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Reduction Model Approach for Linear Time-Varying Systems with
Input Delays based on Extensions of Floquet Theory ∗

Frédéric Mazenc † Michael Malisoff ‡

December 31, 2015

Abstract

We solve stabilization problems for linear time-varying systems under input delays. We show how
changes of coordinates lead to systems with time invariant drifts, which are covered by the reduction
model method and which lead to the problem of stabilizing a time-varying system without delay. For
continuous time periodic systems, we can use Floquet theory to find the changes of coordinates. We also
prove an analogue for discrete time systems, through a discrete time extension of Floquet theory.

1 Introduction

This note continues our search (begun in [22] and [24]) for extensions of the classical reduction model method
that cover time-varying systems with input delays. Input delays are common when controllers are remotely
implemented; see [4, 7, 8, 17, 18, 30] for more motivation. The reduction method has its origins in the works
[2], [19], and [21] by Artstein and others, who focused on continuous time time-invariant linear systems.

Stabilization problems for linear time-varying systems with delays have been studied in fewer works. In
most of them, time-varying Lyapunov functions are needed; see for instance [1] and [27] for the use of strict
Lyapunov functions, and [29] for Razumikhin-Lyapunov functions. One useful Lyapunov-based approach
to delay systems entails solving the stabilization problem with the input delay set equal to zero, and then
using Lyapunov-Krasovskii functionals to look for upper bounds on the input delays that the closed loop
system can tolerate without sacrificing the stability performance; see [20, 23]. Linear time-varying systems
arise in the context of the local stabilization of a trajectory of a nonlinear system, but are beyond the
scope of the classical reduction model method. The main differences between reduction approaches and the
Lyapunov-Krasovskii functional approaches such as those in [23] are that (a) under certain delay bounds,
methods such as [23] lead to relatively simple controllers that do not require the distributed terms that are
used in reduction model methods and (b) reduction model methods usually make it possible to compensate
for arbitrarily long input delays, by using the delay value in the dynamic feedback control design.

Our work [24] extends the reduction model method to linear time-varying systems, using two approaches.
One approach in [24] leads to a control formula that involves the fundamental matrix for the corresponding
uncontrolled system (i.e., the time-varying system obtained from the original system by setting the input
equal to zero in the original system), and so may be difficult to apply in practice. The other control design
in [24] does not require a formula for the fundamental matrix, but requires that the input delay stay below
a suitable constant bound. By contrast, [22] covers time-varying nonlinear systems whose nonlinear parts
satisfy certain conditions, and then builds a reduction model control for the linearization of the system, and
finally shows local stability of the original nonlinear system in closed loop with the reduction model control.

One natural research direction for addressing the challenges of extending the reduction model method to
time-varying linear systems, as well as analogous problems for discrete time systems, is to seek analogues
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of Floquet’s theory; see [26, Section 3.5] for the basic results of Floquet theory. Floquet’s theory covers
systems without controls. One of its basic results is that if a time-varying linear system is periodic, then it
can be transformed into a time-invariant system through a periodic change of coordinates. This suggests the
possibility of using Floquet theory to transform a time-varying linear control system into a new time-varying
linear control system with a time-invariant draft, and then stabilizing the new system using the reduction
approach. One of the key observations in this work is that such a transformation can indeed be done under
periodicity of the coefficient matrices in the system, and that this simplifies the stabilization problem to one
that involves globally asymptotically stabilizing systems with no delay. Our assumptions are novel as well.
We also provide analogues for nonperiodic or discrete time systems.

Discrete time systems with delay are important because they can be used to model some engineering
devices; see [6], [9], [11], and [14]. However, not many contributions are concerned with time-varying discrete
time systems with delay. Our discrete time delayed systems in this work have the form

xk+1 = Akxk +Bkuk−r (1)

where xk ∈ Rn is the state, uk ∈ Rp is the control, and r ∈ N is the delay. Here and in the sequel, the
dimensions and delays are arbitrary. For the case of time-invariant coefficients, the work [9] uses dynamic
extensions to transform systems of the form (1) into systems with no delay, in the special case of networked
control systems. See also [12] for a prediction based approach for (1) in the time-invariant case. For time-
varying continuous time systems with delay in the input, the reduction model approach can be applied under
conditions pertaining to the speed of variation of the time-varying matrices; see [24]. However, to the best
of our knowledge, no discrete time version of [24] exists. Also, [16] is concerned with time-invariant systems.

