatic Control, 2014, 59 (11), pp.3033-3039.
�10.1109/tac.2014.2317292�. �hal-01098433�

https://inria.hal.science/hal-01098433
https://hal.archives-ouvertes.fr


IE
EE

Pr
oo
f

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1

Local Stabilization of Nonlinear Systems Through the1

Reduction Model Approach2

Frederic Mazenc and Michael Malisoff3

Abstract—We study a general class of nonlinear systems with input4
delays of arbitrary size. We adapt the reduction model approach to prove5
local asymptotic stability of the closed loop input delayed systems, using6
feedbacks that may be nonlinear. Our Lyapunov-Krasovskii functionals7
make it possible to determine estimates of the basins of attraction for the8
closed loop systems.9

Index Terms—Delay, nonlinear, reduction model, stabilization.10

I. INTRODUCTION11

The reduction model approach is a well-known stabilization tech-12
nique for systems with input delays. It originated in [1] and has been13
studied in many works, e.g., [2]–[6]. It is effective for stabilizing14
linear time-invariant systems with arbitrarily long pointwise or dis-15
tributed input delays. However, the approach does not directly apply16
to nonlinear systems; it is extended by introducing an extra dynamic17
(which gives the ‘state predictor’) whose initial condition is given by18
an implicit equation (as is done in [7]–[9], and [6, Chapt. 6, p. 128]),19
and only a few recent works adapt it to time varying systems [10]. This20
is a limitation, because many systems are nonlinear and lead to the21
stabilization of time varying nonlinear systems when a trajectory has22
to be tracked. Moreover, the work [11] is limited to globally Lipschitz23
nonlinear systems, and it has a restriction on the size of the delays. See24
also [12] and [13] for stabilization of nonlinear systems with arbitrarily25
long input delays when the systems have special structures, and [14]26
for compensation of arbitrarily long input delays under input sampling27
based on prediction.28

These remarks motivate our work. We show that the reduction29
model approach can be used to locally asymptotically stabilize a30
large family of nonlinear time varying systems of the form ẋ(t) =31
A(t)x(t) +B(t)u(t− τ) + F (t, x(t)), with arbitrarily long constant32
known input delays τ , where F is of order 2 in x at the origin.33
Our key assumption is the stabilizability of a linear approximation of34
the closed loop system at 0. Under this assumption, the result seems35
intuitively obvious. However, to the best of the authors’ knowledge,36
it has never been rigorously established. In particular, the stability37
of the closed loop system we obtain cannot be proven by applying38
the Hartman-Grobman theorem, which only applies to ordinary dif-39
ferential equations; see [15, Chapt. 1]. One of the crucial benefits40
offered by our result is that it yields asymptotically stable closed41
loop systems for which one can determine a suitable subset of the42
basin of attraction of the closed loop systems. This information is43
valuable, because it gives a guarantee that some solutions converge to44
the origin. We estimate the basin of attraction by building a Lyapunov-45
Krasovskii functional. It is different from the one in [16], but can be46
combined with it to establish ISS results. See also [17] for estimates47
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of the basins of attraction for time invariant nonlinear systems with 48
predictor feedbacks, under an ISS assumption on the closed loop 49
systems with undelayed controllers. The predictor feedbacks in [17] 50
can be implemented using numerical methods but are totally different 51
from ours, so our work can be viewed as complementary to [17]. 52
Our work is mainly a methodological development, rather than a 53
specific real-world application or experiments. However, input delays 54
naturally arise from measurement and transport phenomena, and our 55
assumptions are very general, so we anticipate that our work can 56
have considerable benefits when applied to mechanical systems where 57
latencies commonly occur. 58

The rest of this note is organized as follows. We give our definitions 59
in Section II. In Section III, we show how the class of systems we 60
study naturally arises in tracking problems. We state our main result in 61
Section IV, and we prove it in Section V. In Section VI, we discuss a 62
large class of examples where the estimates of the basins of attraction 63
become arbitrarily large when the input delays converge to zero. In 64
Section VII, we illustrate our result in a worked out example. We 65
conclude in Section VIII with a summary of our findings. 66

II. DEFINITIONS AND NOTATION 67

We let n ∈ N be arbitrary and In denote the identity matrix in 68
Rn×n, and | · | be the usual Euclidean norm of matrices and vectors. 69
For square matrices M1 and M2 of the same size, we write M1 ≥ M2 70
to mean that M1 −M2 is nonnegative definite. For each integer r ≥ 1, 71
let Cr denote the set of all functions whose partial derivatives up 72
through order r exist and are continuous, and C0 denotes the set of all 73
continuous functions, when the domains and ranges are clear from the 74
context. When we want to emphasize the domains and ranges, we use 75
Cr(U ,V) to denote the set of all Cr functions having domain U and 76
range V , where U and V are suitable subsets of Euclidean spaces. For 77
any constant τ ≥ 0 and any continuous function ϕ : [−τ,∞) → Rn 78
and all t ≥ 0, we define the function ϕt by ϕt(θ) = ϕ(t+ θ) for all 79
θ ∈ [−τ, 0], i.e., the translation operator. Let K∞ be the set of all C0 80
functions γ : [0,∞) → [0,∞) such that γ(0) = 0 and γ is strictly 81
increasing and unbounded. Given subsets S1 and S2 of Euclidean 82
spaces, we say that a function J : S1 × S2 → Rp is locally Lipschitz 83
with respect to its second argument provided for each compact set E ⊆ 84
S2, there is a constant LE such that |J(p, x)− J(p, y)| ≤ LE |x− y| 85
for all p ∈ S1 and all x ∈ E and y ∈ E. We say that J is strictly in- 86
creasing in its second argument provided the function Y (x) = J(p, x) 87
is strictly increasing for each p ∈ S1; we define strictly increasing and 88
nondecreasing in either argument in a similar way. We say that J has 89
order 2 in y at the origin provided there is a continuous function α such 90
that |J(p, y)| ≤ |y|2α(|y|) for all (p, y) ∈ S1 × S2. We sometimes 91
omit arguments of functions when the arguments are clear from the 92
context. 93

