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New Finite-Time and Fast Converging Observers with a Single Delay

Frédéric Mazenc and Michael Malisoff

Abstract— We provide new reduced order observer designs
for a key class of nonlinear dynamics. When continuous output
measurements are available, we prove that our observers
converge in a fixed finite time in the absence of perturbations,
and we prove a robustness result under uncertainties in the
output measurements and in the dynamics, which bounds the
observation error in terms of bounds on the uncertainties. The
observers contain a dynamic extension with only one pointwise
delay, and they use the observability Gramian to eliminate an
invertibility condition that was present in earlier finite time
observer designs. We also provide analogs for cases where
the measurements are only available at discrete times, where
we prove exponential input-to-state stability. We illustrate the
advantages of our new observers using a DC motor dynamics.

I. INTRODUCTION

Finite and fixed time observers present an obvious advan-
tage by providing estimates of the state variables of systems
in finite time [5]. Fixed time observers are special cases of
finite time observers where the finite convergence time is
independent of the initial state. Several types of fixed time
observers are available. Some use discontinuous dynamic
extensions, such as [12]. Others use time-varying high gains
[3]. Others use delays to solve output feedback stabilization
problems or homogeneity conditions [14].

In earlier works, e.g., [2], [7], and [13], fixed time ob-
servers are designed using dynamic extensions and a delay
τ . The designs rely on the invertibility of a matrix which
can be problematic because it is not invertible for all τ ’s and
because, when it exists, the inverse can contain big terms
when the delays are close to values where it is not invertible.
We refer to such delays as artificial delays, because although
they are not present in the given dynamics, they occur in the
observers. The work [11] provides an exact calculation of
state variables using a formula with several delays and the
inversion of a matrix, which can also be problematic because
it may be noninvertible for some delay values.

To overcome these shortcomings, we revisit the problem of
estimating the state variables of a system in finite time using
an artificial delay. For a family of unperturbed systems that
are affine in the unmeasured state, we propose a new family
of observers that converge in fixed time when continuous
output measurements are available. The observers only esti-
mate unmeasured variables, and so are reduced order. A key
aspect of the observer design we propose is that it relies on
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the introduction of only one pointwise delay, which can be
arbitrarily chosen. The delay is the fixed convergence time.
Our fundamental tool is the observability Gramian. We also
establish a robustness result for the observers with respect to
additive disturbances on the output measurement and on the
dynamics. We then provide an analog for cases where the
measurements are only available at discrete instants, using
the key ideas of the pioneering paper [4]. In this case, the
exponential convergence rate is proportional to the logarithm
of the size of the largest sampling interval.

We use standard notation, which we simplify when no
confusion would arise. The dimensions of our Euclidean
spaces are arbitrary, unless we indicate otherwise. The stan-
dard Euclidean 2-norm, and its induced matrix norm, are
denoted by | · |, | · |∞ is the usual L∞ sup norm, and | · |S
denotes the essential supremum over any set S. We use I to
denote an identity matrix of arbitrary dimension.

II. STUDIED SYSTEM

We consider the class of continous-time systems{
χ̇(t) = Mχ(t) + Ψ(Nχ(t), t) + δ1(t)
Y (t) = Nχ(t) + δ2(t)

(1)

where χ is valued in Rn, the output Y is valued in Rq , the
time dependence in Ψ can represent the effects of a control,
and the locally essentially bounded measurable functions δ1
and δ2 represent disturbances. We assume that (1) is forward
complete, and that Ψ is locally Lipschitz. We also assume
that the pair (M,N) is observable and that N has full rank.

From [6, pp. 304-306], we can deduce that there is a linear
change of coordinates which yields the system

ξ̇1(t) = A1ξ1(t) + F1(Y (t)− ε3(t), t) + ε1(t)

ξ̇2(t) = A2ξ1(t)− kξ2(t) + F2(Y (t)− ε3(t), t)
+ ε2(t)

Y (t) = ξ2(t) + ε3(t)

(2)

which is affine in the unmeasured variable ξ1, where ξ1 is
valued in Rn−q , ξ2 is valued in Rq , A1 ∈ R(n−q)×(n−q),
A2 ∈ Rq×(n−q), the pair (A1, A2) is observable, and k > 0
is a constant such that A1 +kI is invertible. Then F1 and F2

are locally Lipschitz, and the measurable locally essentially
bounded functions εi represent disturbances. Although the
−kξ2(t) term can be incorporated into the function F2 in (2),
we keep it separate to facilitate the analysis that follows, and
we write ξ2(t) as Y (t)−ε3(t) in the Fi’s in (2) to facilitate our
study of the key special case where ε3 is the zero function.