We propose a rather general solution to the problem of exponential stabilization of (1) through the
reduction model approach, including cases where the coefficient matrices are not necessarily periodic, with
an arbitrarily large delay r. It decomposes into two steps. First, under reasonable assumptions, we transform
(1) into a system that is autonomous when the control is set equal to zero. Then, we adapt the reduction
method to the resulting dynamics, using a novel discrete time analogue of an operator that is used in
the predictor based analysis in [16]. Our treatment of (1) also has implications for using reduction model
controllers in continuous time systems, because in practice, implementing controllers in continuous time
systems uses discretizations, leading to discrete time delay systems of the form (1). We illustrate our theory
in two examples, including a discrete time linear system in which the coefficient matrices are not periodic.

2 Preliminary Results in Continuous Time

We use the following notation and definitions. We let | · | denote the usual Euclidean norm of matrices and
vectors, and In is the n× n identity matrix. Here and in the sequel, the dimensions of our Euclidean spaces
are arbitrary unless other indicated. Given any function φ : S → Rp that is defined on any subset S of a
Euclidean space, denote its supremum over any set J ⊆ S by |φ|J . We set N = {1, 2, . . .}. We often leave
out the arguments of functions, when they are clear from the context.

2.1 Fundamental General Result

Consider the system
ẋ = A(t)x+ F (t)u(t− τ) (2)

where the state x and the input u are valued in Rn and Rp respectively, the functions A : R → Rn×n

and F : R → Rn×p are continuous, and τ > 0 is any positive constant delay. We introduce the following
assumption. See below for ways to build the required function P .

Assumption 1. There exist a constant matrix Ac ∈ Rn×n, a C
1 function P : R → Rn×n such that P−1(t)

is defined for all t, and a constant pM > 0 such that

|P (t)|+ |P−1(t)| ≤ pM (3)

and

Ṗ (t) = AcP (t)− P (t)A(t). (4)

hold for all t ≥ 0.
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We use the following key observations:

Lemma 1. Assume that the system (2) satisfies Assumption 1. Then the time-varying change of coordinates

z = P (t)x (5)

transforms (2) into

ż(t) = Acz(t) + P (t)F (t)u(t− τ). (6)

Also, the operator

Z(t) = z(t) +
� t
t−τ e

Ac(t−m−τ)
P (m+ τ)F (m+ τ)u(m)dm (7)

transforms (6) into the system

Ż(t) = AcZ(t) + e
−AcτP (t+ τ)F (t+ τ)u(t) (8)

with the state variable Z.

Proof. Our choice (5) of z gives

ż(t) = Ṗ (t)x(t) + P (t)ẋ(t) = Ṗ (t)x(t) + P (t)[A(t)x(t) + F (t)u(t− τ)]. (9)

Then (6) follows from (4) and our choice of z. Also, the time derivative of (7) along all solutions of (6) is

Ż(t) = Acz(t) + P (t)F (t)u(t− τ) +Ac

� t
t−τ e

Ac(t−m−τ)
P (m+ τ)F (m+ τ)u(m)dm

+ e
−AcτP (t+ τ)F (t+ τ)u(t)− P (t)F (t)u(t− τ)

= AcZ(t) + e
−AcτP (t+ τ)F (t+ τ)u(t)

(10)

which gives the second conclusion.

The message of Lemma 1 is that if one knows a function P that leads to a time-invariant system when
the input is set to zero, then in practice, we can use the reduction model approach to obtain a new system
without delays. We study the problem of finding P in the next subsection.