III. MOTIVATION: TRACKING PROBLEM 94

In this section, we explain how the problem of tracking a trajectory 95
may lead to the problem we solve in the next section. Consider a time 96
varying nonlinear system 97

ξ̇(t) = g (t, ξ(t)) +B(t)µ(t− τ) (1)

where the state ξ is valued in Rn, the control µ is valued in Rp, 98
τ ≥ 0 is a known constant delay, g = (g1, g2, . . . , gn)# is a nonlinear 99
function of class C2, and B is a continuous function. The dimensions 100
n and p are arbitrary. We assume that (1) is forward complete for 101
all measurable locally essentially bounded choices for µ, so ξ(t) is 102
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defined for all nonnegative times for all such µ’s. We also assume that103
there is a nondecreasing function γ such that104

max

{∣∣∣∣
∂2

∂ξ2
gi(t, ξ)

∣∣∣∣ : |ξ| ≤ q, t ≥ 0, i ∈ {1, 2, . . . , n}
}
≤γ(q) (2)

for all q ≥ 0, which exists when g is C2 and periodic in t.105
The objective is to follow an admissible trajectory ξr of class C1,106

meaning the dynamics for x = ξ − ξr should be asymptotically stable.107
By admissible, we mean that there is a known continuous function108
µr(t) such that ξ̇r(t) = g(t, ξr(t)) +B(t)µr(t) for all t ≥ 0. In109
particular, this means that ξr(t) is defined for all t ≥ 0. We assume110
that ξr is a known bounded function.111

Let x(t) = ξ(t)− ξr(t) and µ(t− τ) = u(t− τ) + µr(t). Then112
the error equation is113

ẋ(t) = G (t, x(t)) +B(t)u(t− τ) (3)

where G(t, x) = g(t, x+ ξr(t))− g(t, ξr(t)). Notice that G(t, x) =114 ∫ 1

0
(∂g/∂x)(t, (x+ ξr(t))xd(, so G(t, x) = (∂g/∂x)(t, ξr(t))x+115

F (t, x), where116

F (t, x) =

1∫

0

(
∂g

∂x
(t, (x+ ξr(t))−

∂g

∂x
(t, ξr(t))

)
xd( (4)

holds for all t and x.117
Applying the Mean Value Theorem and using (2) and the bound-118

edness of ξr , we can find a function α ∈ C0 such that |F (t, x)| ≤119
|x|2α(|x|). Since ξr can depend on t, the system (3) is time varying,120
even if g is time-invariant and B is constant. This motivates the study121
of systems of the form122

ẋ(t) = A(t)x(t) +B(t)u(t− τ) + F (t, x(t)) (5)

where F is of order 2 in x at the origin, which will be our focus for the123
rest of this note.124

IV. STATEMENT OF MAIN RESULT125

We state our main result for (5), where x is valued in Rn, the126
control u is valued in Rp and is to be specified, τ ≥ 0 is a given127
constant delay, and F is a nonlinear function. The dimensions n and128
p are arbitrary. The functions A, B and F are continuous, and F is129
locally Lipschitz with respect to x. The set of all initial conditions we130
consider is E0 = {(φx, φu) ∈ C0([−τ, 0],Rn × Rp)}, so the initial131
times for our trajectories are always 0. Let λ : R× R → Rn×n be132
the fundamental solution associated with A. Then λ(t0, t0) = In and133
(∂λ/∂t)(t, t0) = A(t)λ(t, t0) hold for all real numbers t and t0. We134
introduce the following assumptions:135

Assumption 1:136

(i) There is a continuous, positive valued, nondecreasing function137
h such that138

|λ(t, l)B(l)| ≤ h(τ) for all t ∈ R and l ∈ [t, t+ τ ]. (6)

(ii) There is a constant a+ ≥ 0 such that supt∈R |A(t)| ≤ a+. !139

Assumption 1 always holds when B is bounded and A is constant,140
so for instance, it holds for the one-dimensional system141

ẋ(t) = x(t) + u(t− τ) + lx2(t) sin (x(t)) (7)

where u ∈ R is the input, τ is a positive constant delay, and l is142
a positive constant. In the case of (7), we can take A = 1, B = 1,143

λ(t, t0) = et−t0 , and F (t, x) = lx2 sin(x), so Assumption 1 holds 144
with h(τ) = 1. To ease the readability of our technical assumptions, 145
we will explain how the example (7) satisfies our assumptions, after 146
we introduce each of our three assumptions. Our next assumption is: 147