Changing the tuning parameter k can be done by changing
F2. One can always choose it such that A1 +kI is invertible,
by taking k larger than the spectral radius of A1.



III. CONTINUOUS MEASUREMENT CASES

A. Assumptions and Statement of Theorem

In this section, we construct an observer for the system
(2) which will provide our fixed time convergence, under
the following assumption:

Assumption 1: Either (i) there are two constants K1 ≥ 0
and K2 ≥ 0 such that

|Fi(a, t)− Fi(b, t)| ≤ Ki|a− b| for i = 1, 2 (3)

for all t ≥ 0 and a and b in Rq or (ii) ε3(t) = 0 for all t ≥ 0.
Let us introduce any positive constant τ and the function

λ : R→ Rq×(n−q) defined by

λ(r) = A2(A1 + kI)−1
[
I − e(A1+kI)r

]
(4)

which is well-defined because we choose k > 0 such that
the matrix A1 + kI is invertible. We also use the matrix

S =
∫ 0

−τ λ(m)>λ(m)dm ∈ R(n−q)×(n−q). (5)

In the appendix below, we prove that since the pair (A1, A2)
is observable, S is invertible. Then we define the matrices

N =
∫ 0

−τ λ(m)>dm ∈ R(n−q)×q,

R = S−1N ∈ R(n−q)×q, and

H = ((A1 + kI)−1)>A>2 ∈ R(n−q)×q
(6)

and we introduce the dynamic extension
˙̂
ξ1(t) = A1ξ̂1(t) + F1(Y (t), t)
˙̂
ξ2(t) = A2ξ̂1(t)− kξ̂2(t) + F2(Y (t), t)

ψ̇1(t) = −kψ1(t) +H[Y (t)− ξ̂2(t)]

ψ̇2(t) = −(A>1 + 2kI)ψ2(t) +H[Y (t)− ξ̂2(t)]

(7)

where ξ̂1 is valued in Rn−q , ξ̂2 is valued in Rq , and ψ1 and
ψ2 are valued in Rn−q . Finally, in terms of the functions

∆∗(p) = eA1p − e−kpI and
∆∗∗(p, q) =

∫ q
p
eA1(p−`)ε1(`)d`

(8)

where k is from (2), we let ε‡ be the Rn−q-valued function

ε‡(t) = S−1
∫ t
t−τ λ(s− t)>H>∆∗(t− s)∆∗∗(s, t)ds

−S−1
∫ t
t−τ λ(s− t)>

[
−
∫ t
s
ek(m−t)A2∆∗∗(m, s)dm

+
∫ t
s
ek(`−t)ε2(`)d`

]
ds.

(9)

In terms of the preceding notation and the functions

ε]i(m) = Ki|ε3(m)|+ |εi(m)| (10)

for i = 1, 2 and the constants

S = |S−1| and c4(τ) = τS|A2|e|A1|τ

+S
∣∣A2(A1 + kI)−1

∣∣ [e|A1|τ + 1
]
e|A1|τ ,

(11)

our first theorem is then as follows:
Theorem 1: Let (2) satisfy Assumption 1. Then, with the

preceding notation, when ε3 is the zero function, we have

ξ1(t) = ξe(t) + ε‡(t) (12)

for all t ≥ τ , where

ξe(t) = ξ̂1(t) +R(ξ2(t)− ξ̂2(t))

+S−1
[
e−kτψ1(t− τ)− ψ1(t)

]
+S−1

[
ψ2(t)− e−(A>

1 +2kI)τψ2(t− τ)
]
.

(13)

Also, if F1 and F2 satisfy (3) and ε3 6= 0, then

ξ1(t) = ξe(t) + εF(t) (14)

holds for all t ≥ τ where εF is a function such that

|εF(t)| ≤ c4(τ)
∫ t
t−τ |λ(s− t)|

∫ t
s
ε]1(m)dmds

+ S
∫ t
t−τ |λ(s− t)|

∫ t
s
ε]2(m)dmds

+ S|H|
(

1+e|A
>
1 +2kI|τ

) ∫ t
t−τ |ε3(s)|ds

(15)

for all t ≥ τ ,
Remark 1: A key feature of the observer ξe we propose

is that it incorporates only one delay τ . This delay can be
any positive value because for any τ > 0, S is invertible.