Remark 1. Before discussing ways to find P , we remark that similar reasoning applies to systems

ẋ = A(t)x+
� t
t−τ F (�)u(�)d� (11)

with distributed delay in the input and continuous matrix valued functions A and F . To see how, notice that

if Assumption 1 is satisfied, and if we define z by (5) as before and redefine Z to be

Z(t) = z(t) +
� t
t−τ e

Ac(t−m−τ)
P (m+ τ)

�� t
m F (�)u(�)d�

�
dm, (12)

then similar reasoning to the proof of Lemma 1 gives

ż(t) = Acz(t) + P (t)
� t
t−τ F (�)u(�)d� (13)

and then

Ż(t) = AcZ(t) +
�� t

t−τ e
Ac(t−�−τ)

P (�+ τ)d�
�
F (t)u(t) (14)

so we eliminated the distributed delay.

2.2 Particular Case

In order to get a function P for which Assumption 1 is satisfied, we impose checkable conditions on the
corresponding zero input subsystem

ẋ = A(t)x (15)

which we later show how to verify using Floquet theory when A is periodic. We introduce the following
assumption:
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Assumption 2. All solutions of the system (15) are of the form

x(t) = K(t)E(t)x(0), (16)

where K : R → Rn×n and E : R → Rn×n are everywhere invertible functions of class C
1, K−1 is of class

C
1, and E is such that there exists a constant matrix Ec such that

Ė(t)E−1(t) = Ec (17)

holds for all t ≥ 0. Moreover, there is a constant kc > 0 such that

|K(t)|+ |K−1(t)| ≤ kc (18)

for all t ≥ 0.

We can often find functions E satisfying the preceding requirements. For example, they hold if E(t) =
e
Mt

G, where M ∈ Rn×n and G ∈ Rn×n are constant matrices and G is invertible. Indeed, in this case
Ė(t) = Me

Mt
G, E−1(t) = G

−1
e
−Mt and therefore also Ė(t)E−1(t) = M are satisfied. See below for cases

where Assumption 2 is satisfied. We are ready to state and prove the following result:

Lemma 2. Let the system (2) be such that (15) satisfies Assumption 2. Then the change of coordinates

z = L(t)x (19)

with L = K
−1 gives the new system

ż(t) = Ecz(t) + L(t)F (t)u(t− τ) (20)

with a time invariant drift term.

Proof. From (15) and (16), it follows that

ẋ(t) = A(t)K(t)E(t)x(0) (21)

and
ẋ(t) = K̇(t)E(t)x(0) +K(t)Ė(t)x(0) (22)

hold for all x(0) ∈ Rn. This gives

A(t)K(t)E(t) = K̇(t)E(t) +K(t)Ė(t). (23)

Here and in the sequel, all equalities or inequalities are to be understood to hold for all t ≥ 0. Since
E is invertible everywhere, (23) gives K̇(t) + K(t)Ė(t)E−1(t) = A(t)K(t). From (17), it follows that
K̇(t) +K(t)Ec = A(t)K(t). This gives

L(t)K̇(t)L(t) + EcL(t) = L(t)A(t). (24)

Since L(t)K(t) = In for all t, it follows that L(t)K̇(t)+ L̇(t)K(t) = 0. Therefore, (24) gives −L̇(t)K(t)L(t)+
EcL(t) = L(t)A(t). We deduce that L̇(t) = EcL(t)−L(t)A(t). This equality and (18) ensure that Assumption
1 is satisfied with L = P and Ec = Ac. Therefore Lemma 1 applies, which proves Lemma 2.

We next turn to our general ways to find functions K and E that satisfy Assumption 2.

3 Results Based on Floquet’s Theory in Continuous Time

3.1 Theoretical result

In the particular case where the function A is periodic, Floquet’s theory (e.g., [26, Section 3.5]) guarantees
that there are two functions K and E such that Assumption 2 is satisfied. More precisely, thanks to Floquet’s
theory, we can establish the following result:
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Theorem 1. Consider the system (2) and assume that A is periodic of any period T > 0. Then there exist

an everywhere invertible C
1 function H : R → Rn×n that is periodic of period T and a constant matrix

R ∈ Rn×n such that the change of coordinates z = H(t)x transforms (2) into

ż(t) = Rz(t) +H(t)F (t)u(t− τ) (25)

for all t ≥ 0.