Assumption 2: There are a continuous function K : [0,∞)2 → 148
Rp×n, a nondecreasing continuous function k : [0,∞) → (0,∞), an 149
everywhere positive definite and symmetric function Q : [0,∞)2 → 150
Rn×n of class C1 with respect to its first argument, and continuous 151
functions qi : [0,∞) → (0,∞) for i = 1, 2, 3 such that |K(t, τ)| ≤ 152
k(τ) for all (t, τ) ∈ [0,∞)2, and such that with the choices H(t, τ) = 153
A(t) + λ(t, t+ τ)B(t+ τ)K(t, τ) and R(t, τ, s) = s#Q(t, τ)s, the 154
following two conditions are satisfied for all τ ≥ 0: (i) Along 155
all trajectories of ṡ(t) = H(t, τ)s(t), we have Ṙ(t, τ, s(t)) ≤ 156
−q1(τ)R(t, τ, s(t)) and (ii) the bounds 157

q2(τ)In ≤ Q(t, τ) and |Q(t, τ)| ≤ q3(τ) (8)

are satisfied for all t ≥ 0. ! 158
Assumption 2 holds for (7) as well. In fact, by choosing K(t, τ) = 159

−2eτ , we obtain H(t, τ) = 1− e−τ2eτ = −1, so Assumption 2 is 160
satisfied with Q(t, τ) = 1/2, q1(τ) = 2, q2(τ) = q3(τ) = 1/2, and 161
k(τ) = 2eτ . Finally, we assume: 162

Assumption 3: There are two continuous functions f1 and f2 that 163
are locally Lipschitz with respect to their last argument, and continu- 164
ous functions α1 and α2, such that 165

F (t, x) =λ(t, t+ τ)B(t+ τ)f1(t, τ, x) + f2(t, x) and (9)

|f1(t, τ, x)| ≤ |x|2α1

(
τ, |x|2

)
and

|f2(t, x)| ≤ |x|2α2

(
|x|2

)
(10)

for all t ∈ R, τ ≥ 0, and x ∈ Rn. Also, β3(τ,m) = mα1(τ,m2) 166
is strictly increasing and unbounded in m, and β4(m) = mα2(m2) 167
is nondecreasing in m. Finally, there are continuous functions θ1 : 168
[0,∞)2 → (0,∞) and θ2 : [0,∞) → (0,∞) such that 169

|α1(τ, b+ c)− α1(τ, c)| ≤ bθ1(τ, b+ c) (11)

|α2(b+ c)− α2(c)| ≤ bθ2(b+ c) (12)

are satisfied for all b ≥ 0 and c ≥ 0. ! 170
To see why (7) satisfies Assumption 3, note that for (7), the fact 171

that λ(t, t+ τ)B is invertible implies that one can choose f2 = 0 and 172
f1(t, τ, x) = leτx2 sin(x). Then we can satisfy Assumption 3 for (7) 173
by taking α1(τ,m) = leτ and α2(m) = 0 for all m and τ . 174

Returning to the general system (5), it follows from Assumptions 175
2–3 that for any constant τ > 0 and: 176

α3(τ,m) =
q3(τ)√
q2(τ)

α2(m) + 2aα1(τ,m), (13)

where a is any constant such that 177

0 < a ≤
q1(τ)

√
q2(τ)

8k(τ)
(14)

there are unique positive values v1(τ) and v2(τ) (which also depend 178
on a) such that 179

v1(τ)α3

(
τ,

4

q2(τ)
v21(τ)

)
=

q1(τ)q2(τ)

16
and (15)

v2(τ)α3

(
τ,

4h2(τ)

a2
v22(τ)

)
=

a2

4τh2(τ)
. (16)



IE
EE

Pr
oo
f

IEEE TRANSACTIONS ON AUTOMATIC CONTROL 3

The existence of unique values v1(τ) and v2(τ) follows because180
β3(τ,m) is strictly increasing and unbounded in m and β4(m) is181
nondecreasing, so mα3(τ,m2) is strictly increasing and unbounded182
in m. The choice of α3 in (13) will become clear when we prove:183

Theorem 1: Let τ > 0 be any constant and Assumptions 1–3184
hold. Let a be any constant satisfying (14), and set v(τ) =185
min{v1(τ), v2(τ)} where v1 and v2 are as above. Then, for each186
initial function (φx, φu) ∈ C0([−τ, 0],Rn × Rp) satisfying187

√
q3(τ)

∣∣∣∣∣∣
φx(0) +

0∫

−τ

λ(0,m+ τ)B(m+ τ)φu(m)dm

∣∣∣∣∣∣

+
a

τ

0∫

−τ

(m+ 2τ) |φu(m)|dm < v(τ) (17)

the unique solution of (5), in closed loop with188

u(t) = −f1 (t, τ, x(t))

+K(t, τ)



x(t)+
t∫

t−τ

λ(t,m+τ)B(m+τ)u(m)dm



 (18)

converges to 0 as t → ∞. Moreover, (18) locally asymptotically189
stabilizes (5) to 0. !190