Remark 2: Since

|λ(r)| ≤ |A2(A1 + kI)−1|
[
1 + e|A1+kI||r|

]
(16)

for all r ∈ R, we deduce that there are two constants
c\ ≥ 0 and c♦ ≥ 0 such that |ε‡(t)| ≤ c\|(ε1, ε2)|[t−τ,t]
and |εF(t)| ≤ c♦|(ε1, ε2, ε3)|[t−τ,t] for all t ≥ τ .

B. Proof of Theorem 1

We introduce the variables y = Y − ξ̂2 and

∆i(t) = Fi(Y (t)− ε3(t), t)− Fi(Y (t), t) and

xi(t) = ξi(t)− ξ̂i(t) for i = 1, 2.
(17)

Then simple calculations based on (2) and (7) give ẋ1(t) = A1x1(t) + ∆1(t) + ε1(t)
ẋ2(t) = A2x1(t)− kx2(t) + ∆2(t) + ε2(t)
y(t) = x2(t) + ε3(t).

(18)

Here and in the sequel, all equalities and inequalities hold
for all t ≥ 0, unless otherwise indicated.

By applying variation of parameters to (18), we obtain

x1(t) = eA1(t−s)x1(s)

+
∫ t
s
eA1(t−m)[∆1(m) + ε1(m)]dm

(19)

and

x2(t)− e−k(t−s)x2(s) = ρ1(t, s)
+A2(A1 + kI)−1

[
eA1(t−s) − e−k(t−s)I]x1(s)

(20)

for all s ≥ 0 and t ≥ s, where

ρ1(t, s) =
∫ t
s
ek(`−t)[∆2(`) + ε2(`)]d`

+
∫ t
s
ek(m−t)A2

∫m
s
eA1(m−`)[∆1(`) + ε1(`)]d`dm,

(21)

and where we used the fact that∫ t
s
ek(m−t)A2e

A1(m−s)x1(s)dm

= ek(s−t)A2

∫ t
s
e(A1+kI)(m−s)dmx1(s)

= ek(s−t)A2(A1 + kI)−1
(
e(A1+kI)(t−s)−I

)
x1(s).

(22)
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According to (19), we have

x1(s) =

eA1(s−t)x1(t)−
∫ t
s
eA1(s−m)[∆1(m) + ε1(m)]dm,

(23)

and our formulas (4) and (8) give λ(s − t) = H>∆∗(t −
s)eA1(s−t). Hence, we can substitute (23) into (20) to obtain

λ(s− t)x1(t) = x2(t)− e−k(t−s)x2(s) + ρ2(t, s) (24)

where ρ2(t, s) = −ρ1(t, s)

+H>∆∗(t− s)
∫ t
s
eA1(s−m)[∆1(m) + ε1(m)]dm.

(25)

By left multiplying both sides of (24) by λ(s−t)>, we obtain

λ(s− t)>λ(s− t)x1(t) = λ(s− t)>ρ2(t, s)

+λ(s− t)>x2(t)− e−k(t−s)λ(s− t)>x2(s).
(26)

By integrating (26) with respect to s over [t−τ, t], we obtain∫ t
t−τ λ(s− t)>λ(s− t)dsx1(t)

=
∫ t
t−τ λ(s− t)>dsx2(t)

−
∫ t
t−τ e

−k(t−s)λ(s− t)>x2(s)ds

+
∫ t
t−τ λ(s− t)>ρ2(t, s)ds for all t ≥ τ.

(27)

Hence, our choices in (5)-(6), and the invertibility of S, give

x1(t) = Rx2(t) + S−1
∫ t
t−τ λ(s− t)>ρ2(t, s)ds

−S−1
∫ t
t−τ e

−k(t−s)λ(s− t)>x2(s)ds.
(28)

Using the formula for λ from (4), we obtain

x1(t) = Rx2(t) + S−1
∫ t
t−τ λ(s− t)>ρ2(t, s)ds

−S−1
∫ t
t−τ e

−k(t−s)
[
I − e(A>

1 +kI)(s−t)
]
Hx2(s)ds

(29)

with H defined in (6). This equality can be rewritten as

x1(t) = Rx2(t) + S−1
∫ t
t−τ λ(s− t)>ρ2(t, s)ds

−S−1
∫ t
t−τ e

−k(t−s)Hx2(s)ds

+S−1
∫ t
t−τ e

−(A>
1 +2kI)(t−s)Hx2(s)ds.