Proof. Consider the system ẋ = A(t)x from (15) associated with the system (2). Let X : R → Rn×n be the
fundamental solution of (15) such that X(0) = In, so Ẋ(t) = A(t)X(t) and X(t) is invertible for all t ∈ R.
Then Floquet’s theory (e.g., from [26, Section 3.5]) ensures that there exist a constant matrix R ∈ Rn×n,
and an everywhere invertible C

1 function Q : R → Rn×n that is periodic of period T , such that

X(t) = Q(t)eRt (26)

holds for all t ∈ R. Then Q
−1 is C1, because X is C1 and invertible. By (26), we deduce that Assumption

2 is satisfied with K(t) = Q(t), E(t) = e
Rt, and Ec = R. It follows from Lemma 2 that the change of

coordinates
z(t) = Q

−1(t)x(t) (27)

transforms the system (2) into ż(t) = Rz(t) + Q
−1(t)F (t)u(t − τ). Since Q

−1 is periodic of period T , this
allows us to conclude by setting H = Q

−1.

A challenge in applying Theorem 1 is that determining the function Q is not easy. This fact is a
fundamental limitation of Floquet’s theory. This remark motivates the next subsection.

3.2 More Applied Results Based on Floquet’s Theory

We again consider the system (15) in the case where A is periodic of some period T . Then the decomposition
(26) of the fundamental matrix gives In = X(0) = Q(0) = Q(T ), so Q(T ) = In and X(T ) = e

RT . Through
numerical simulations, we can determine X(T ), which is invertible. Recalling from [10] that an invertible
real matrix has a real matrix logarithm (denoted by log) if and only if each Jordan block in its Jordan
decomposition corresponding to a negative eigenvalue occurs an even number of times, it follows that if
X(T ) has no eigenvalues that are contained in (−∞, 0), then we can set R = 1

T log(X(T )); see [15, Section
1.6] for the definition of and formulas for matrix logarithms of invertible matrices.

Next, we return to (2). Let us show how we can determine a function Q such that X(t) = Q(t)eRt,
which makes it possible to apply Theorem 1 in practice. Since X(t) = Q(t)eRt is a fundamental solution
of ẋ = A(t)x, we get Ẋ(t) = Q̇(t)eRt + Q(t)Re

Rt = A(t)Q(t)eRt, so cancelling e
Rt from both sides gives

Q
−1(t)Q̇(t)Q−1(t) +RQ

−1(t) = Q
−1(t)A(t). This gives

RH(t)−H(t)A(t) = −Q
−1

Q̇(t)Q−1(t) = Ḣ(t), (28)

where H = Q
−1, and where the last equality follows by computing the derivative of Q(t)Q−1(t) using the

product rule. Therefore, we consider the system (2) with the dynamic extension �̇(t) = R�(t)−�(t)A(t).
Then, since Q(0) = In, it follows that when �(0) = In, we have H = �. Hence, through a simple dynamic
extension with the identity as the initial condition, we have H.

Then Theorem 1 implies that the change of coordinates z(t) = H(t)x(t) gives

ż(t) = Rz(t) +�(t)F (t)u(t− τ). (29)

Therefore, when we apply the reduction model approach, we consider the operator Z from (7), namely,

Z(t) = z(t) +
� t
t−τ e

R(t−m−τ)
�(m+ τ)F (m+ τ)u(m)dm. (30)

Although this involves future values of �, the function � is periodic of period T . Therefore, we can replace
�(m+ τ) by �(m+ τ − kT ), where k is a sufficiently large integer. After such a substitution, (30) is only
valid for sufficiently large t. Then the reasoning that gave the delay free system (8) gives

Ż(t) = RZ(t) + e
−Rτ

�(t+ τ − kT )F (t+ τ)u(t). (31)
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This means that if we stabilize this system using a state feedback, it will depend on the past � values.
Alternatively, we can consider the system






ẋ(t) = A(t)x(t) + F (t)u(t− τ)
�̇(t) = R�(t)−�(t)A(t)

�(lT ) = In , l ∈ {0, 1, 2, . . .}
(32)

to obtain the closed loop system.