Remark 1: We comment that our control (18) agrees with the191
standard predictor controller in the linear time invariant case where192
f1 = f2 = 0 and A and B are constant. The extra term −f1(t, τ, x(t))193
is used to compensate part of the nonlinearity of the system (5).194
Assumption 2 is a generalization of the standard assumption that195
(A,B) is a stabilizable pair, which is the special case of Assumption196
2 where τ = 0, A and B are constant, and where K and Q can also be197
taken to be constant. However, we allow the delay τ > 0 to be as large198
as we want. On the other hand, since the qi’s are continuous positive199
valued functions of the delay, they have positive upper and lower200
bounds over all τ ∈ [0, τM ] for any constant τM . Also, the function201
k from Assumption 2 is nondecreasing in τ . Hence, if we are only202
concerned with a bounded set [0, τM ] of possible values for τ , then we203
can assume in Assumption 2 that the qi’s and k are all positive con-204
stants, by replacing them by the constants min{q1(τ) : 0 ≤ τ ≤ τM},205
min{q2(τ) : 0 ≤ τ ≤ τM}, max{q3(τ) : 0 ≤ τ ≤ τM}, and k(τM )206
without relabeling. These observations will be key to our proof in207
Section VI that for important special cases, our estimate of the domain208
of attraction becomes arbitrarily large when τ → 0+. !209

Remark 2: Assumptions 1–2 always hold when A and B are con-210
stant provided (A,B) is stabilizable. Indeed, in that case λ(t, t0) =211
e(t−t0)A, so the stabilizability of (A,B) is equivalent to the stabiliz-212
ability of (A,λ(t, t+ τ)B). Also, when the αi’s are C1, the existence213
of functions θi satisfying the requirements from Assumption 3 follows214
from the Mean Value Theorem, since Assumption 2 only requires215
(11), (12) for nonnegative b’s and c’s. Since F is of order 2 in x216
at 0, we can always satisfy Assumption 3 with f1 = 0 and f2 = F .217
However, these choices may lead to a conservative estimate of the size218
of the basin of attraction; see the example in Section VII. Our use219
of a feedback control with distributed terms is motivated by the facts220
that τ is arbitrary and ξ̇(t) = A(t)ξ(t) may be exponentially unstable.221
In general, the explicit expression for λ is unknown, but it can be222
computed in many important cases. This is the case in particular if223
A is constant or n = 1. We illustrate Theorem 1 in Section VII. !224

Remark 3: In conjunction with our local asymptotic stability result,225
we have boundedness of the control from Theorem 1, along all of the226
closed loop trajectories. !227

V. PROOF OF THEOREM 1 228

Throughout the proof, we consider any solution of (5) in closed loop 229
with (18) for any initial condition satisfying the requirements (17) of 230
Theorem 1, and any constant delay τ ≥ 0. 231

First Part: New Representation of the System: Let te be any positive 232
real number or ∞ such that the solution is defined over [−τ, te). Such 233
a te > 0 exists, because the dynamics (5) grows linearly in x in any 234
bounded open neighborhood of x(0). Later we show that te can always 235
be taken to be ∞ for all of the trajectories we are considering. We 236
introduce the operators 237

z(t) = x(t) + Γ(t, ut), where

Γ(t, ut) =

t∫

t−τ

λ(t,m+ τ)B(m+ τ)u(m)dm. (19)

In all of what follows, we assume that t ∈ [0, te) is arbitrary, unless 238
otherwise noted, and we omit some of the arguments of the time 239
derivatives when they are clear, so Γ̇(t) means (d/dt)Γ(t, ut). Then 240
the properties of the fundamental matrix give Γ̇(t) = A(t)Γ(t, ut) + 241
λ(t, t+ τ)B(t+ τ)u(t)−B(t)u(t− τ). Using the formula (5) and 242
our decomposition (9) for F (t, x), we obtain 243

ż(t) = A(t)z(t) + λ(t, t+ τ)B(t+ τ) [u(t) + f1 (t, τ, x(t))]

+f2 (t, x(t)) . (20)

Also, our feedback (18) satisfies u(t) = −f1(t, τ, x(t)) + 244
K(t, τ)z(t). Consequently, in terms of our function H from 245
Assumption 2, (20) becomes 246

ż(t) = H(t, τ)z(t) + f2 (t, x(t)) . (21)

Assumption 2 ensures global asymptotic stability of the linearizations 247
ż(t) = H(t, τ)z(t) of (21) at 0. Moreover, the equality 248

x(t) = z(t)−
t∫

t−τ

λ(t,m+ τ)B(m+ τ)u(m) dm (22)

is satisfied. 249
Second Part: Decay Conditions: We study the stability of the closed 250

loop system using its representation as (21) coupled with (22). We 251
introduce the operator 252

Ξ(ut) =
1

τ

t∫

t−τ

(m− t+ 2τ) |u(m)|dm. (23)

Observe for later use that 253

t∫

t−τ

|u(m)|dm ≤ Ξ(ut) ≤ 2

t∫

t−τ

|u(m)|dm. (24)

Then, for all t ≥ 0, we have 254

Ξ̇(t) ≤ 2 |u(t)| − 1

τ

t∫

t−τ

|u(m)|dm. (25)

Also, we can use the upper bound on f1 from (10), the bound for 255
K given in Assumption 2 and the formula u(t) = −f1(t, τ, x(t)) + 256
K(t, τ)z(t) to get |u(t)| ≤ k(τ)|z(t)|+ |x(t)|2α1(τ, |x(t)|2). More- 257
over, (8) implies that for all t ≥ 0 and all z ∈ Rn, we have q2(τ)|z|2 ≤ 258
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z#Q(t, τ)z. Taking square roots of both sides of the preceding in-259

equality and the dividing by
√

q2(τ) > 0 gives260

|z| ≤ 1√
q2(τ)