(30)

Since ξ2(s) = Y (s)− ε3(s), we have Y − ξ̂2 = x2 + ε3, so
we deduce from (7) and (30) that

x1(t) = Rx2(t)− S−1
[
ψ1(t)− e−kτψ1(t− τ)

]
+S−1

[
ψ2(t)− e−(A>

1 +2kI)τψ2(t− τ)
]

+ εF(t),
(31)

where εF(t) = S−1
[∫ t
t−τ λ(s− t)>ρ2(t, s)ds

+
∫ t
t−τ e

−k(t−s)Hε3(s)ds

−
∫ t
t−τ e

−(A>
1 +2kI)(t−s)Hε3(s)ds

]
.

(32)

Hence, (13) and (17) give ξ1 = ξe + εF for all t ≥ τ .
Recalling the formula for ρ2 in (25) and (17) and our

Lipshitz condition (3) on the Fi’s, it follows that (32) satisfies

|εF(t)| ≤ S
∫ t
t−τ |λ(s− t)|ρ1(t, s)|ds

+S
∫ t
t−τ |λ(s− t)||H>|J1(t, s)ds

+S|H|
∫ t
t−τ e

−k(t−s)|ε3(s)|ds
+S|H|

∫ t
t−τ e

|A>
1 +2kI|(t−s)|ε3(s)|ds

(33)

and so also

|εF(t)| ≤ S
∫ t
t−τ |λ(s− t)|ρ1(t, s)|ds

+S
∫ t
t−τ |λ(s− t)||H>|J2(t, s)ds

+S|H|
∫ t
t−τ J3(t− s)|ε3(s)|ds, where

(34)

J1(t, s)

= |∆∗(t− s)|
∫ t
s
e|A1|(m−s)[|∆1(m)|+ |ε1(m)|]dm (35)

and the function ∆∗ was defined in (8), and where

J2(t, s) =[
e|A1|τ + 1

] ∫ t
s
e|A1|(m−s)[K1|ε3(m)|+ |ε1(m)|]dm

(36)

and J3(r) = e−kr + e|A
>
1 +2kI|r, and where S is defined in

(11). Also, when ε3 = 0, we can use (17) to get ∆1 = ∆2 =
0, so our formula (9) for ε‡ and (21) and (25) give εF = ε‡
when ε3 = 0. Hence, since the right side of (15) is an upper
bound for the right side of (34), this allows us to conclude.

IV. DISCRETE MEASUREMENTS CASES

A. Assumptions and Statement of Theorem

Although the observer from the preceding section enjoys
fixed time convergence and robustness properties, it requires
continuous measurements of the output, which might not
always be available in practice. Therefore, in this section,
we consider the case where the variables are only measured
at discrete instants. We propose an observer which combines
the one of Theorem 1 and the technique of [4].

Let tj be a sequence such that t0 = 0 and such that there
are two constants T > 0 and T > T such that

T ≤ tj+1 − tj ≤ T for all j ≥ 0. (37)

We continue the notation from Section III except we consider
ξ̇1(t) = A1ξ1(t) + F1(ξ2(t), t) + ε1(t)

ξ̇2(t) = A2ξ1(t)− kξ2(t) + F2(ξ2(t), t)
+ ε2(t)

Y (tj) = ξ2(tj) + ε3(tj) for all j ≥ 0,

(38)

under the assumption that F1 and F2 satisfy (3) and where
k is selected as in Section II. We also use these constants:

ς1 = S̄|A2|e|A1|τ

k2

∫ 0

−τ |λ(s)|(eks − sk − 1)ds

ς2 = S
k

∫ 0

−τ |λ(s)|(1− eks)ds
ς3 = Sτe|A1|τ |H>|

∫ 0

−τ |λ(s)|(e|A1|τ + e−ks)ds

ς4 = S|H|
(

1
k (1− e−kτ ) + τe|A

>
1 +2kI|τ

) (39)

where H is from (6) as before, and τ satisfies the require-
ments from Section II. We introduce the dynamic extension