Remark 2. If we consider the system ẋ(t) = f(x(t)) with x valued in R2 with a periodic solution r(t) of

some period T and with ṙ(0) �= 0 and evaluate the linear approximation around this solution, then for the

corresponding linearized system ẋ = A(t)x (where A(t) is the Jacobian matrix A(t) = Df(r(t))), we know

that 1 is one of the eigenvalues of the corresponding matrix e
RT . This follows because ṙ(t) is a solution of

ẋ = A(t)x, so ṙ(0) = ṙ(T ) = Q(T )eRT
ṙ(0) = e

RT
ṙ(0). Then, using the relation

ρ1ρ2 = exp

�� T

0
trace(A(�))d�

�
(33)

between the eigenvalues ρ1 and ρ2 of eRT that is provided by Floquet’s theory (e.g., [3, Proposition 2.39]),

we get ρ1 = 1 and

ρ2 = exp

�� T

0
trace(A(�))d�

�
. (34)

Therefore one does not need to use a computer to get the two eigenvalues of e
RT to compute the matrix

logarithm for the Floquet theory decomposition of the fundamental matrix.

Before illustrating our theory in the continuous time case in Section 6, we provide the following discrete
time analogues of the preceding results.

4 Preliminary Results in Discrete Time

We propose a more general version of Floquet’s theory for discrete time systems than what was developed
in [13] and [28]. We wish to design delay compensating stabilizing controllers for systems of the form

xk+1 = Akxk +Bkuk−r (35)

where xk ∈ Rn is the state, uk ∈ Rp is the control, and r ∈ N is the delay. We first consider the system

xk+1 = Akxk (36)

with k ∈ N and xk valued in Rn. Since our extension does not require Ak to be periodic, we believe that it is
new. Moreover, our changes of coordinates are explicit in many interesting cases. The work [28] shows that
in the periodic context, matrices similar to the Rk’s defined below can be found, but in [13], the change of
coordinates is not explicit, and [13, 28] do not cover reduction model controls. We introduce two assumptions.

Assumption 3. For all k ≥ 0, the matrix Ak is invertible.

Assumption 3 allows us to introduce a sequence of matrices defined by

Pk =
k−1�

i=0

A
−1
i (37)

for all k ≥ 1 and P0 = In. Then Pk is invertible for all k ∈ N. Our second assumption is:

Assumption 4. There are an invertible matrix A∗ ∈ Rn×n and a real number c > 0 such that the sequence

Rk = A
k
∗Pk (38)

satisfies

|R−1
k |+ |Rk| ≤ c (39)

for all k ∈ N.
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We prove the following:

Lemma 3. Let Assumptions 3-4 hold. Then for each solution sequence xk of (36), the sequence

zk = Rkxk (40)

satisfies

zk+1 = A∗zk (41)

for all k.

Proof. We have zk+1 = Rk+1Akxk = Rk+1AkR
−1
k zk. Here and in the sequel, all equalities or inequalities

should be understood to hold for all integers k ≥ 0, unless otherwise indicated. Our definitions give

Rk+1AkR
−1
k = A

k+1
∗

�
k�

i=0

A
−1
i

�
AkP

−1
k (Ak

∗)
−1 = A

k+1
∗

�
k−1�

i=0

A
−1
i

�
P

−1
k (Ak

∗)
−1 = A∗ . (42)

By right multiplying through (42) by zk, it follows that zk is solution of (41), which proves the lemma.