√
R(t, τ, z). (26)

Combining the last two estimates with (25) gives261

Ξ̇(t) ≤ − 1

τ

t∫

t−τ

|u(m)|dm+
2k(τ)√
q2(τ)

√
R (t, τ, z(t))

+2 |x(t)|2 α1

(
τ, |x(t)|2

)
. (27)

We deduce from Assumptions 2–3 that the time derivative of R262
along all trajectories of (21) satisfies263

Ṙ(t) ≤ − q1(τ)R (t, τ, z(t)) + 2z(t)#Q(t, τ)f2 (t, x(t))

≤ − q1(τ)R (t, τ, z(t)) + 2 |z(t)| q3(τ)|f2 (t, x(t)) |. (28)

From (26), we deduce that264

Ṙ(t) ≤ −q1(τ)R (t, τ, z(t))

+2q3(τ)

√
R (t, τ, z(t))
√

q2(τ)
|x(t)|2 α2

(
|x(t)|2

)
. (29)

Consider the family of functions Sε(t, τ, z) =
√

R(t, τ, z) + ε−265 √
ε parameterized by the constant ε ∈ [0, 1) and let S = S0. Since R266

is of class C1 with respect to t and z, it follows that for all ε ∈ (0, 1),267
the function Sε is of class C1 with respect to t and z, while S is only268
continuous. Also, (29) and Lemma 1 in the Appendix (applied with the269
choice r = R(t, τ, z)) give270

Ṡε(t) ≤ − q1(τ)
R (t, τ, z(t))

2
√

R (t, τ, z(t)) + ε

+ q3(τ)

√
R (t, τ, z(t)) |x(t)|2 α2(|x(t)|2)√

R (t, τ, z(t)) + ε
√

q2(τ)

≤ − q1(τ)

2
S (t, τ, z(t))

+
q3(τ)√
q2(τ)

|x(t)|2 α2

(
|x(t)|2

)

+
q1(τ)

2
ε

1
4 [1 + S (t, τ, z(t))] (30)

along all trajectories of (21).271
Third Part: Lyapunov-Krasovskii Functionals: Let us consider the272

family of functions273

Vε(t, z, ut) = aΞ(ut) + Sε(t, τ, z) (31)

where the constant a satisfies (14) and we omit the argument τ in Vε274
to simplify the notation. Then, (27) and (30) give275

V̇ε(t) ≤

(
2ak(τ)√
q2(τ)

− q1(τ)

2

)
S (t, τ, z(t))

+
q3(τ)√
q2(τ)

|x(t)|2 α2

(
|x(t)|2

)

− a

τ

t∫

t−τ

|u(m)|dm+ 2a |x(t)|2 α1

(
τ, |x(t)|2

)

+
q1(τ)

2
ε

1
4 [1 + S (t, τ, z(t))] . (32)

Since a satisfies (14), we get 276

V̇ε(t) ≤ −q1(τ)

4
S (t, τ, z(t)) + |x(t)|2 α3

(
τ, |x(t)|2

)

−a

τ

t∫

t−τ

|u(m)|dm+
q1(τ)

2
ε

1
4 [1 + S (t, τ, z(t))] (33)

where α3 was defined in (13). 277
Next, we find a suitable upper bound on the term 278

|x(t)|2α3(τ, |x(t)|2) from (33). Our formula (22) for x(t), 279
Assumption 1, and our bound (26) on |z| give 280

|x(t)| ≤ |z(t)|+ h(τ)

t∫

t−τ

|u(m)|dm

≤ 1√
q2(τ)

S (t, τ, z(t)) + h(τ)

t∫

t−τ

|u(m)|dm. (34)

Recall that our monotonicity properties of β3 and β4 from Assumption 281
3 imply that mα3(τ,m2) is strictly increasing as a function of m 282
for each τ . Therefore, by separately considering the cases where 283

S(t, τ, z(t))/
√

q2(τ) ≤ h(τ)
∫ t

t−τ
|u(m)|dm and where the reverse 284

inequality holds, we get 285

|x(t)|2 α3

(
τ, |x(t)|2

)

≤ 4

q2(τ)
S2 (t, τ, z(t))α3

(
τ,

4

q2(τ)
S2 (t, τ, z(t))

)

+ 4h2(τ)




t∫

t−τ

|u(m)|dm




2

α3



τ, 4h2(τ)




t∫

t−τ

|u(m)|dm




2

.