˙̂
ξ1(t) = A1ξ̂1(t) + F1(ω(t), t)
˙̂
ξ2(t) = A2ξ̂1(t)− kξ̂2(t) + F2(ω(t), t)

ψ̇1(t) = −kψ1(t) +H[ω(t)− ξ̂2(t)]

ψ̇2(t) = −(A>1 + 2kI)ψ2(t) +H[ω(t)− ξ̂2(t)]

ω̇(t) = A2ξe(t)− kω(t) + F2(ω(t), t)

for all t ∈ [tj , tj+1) and j ≥ 0

ω(tj) = Y (tj) for all j ≥ 0

(40)
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where ξe is defined as in (13). We prove:
Theorem 2: Let the constant T in (37) be such that

Tµ < 1, where (41)

µ = |A2|q1+k+K2 and q1 = (ς1+ς3)K1+ς2K2+ς4 (42)

using the constants (39). Then we can find positive constants
a1 and a2 such that all solutions of (38) and (40) satisfy

|ξ1(t)− ξe(t)| ≤ a1|ξ2 − ω|[r−2τ−T ,r]e
ln(Tµ)
τ+T

(t−r)

+a2 sup`∈[r−T−2τ,t] [|ε1(`)|+ |ε2(`)|+ |ε3(`)|]
(43)

for all r ≥ 2τ + T and t ≥ r + τ .
Remark 3: The inequality (43) is of ISS type because

ln(Tµ)
τ+T

< 0, (44)

by (41). Moreover, since µ is independent of T , the left side
of (44) converges to −∞ as T → 0+. Therefore, we can
have arbitrarily large rates of convergence of the estimation
error |ξ1(t)− ξe(t)| to 0 when the εi’s are zero, by choosing
the sample times ti such that T is small enough.

B. Proof of Theorem 2

Our proof will use the variables

ω̃(t) = ξ2(t)− ω(t), and xi(t) = ξi(t)− ξ̂i(t)
and κi(t) = Fi(ξ2(t), t)− Fi(ω(t), t) for i = 1, 2.

(45)

Then ω − ξ̂2 = ξ2 − ω̃ − ξ̂2 = x2 − ω̃, so we obtain

ẋ1(t) = A1x1(t) + κ1(t) + ε1(t)

ẋ2(t) = A2x1(t)− kx2(t) + κ2(t) + ε2(t)

ψ̇1(t) = −kψ1(t) +Hx2(t)−Hω̃(t)

ψ̇2(t) = −(A>1 + 2kI)ψ2(t) +Hx2(t)−Hω̃(t)
˙̃ω(t) = A2[ξ1(t)−ξe(t)]−kω̃(t)+κ2(t)+ε2(t)

for all t ∈ [tj , tj+1) and j ≥ 0

ω̃(tj) = −ε3(tj) for all j ≥ 0.

(46)

We also use the Rn−q-valued variables

γ1(t) = −S−1
∫ t
t−τ λ(s− t)>H>∆∗(t− s)Ja(t, s)ds

−S−1
∫ t
t−τ λ(s− t)>

∫ t
s
ek(m−t)A2Ja(s,m)dmds

−S−1
∫ t
t−τ λ(s− t)>

∫ t
s
ek(`−t)[κ2(`) + ε2(`)]d`ds,

(47)

γ2(t) = −S−1
∫ t
t−τ e

−k(t−s)Hω̃(s)ds

+S−1
∫ t
t−τ e

(A>
1 +2kI)(−t+s)Hω̃(s)ds,

(48)

and

xa(t) = Rx2(t)− S−1
[
ψ1(t)− e−kτψ1(t− τ)

]
+S−1

[
ψ2(t)− e−(A>

1 +2kI)τψ2(t− τ)
]
,

(49)

where Ja(s,m) =
∫m
s
eA1(m−`)[κ1(`) + ε1(`)]d`. (50)

The rest of the proof of the theorem consists of two steps. In
the first step, we prove that the preceding variables satisfy

ξ1(t) = ξe(t) + γ1(t) + γ2(t) (51)

for all t ≥ τ . In the second step, we bound γ1(t) + γ2(t) by
the right side of (43) for suitable values of r and t.