If A∗ is known, then Rk is given by an explicit formula. Finding A∗ can be difficult. However, if Ak

is periodic with some period p, and if Ap−1Ap−2 . . . A0 has no eigenvalues that lie in the interval (−∞, 0],
then [5] and [15, Theorem 7.2] provide a matrix A∗ ∈ Rn×n such that A

p
∗ = Ap−1Ap−2 . . . A0, as well as

algorithms for computing this pth root matrix. Since (42) gives Rk+1 = A∗RkA
−1
k and R1 = A∗A

−1
0 , we get

Rk = A
k
∗A

−1
0 A

−1
1 . . . A

−1
k−1 for all k ≥ 1, which gives Rp = In and periodicity of Rk. Hence, this A∗ satisfies

Assumption 4. To check that this pth root matrix is invertible, notice that if v ∈ Rn \ {0} were in the null
space of A∗, then 0 = A

p
∗v = Ap−1(Ap−2 . . . A0v), which contradicts the invertibility of the Ak’s. See Section

6 for a nonperiodic example where we find A∗.

5 Model Reduction in Discrete Time

5.1 Main Result

In this section, we use Lemma 3 to extend the reduction model approach to a general family of systems of
the type (35). We introduce the following assumption, which is a natural analogue of the usual requirement
of controllable pairs of coefficient matrices, generalized to time-varying systems with delays:

Assumption 5. The system (35) is such that the sequence Ak satisfies Assumptions 3-4, and the sequence

Bk is bounded. Also, there is a sequence Kk such that the sequence KkR
−1
k is bounded and such that the

system

ζk+1 = Hkζk, where Hk = Ak +R
−1
k+1Rk+r+1Bk+rKk (43)

is uniformly exponentially stable, where Rk is the sequence defined in (38).

We prove the following:

Theorem 2. Assume that the system (35) satisfies Assumption 5. Then we can find positive constants c̄1

and c̄2 such that all trajectories of (35), in closed loop with

uk = KkR
−1
k

�
A

r
∗Rkxk +

r�

i=1

A
i−1
∗ Rk+r−i+1Bk+r−iuk−i

�
, (44)

satisfy |xk| ≤ c̄1e
c̄2(k0−k)(|xk0 |+ |u|[k0−r,k0]) for all integers k0 ≥ 1 and k ≥ k0.

Proof. We can use (42) to show that the change of coordinates zk = Rkxk applied to (35) gives

zk+1 = A∗zk +Gkuk−r, (45)

where Gk = Rk+1Bk. Since A∗ is time-invariant, we can adapt ideas from [12] to the problem of stabilizing
the system (45), as follows.
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We use the operator

Γk = A
r
∗zk +

r�

i=1

A
i−1
∗ Gk+r−iuk−i. (46)

Then,

Γk+1 = A
r
∗(A∗zk +Gkuk−r) +

r�

i=1

A
i−1
∗ Gk+1+r−iuk+1−i

= A
r+1
∗ zk +A

r
∗Gkuk−r +

r�

i=2

A
i−1
∗ Gk+1+r−iuk+1−i +Gk+ruk

= A
r+1
∗ zk +

r+1�

i=2

A
i−1
∗ Gk+1+r−iuk+1−i +Gk+ruk.

(47)

Using the definition of Γk, we get

Γk+1 = A∗

�
Γk −

r�

i=1

A
i−1
∗ Gk+r−iuk−i

�
+

r+1�

i=2

A
i−1
∗ Gk+1+r−iuk+1−i +Gk+ruk

= A∗Γk −
r�

i=1

A
i
∗Gk+r−iuk−i +

r�

i=1

A
i
∗Gk+r−iuk−i +Gk+ruk = A∗Γk +Gk+ruk.

(48)

Then we can choose uk = KkR
−1
k Γk. This feedback is equivalent to the feedback in (44). Then (42) gives

Γk+1 =
�
A∗ +Gk+rKkR

−1
k

�
Γk

=
�
Rk+1AkR

−1
k +Gk+rKkR

−1
k

�
Γk

= Rk+1

�
Ak +R

−1
k+1Rk+r+1Bk+rKk

�
R

−1
k Γk = Rk+1HkR

−1
k Γk.