(35)

We can combine this inequality with (33) to get 286

V̇ε(t) ≤
[
−q1(τ)

4
+

4

q2(τ)
S (t, τ, z(t))α3

×
(
τ,

4

q2(τ)
S2 (t, τ, z(t))

)]
S (t, τ, z(t))

+



−a

τ
+ 4h2(τ)

t∫

t−τ

|u(m)|dmα3

×



τ, 4h2(τ)




t∫

t−τ

|u(m)|dm




2







×
t∫

t−τ

|u(m)|dm+
q1(τ)

2
ε

1
4 [1 + S (t, τ, z(t))] .
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Also, Vε(t, z(t), ut) ≥
√

R(t, τ, z(t)) + ε−
√
ε ≥ S(t, τ, z(t))−287

√
ε and Vε(t, z(t), ut) ≥ a

∫ t

t−τ
|u(m)|dm hold for all ε ∈ [0, 1), by288

(24). Since mα3(τ,m2) is increasing in m for each τ , it follows that:289

S (t, τ, z(t))α3

(
τ,

4

q2(τ)
S2 (t, τ, z(t))

)

≤
[
Vε (t, z(t), ut) +

√
ε
]
α3

×
(
τ,

4

q2(τ)

[
2Vε(t, z(t), ut)

√
ε+ε

]
+

4

q2(τ)
V 2
ε (t, z(t), ut)

)
.

We now apply (11), (12), with b = (4/q2(τ))(2Vε(t, z(t), ut)
√
ε+290

ε) and c = 4V 2
ε (t, z(t), ut)/q2(τ), and use the fact that ε ≤

√
ε ≤291

ε1/4 for all ε ∈ [0, 1], to find a continuous positive valued and non-292
decreasing function ϕc (also depending on τ , but independent of ε)293
such that294

V̇ε(t) ≤
[
−q1(τ)

4
+

4

q2(τ)
Vε (t, z(t), ut)

×α3

(
τ,

4

q2(τ)
V 2
ε (t, z(t), ut)

)]
S (t, τ, z(t))

+
1

a

[
−a2

τ
+ 4h2(τ)Vε (t, z(t), ut)

×α3

(
τ, 4h2(τ)

V 2
ε (t, z(t), ut)

a2

)] t∫

t−τ

|u(m)|dm

+ ε
1
4ϕc (Vε (t, z(t), ut)) . (36)

Next, recall that our assumption (17) implies that
√

q3(τ)|z(0)|+295

(a/τ)
∫ 0

−τ
(m+ 2τ)|u(m)|dm < v(τ), where v(τ) = min{v1(τ),296

v2(τ)} as before. Then (8) from Assumption 2 gives V0(0, z(0), u0) <297
v(τ). Since

√
c1 + c2 ≤ √

c1 +
√
c2 holds for all nonnegative con-298

stants c1 and c2, we know that Vε ≤ V0 holds pointwise for all299
ε ∈ (0, 1]. It follows that Vε(0, z(0), u0) ≤ V0(0, z(0), u0) < v hold300
for all ε ∈ (0, 1], where v = [V0(0, z(0), u0) + v(τ)]/2 > 0. Then301
v < v(τ).302

Set va = (v(τ) + v)/2. Since mα3(τ,m2) is strictly increasing in303
m, and since va < v(τ) = min{v1(τ), v2(τ)}, it follows from our304
conditions (15), (16) on v1(τ) and v2(τ) that the constants:305

p1 =
q1(τ)

4
− 4

q2(τ)
vaα3

(
τ,

4

q2(τ)
v2a

)
and

p2 =
a2

τ
− 4h2(τ)vaα3

(
τ, 4h2(τ)

v2a
a2

)
(37)

are positive for all τ > 0. Fix any value of ε ∈ (0, 1] satisfying306

ε ∈

(
0,

(
min{p1, p2}v

4ϕc(va)max{a2, 1}

)4
]

(38)

where the left endpoint is omitted because we need ε > 0.307
Next, we prove by contradiction that Vε(t, z(t), ut) ≤ v for all308
t ≥ 0. Assume that this property does not hold. Then, since309
va > v and Vε(0, z(0), u0) < v, we can find a t2 > 0 such that310
Vε(t, z(t), ut) ≤ va for all t ∈ [0, t2] and Vε(t2, z(t2), ut2) > v. Set311
t1 = inf{t ≤ t2 : Vε(p, z(p), up) ≥ v for all p ∈ [t, t2]}. Then, since312
t *→ Vε(t, z(t), ut) is continuous, we get Vε(t, z(t), ut) ∈ [v, va] for313
all t ∈ [t1, t2], Vε(t1, z(t1), ut1) = v, and V̇ε(t1) ≥ 0.314

By (36) and the fact that lα3(τ, l2) is strictly increasing in l 315

V̇ε(t) ≤ −p1S (t, τ, z(t))− 1

a
p2

t∫

t−τ

|u(m)|dm+ ε
1
4ϕc(va) (39)

for all t ∈ [t1, t2]. It follows from our lower bound on Ξ from (24) 316
that: 317

V̇ε(t) ≤ − 1

2max{a2, 1} min{p1, p2}V0 (t, z(t), ut) + ε
1
4ϕc(va)

≤ − 1

2max{a2, 1} min{p1, p2}Vε (t, z(t), ut) + ε
1
4ϕc(va)

(40)

for all t ∈ [t1, t2]. Since Vε(t, z(t), ut) ∈ [v, va] for all t ∈ [t1, t2], we 318
deduce that 319

V̇ε(t) ≤ − 1

2max{a2, 1} min{p1, p2}v + ε
1
4ϕc(va)

≤ − min{p1, p2}
4max{a2, 1}v < 0 (41)

for all t ∈ [t1, t2] when ε satisfies (38). It follows that V̇ε(t1) < 0. 320
This yields a contradiction with the choice of t1. Hence, when (38) 321
holds, we get Vε(t, z(t), ut) ≤ v for all t ≥ 0, which implies that we 322
can choose te = ∞. Also, arguing as we did before, we get 323