(49)

From Assumption 5, it follows that R
−1
k Γk is solution of a uniformly exponentially stable system. Hence,

there are constants c1 > 0 and c2 > 0 such that for all k0 ≥ 1 and k ≥ k0, the inequality

|Γk| ≤ c1e
c2(k0−k)|Γk0 | (50)

is satisfied. Recalling that the sequence KkR
−1
k is bounded, we conclude that there is a constant c3 > 0 such

that for all k0 ≥ 1 and k ≥ k0, the inequality

|uk| ≤ c3e
c2(k0−k)|Γk0 | (51)

is satisfied, namely, c3 = c1 supk |KkR
−1
k |. Next, observe that (46) gives

xk = R
−1
k

�
(Ar

∗)
−1Γk − (Ar

∗)
−1

r�

i=1

A
i−1
∗ Gk+r−iuk−i

�
. (52)

Also, the boundedness of the sequences Bk and Rk gives boundedness of the sequence Gk. From (50), (51),
(52) and the properties of the matrices Rk, we can conclude.

Remark 3. If we know a strict quadratic Lyapunov function for (43), then, by adapting ideas of [25], we

can build a function of Lyapunov-Krasovskii functional type for (35) in closed loop with (44).

5.2 Important Remark on Discretizations

Consider a continuous time time-varying system

ẋ(t) = M(t)x(t) +N(t)u(t− τ) (53)

where the delay τ > 0 is constant. Assume that M is periodic, and that M and N are continuous. Since we
do not assume that a fundamental solution of ξ̇(t) = M(t)ξ(t) is known, no standard stabilization technique
available in the literature applies.
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It is natural to approximate the system (53) by

ẋ(t) = M(tk)x(t) +N(tk)u(tk−r), (54)

where tk+1 − tk = ν, ν > 0 is a sufficiently small constant, and r > 0 is an integer. By integrating (54), we
obtain

x(tk+1) = e
νM(tk)x(tk) +

�� tk+1

tk

e
M(tk)(tk+ν−�)d�

�
N(tk)u(tk−r). (55)

That way, we can handle cases which are not covered by the results of our work [24], e.g., because we do
not need an upper bound on the allowable delays, nor do we need a formula for the fundamental matrix for
ẋ = M(t)x to use in the reduction model control. Notice that, to simplify, we can approximate (55) by

xk+1 = [In + νM(tk)]xk + νN(tk)utk−r . (56)

If ν is sufficiently small, then all of the matrices Ak = In + νM(tk) are invertible. Moreover, we can select
the sequence tk so that the sequence Ak is periodic.

6 Examples

6.1 Continuous Time Example

Consider the system
ẋ(t) =

�
sin(t) + 1

2

�
x(t) + u(t− τ), (57)

where x and u are scalar valued. It is unstable when the input is set to zero, but Theorem 1 applies to (57).
In fact, the fundamental matrix of ẋ =

�
sin(t) + 1

2

�
x is

X(t) = e
1
2 t+1

e
− cos(t)

. (58)

Therefore, Theorem 1 leads us to consider the change of coordinates (27), which in our case leads to our
choice z = e

cos(t)
x. It yields

ż = 1
2z + e

cos(t)
u(t− τ). (59)

Applying the reduction model approach from Lemma 1, we obtain the undelayed system

Ż(t) = 1
2Z(t) + e

cos(t+τ)− τ
2 u(t), (60)

where
Z(t) = e

cos(t)
x(t) +

� t
t−τ e

1
2 (t−m−τ)

e
cos(m+τ)

u(m)dm. (61)

This system is asymptotically stabilized by

u(t) = −e
− cos(t+τ)+ τ

2 Z(t) = −e
− cos(t+τ)+ τ

2

�
e
cos(t)

x(t) +
� t
t−τ e

1
2 (t−m−τ)

e
cos(m+τ)

u(m)dm
�
, (62)

which gives the closed loop system Ż(t) = − 1
2Z(t).

6.2 Discrete Time Example

Consider the system (35) with Bk = 1 for all k and with the sequence of real numbers Ak defined as follows:

A2l = 2 and A2l+1 =
2l2 + 1

l2 + 1
for all l ≥ 0 (63)

Observe that this sequence is not periodic. With the notation of Section 4, we have P0 = 1, P1 = 1
2 , and the

following for all l ≥ 1:

P2l+1 =
2l�

i=0

A
−1
i =

1

2l+1

l−1�

i=0

i
2 + 1

2i2 + 1
and P2l =

2l−1�

i=0

A
−1
i = P2l+1A2l =

1

2l

l−1�

i=0

i
2 + 1

2i2 + 1
(64)
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Let us choose A∗ = 2. Then, for all l ≥ 1, the functions Rk = A
k
∗Pk from Assumption 4 are

R2l+1 = 22l+1 1

2l+1

l−1�

i=0

i
2 + 1

2i2 + 1
= 2l

l−1�

i=0

i
2 + 1

2i2 + 1
= R2l. (65)

Consequently, for all l ≥ 1, we have

0 < R2l = R2l+1 ≤ 2l
l−1�

i=0

i
2 + 1

2i2 + 1
= exp

�
l−1�

i=0

ln

�
2i2 + 2

2i2 + 1

��
= exp

�
l−1�

i=0

ln

�
1 +

1

2i2 + 1

��

≤ exp

�
l−1�

i=0

1

2i2 + 1

�
≤ exp

�
1 +

1

2

∞�

i=1

1

i2

�
< ∞

(66)

and

0 < R
−1
2l = R

−1
2l+1 ≤ 1

2l

l−1�

i=0

2i2 + 1

i2 + 1
≤ 1. (67)

Hence, we can satisfy the bound requirement (39) from Assumption 4 with the bound

c = exp

�
1 +

1

2

∞�

i=1

1

i2

�
. (68)

We now apply Theorem 2 to the corresponding discrete time system (35), with the preceding choices of
Ak, Bk = 1 for all k, and r = 4. With the choices

Kk = − Ak

R
−1
k+1Rk+5

, (69)

the matrices Hk from Assumption 5 become

Hk = Ak +R
−1
k+1Rk+5Kk = 0, (70)

so Assumption 5 is satisfied. Then Theorem 2 provides us with the stabilizing control law

uk = −16
AkRk+1

Rk+5
xk −

4�

i=1

AkRk+1Rk+5−i

RkRk+5
2i−1

uk−i. (71)

Using our formulas (65) for the Rk’s and (71), we obtain the formulas

u2l = −32
R2l

R2l+4
x2l − 2

4�

i=1

R2l+5−i

R2l+4
2i−1

u2l−i

= 2

�
2(l + 1)2 + 1

(l + 1)2 + 1

�
−2

2l2 + 1

l2 + 1
(2x2l + u2l−4)− u2l−2 − 2u2l−3

�
− u2l−1

�
and

u2l+1 = −2l2 + 1

l2 + 1

�
16

R2l+2

R2l+6
x2l+1 +

4�

i=1

R2l+2R2l+6−i

R2l+1R2l+6
2i−1

u2l+1−i

�

= −2l2 + 1

l2 + 1

�
4

�
l+2�

i=l+1

2i2 + 1

i2 + 1

�
x2l+1 +

l
2 + 1

2l2 + 1

2(l + 2)2 + 1

(l + 2)2 + 1
(u2l + 2u2l−1)

+ 2
l
2 + 1

2l2 + 1

l+2�

i=l+1

2i2 + 1

i2 + 1
(u2l−2 + 2u2l−3)

�

(72)

for all l, which ensure the desired exponential stability property from Theorem 2.
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7 Conclusions

We provided new reduction model method input delay compensating controllers for time-varying continuous
and discrete time systems, using Floquet’s theory and its extensions. Compared with other reduction model
methods for time-varying continuous time linear systems (such as our recent work [24]), two potential ad-
vantages of our approach are that (a) we do not require closed form expressions for the fundamental matrix
for the corresponding uncontrolled drift systems and (b) our new results allow arbitrarily long input delays.
In future works, we will investigate stability problems for systems with several and time-varying delays.
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