V̇ε(t) ≤ − min{p1, p2}
2max{a2, 1}Vε (t, z(t), ut) + ε

1
4ϕc(v). (42)

for all t ≥ 0. This gives a value tc > 0 such that for all t ≥ tc, we have 324

Vε (t, z(t), ut) ≤
4ϕc(v)ε

1
4

min{p1, p2}
max{a2, 1} (43)

(since Vε is nonnegative valued), and therefore also 325

Ξ(ut) ≤
4ϕc(v)ε

1
4

amin{p1, p2}
max{a2, 1} and

Sε(t, τ, z) ≤
4ϕc(v)ε

1
4

min{p1, p2}
max{a2, 1} (44)

Since Sε(t, τ, z) =
√

R(t, τ, z) + ε−
√
ε ≥

√
q2(τ)|z| −

√
ε holds 326

for all t, τ , and z, (24) gives 327

max






t∫

t−τ

|u(m)|dm,
√

q2(τ)|z|






≤
√
ε+

4ϕc(v)ε
1
4

min{a, 1}min{p1, p2}
max{a2, 1} (45)

for all t ≥ tc. Set 328

∆= max

{
1√
q2(τ)

, 1

}(
1+

4ϕc(v)

min{a, 1}min{p1, p2}
max{a2, 1}

)
.

(46)

Then, since ε ∈ [0, 1], it follows that for all t ≥ tc, the inequalities 329

|z(t)| ≤ ∆ε
1
4 and

t∫

t−τ

|u(m)|dm ≤ ∆ε
1
4 (47)

are satisfied. Since ε is arbitrarily small, we deduce that |z(t)| and 330∫ t

t−τ
|u(m)|dm converge to zero when t → ∞. This and the first 331

inequality in (34) imply that x(t) → 0 as t → ∞. Also, by letting 332
ε depend on the maximum of V0 on a suitable neighborhood of the 333
origin, we can prove the local stability part. This proves the theorem. 334
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VI. ARBITRARILY LARGE DOMAINS OF ATTRACTION335

Theorem 1 applies for all τ > 0. On the other hand, consider the336
special case where f2 = 0 in the decomposition (9) of F . Then,337
setting τ = 0 in (9) and in our control (18) produces the uniformly338
globally asymptotically stable closed loop system ẋ(t) = [A(t) +339
B(t)K(t, 0)]x(t) from Assumption 2. This suggests that the domain340
of attraction should become arbitrarily large as τ → 0+ when f2 = 0.341
Our next theorem implies that this is indeed the case. We will assume342
that the functions qi and k from Assumption 2 are constant, so we343
omit their arguments τ . This is not restrictive, since now we only need344
to consider τ ’s on a bounded interval; see Remark 1.345

Corollary 1: Let Assumptions 1–3 hold with f2 = 0 and the qi’s346
and k all constant. Then for each constant v∗ > 0, we can find values347
a ∈ (0, q1

√
q2/(8k)) and τM > 0 (both depending on v∗) such that:348

For each initial condition (φx, φu) ∈ C0([−τ, 0],Rn × Rp) satisfying349

√
q3(τ)

∣∣∣∣∣∣
φx(0) +

0∫

−τ

λ(0,m+ τ)B(m+ τ)φu(m)dm

∣∣∣∣∣∣

+
a

τ

0∫

−τ

(m+ 2τ) |φu(m)|dm < v∗ (48)

and each constant delay τ ∈ (0, τM ), the trajectory of (5) in closed350
loop with (18) converges to 0 as t → ∞. !351

Proof: We set α2 = 0, so we have α3 = 2aα1. Then (15), (16)352
become353

v1(τ)α1

(
τ,

4

q2
v21(τ)

)
=

q1q2
32a

and

v2(τ)α1

(
τ,

4h2(τ)

a2
v22(τ)

)
=

a

8τh2(τ)
. (49)

For each constant τM > 0, Assumption 3 provides a function γ of354
class K∞ such that mα1(τ,m2) ≤ γ(m) for all τ ∈ [0, τM ] and355
m ≥ 0. Then, replacing α1(τ,m2) in (49) by γ(m)/m gives356

γ

(√
4

q2
v1(τ)

)
=

q1
√
q2

16a
and

γ

(
2h(τ)

a
v2(τ)

)
=

1

4τh(τ)
(50)

for all τ ∈ (0, τM ). Our proof of Theorem 1 shows that the conclusions357
of that theorem remain true when v1(τ) and v2(τ) are defined to be the358
solutions of (50). Therefore359

v1(τ) =

√
q2
2

γ−1

(
q1
√
q2

16a

)
and

v2(τ) =
a

2h(τ)
γ−1

(
1

4τh(τ)

)
. (51)

Also, when τ is sufficiently small, the choice360

a =
1√

γ−1
(

1
4τh(τ)

) (52)

will satisfy our requirements (14) on a, because (52) converges to 0 361
as τ → 0+ and because we are now assuming that the qi’s and k are 362
positive constants. Then (51) become 363

v1(τ) =

√
q2
2

γ−1

(
q1
√
q2

16

√

γ−1

(
1

4τh(τ)

))
and

v2(τ) =
1

2h(τ)

√

γ−1

(
1

4τh(τ)

)
. (53)

Therefore, both v1(τ) and v2(τ) converge to ∞ when τ → 0+. It 364
follows that v(τ) → ∞ as τ → 0+, so we can satisfy (48) for small 365
enough τ > 0 by choosing τ such that v(τ) > v∗. The corollary now 366
follows from Theorem 1. " 367

VII. ILLUSTRATIVE EXAMPLE 368

We illustrate Theorem 1 using the 1 dimensional system from (7), 369
which is 370

ẋ(t) = x(t) + u(t− τ) + lx2(t) sin (x(t)) (54)

where u ∈ R is the input, τ is a positive constant delay, and l is 371
a positive constant. This system is not globally Lipschitz in the 372
state x. With the notation of the previous sections, we have A = 1, 373
B = 1, λ(t, t0) = et−t0 , and F (t, x) = lx2 sin(x). As we saw in 374
Section IV, (54) satisfies our assumptions with h(τ) = 1, K(t, τ) = 375
−2eτ , Q(t, τ) = 1/2, q1(τ) = 2, q2(τ) = q3(τ) = 1/2, k(τ) = 2eτ , 376
f2 = 0, f1(t, τ, x) = leτx2 sin(x), α1(τ,m) = leτ and α2(m) = 0. 377
According to (14), the inequalities 0 < a ≤ 1/(8

√
2eτ ) have to be 378

satisfied and, by the expression of α3 in (13), α3(τ,m) = 2aleτ . 379
Choosing 380

a =
1

8
√
2eτ

(55)

we can straightforwardly derive an estimate of the basin of attraction 381
from Theorem 1 by using v = min{v1, v2}, where 382

v1(τ) =
1

2
√
2l

(56)

and 383

v2(τ) =
1

64
√
2τe2τ l

(57)

which converge to ∞ as l → 0 for each τ > 0. On the other hand, 384
when τ ∈ (0, 1], we can take 385

a =

√
τ

8
√
2eτ

(58)

to obtain the values 386

v1(τ) =
1

2l
√
2τ

(59)

and 387

v2(τ) =
1

64le2τ
√
2τ

(60)

so v(τ) = min{v1(τ), v2(τ)} converges to ∞ as l converges to zero 388
for fixed τ > 0, or as τ converges to zero for fixed l, so the basin 389
of attraction becomes arbitrarily large. This gives convergence of the 390
closed loop solution to 0. 391
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If, on the other hand, we had chosen, f1 = 0 and f2(t, x) =392
lx2 sin(x), then one could choose α1 = c0 for any constant c0 > 0393
and α2(m) = l. This gives α3(τ,m) = 2ac0 + (1/

√
2)l. Then the394

corresponding solutions of (15), (16) with the choice395

a =
1

8
√
2eτ

(61)

satisfy396

v1(τ) ≤
√
2

16l
(62)

and397

v2(τ) ≤
1

256
√
2e2ττ l

(63)

which would mean that v(τ) = min{v1(τ), v2(τ)} does not converge398
to ∞ as τ goes to zero. Thus, the choice f1 = 0 and f2(t, x) =399
lx2 sin(x) is conservative.400

VIII. CONCLUSION401

Stabilization of nonlinear systems with input delays is a central402
problem that has been studied by many authors using model reduction,403
prediction, and other methods. Here we adapted the reduction model404
approach to the problem of locally asymptotically stabilizing the origin405
of time varying nonlinear systems with pointwise input delays. Our406
method of proof makes it possible to determine an estimate of the basin407
of attraction. The result can be adapted to the case where the delay in408
the input is distributed. Our results can be combined with those of [5]409
and [10].410

APPENDIX411

TECHNICAL LEMMA412

We used the following to get (30) in the second part of the proof of413
Theorem 1:414

Lemma 1: Let ε ∈ (0, 1] be a positive real number. Then415

− r√
r + ε

≤ −
√
r + ε

1
4 [1 +

√
r] (64)

holds for all r ≥ 0.416
Proof: Let r ≥ 0 be given. We first prove that417

r√
r + ε

≥ 1√
1 +

√
ε

√
r − ε

1
4 . (65)

If
√
r/(

√
1 +

√
ε)− ε1/4 ≤ 0, then (65) is satisfied. On the418

other hand, if
√
r/(

√
1 +

√
ε)− ε1/4 ≥ 0, then r ≥ (1 +

√
ε)
√
ε.419

It follows that (
√
ε+ 1)r ≥ (1 +

√
ε)ε+ r ≥ ε+ r. Consequently,420

r/(r + ε) ≥ 1/(
√
ε+ 1). Taking the square root, and then multiply-421

ing through by
√
r, we obtain422

r

√
1

r + ε
≥

√
r√√
ε+ 1

. (66)

Therefore, (65) holds in both cases. Next, observe that (65) implies 423
that 424

− r√
r + ε

≤ −
√
r +

[
1− 1√

1 +
√
ε

]
√
r + ε

1
4

≤ −
√
r +

[√
1 +

√
ε− 1

]√
r + ε

1
4 . (67)

Hence, the relation
√
b+ c ≤

√
b+

√
c for nonnegative values b 425

and c gives −r/
√
r + ε ≤ −

√
r + ε1/4

√
r + ε1/4. This gives the 426

conclusion. ! 427
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