First Step. Since the (x1, x2)-dynamics of (46) agree with
the first two equations of (18) except with the ∆i’s replaced
by the κi’s, the same reasoning that led to (30) gives

x1(t) = Rx2(t)− S−1
∫ t
t−τ e

−k(t−s)Hx2(s)ds

+S−1
∫ t
t−τ e

−(A>
1 +2kI)(t−s)Hx2(s)ds+ γ1(t).

(52)

Also, by applying the method of variation of parameters
separately to the ψ1 and ψ2 dynamics in (46), we obtain∫ t

t−τ e
−k(t−s)Hx2(s)ds =

ψ1(t)− e−kτψ1(t− τ) +
∫ t
t−τ e

−k(t−s)Hω̃(s)ds
(53)

and ∫ t
t−τ e

−(A>
1 +2kI)(t−s)Hx2(s)ds =

ψ2(t)− e−(A>
1 +2kI)τψ2(t− τ)

+
∫ t
t−τ e

(A>
1 +2kI)(−t+s)Hω̃(s)ds

(54)

for all t ≥ τ . By combining (52)-(54), we obtain

x1(t) = Rx2(t)− S−1
[
ψ1(t)− e−kτψ1(t− τ)

+
∫ t
t−τ e

−k(t−s)Hω̃(s)ds
]

+ γ1(t)

+ S−1
[
ψ2(t)− e−(A>

1 +2kI)τψ2(t− τ)

+
∫ t
t−τ e

(A>
1 +2kI)(−t+s)Hω̃(s)ds

] (55)

for all t ≥ τ Hence, our choices (47)-(49), and our choice
of x1 in (45) and our formula (13) for ξe, give

x1 = xa + γ1 + γ2 and x1 − xa = ξ1 − ξe. (56)

Therefore, (51) follows from combining the relations (56).
Second Step. From (51), it follows that

|ξ1(t)− ξe(t)| ≤

S
∫ t
t−τ |λ(s− t)|

∫ t
s
|A2|ek(m−t)J4(s,m)dmds

+S
∫ t
t−τ |λ(s− t)|

∫ t
s
ek(`−t)[|κ2(`)|+ |ε2(`)|]d`ds

+S
∫ t
t−τ |λ(s− t)||H>|

[
e|A1|τ+ek(s−t)] J4(s, t)ds

+S
∫ t
t−τ

(
ek(s−t) + e|A

>
1 +2kI|τ

)
|H||ω̃(s)|ds

(57)

for all t ≥ τ , where

J4(s,m) =
∫m
s
e|A1|τ [|κ1(`)|+ |ε1(`)|]d`. (58)

Moreover, our choices of the κi’s in (45) and (3) give
|κ2(`)| ≤ K2|w̃(`)| when s ≤ ` ≤ t, and so also

J4(s,m) ≤ (m− s)e|A1|τ (K1|w̃|[s,m] + |ε1|[s,m]) (59)

when s ≤ m ≤ t. Therefore, by upper bounding the right
side of (57) and then collecting the coefficients of |w̃|[t−τ,t]
and |εi|[t−τ,t] for i = 1, 2 in the result, it follows from our
choices of the constants ςi in (39) that

|ξ1(t)− ξe(t)| ≤
q1|w̃|[t−τ,t]+q2(|ε1|[t−τ,t]+|ε2|[t−τ,t]) for all t ≥ τ,

(60)

where q1 is from (42) and q2 = max{ς1 + ς3, ς2}.
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By combining (46) and (60), and recalling (3), we get

| ˙̃ω(t)| ≤ |A2||ξ1(t)− ξe(t)|+ k|ω̃(t)|+ |ε2(t)|
+|F2(ξ2(t), t)− F2(ω(t), t)|

≤ (|A2|q1 + k +K2)|w̃|[t−τ,t] + ε£(t)

(61)

for all t ∈ [tj , tj+1) and all j ≥ 0 when t ≥ τ , where
ε£(t) = |A2|q2(|ε1|[t−τ,t] + |ε2|[t−τ,t]) + |ε2(t)|. Since

ω̃(t) = ω̃(tj) +
∫ t
tj

˙̃ω(`)d` (62)

for all t ∈ [tj , tj+1), we deduce that, for all t ≥ T + τ ,

|ω̃(t)| ≤ |ω̃(tj)|+ T (|A2|q1+k+K2)|w̃|[t−T−τ,t]
+T |ε£|[t−T ,t]

≤ Tµ|ω̃|[t−τ−T ,t]+T
] 3∑
j=1

|εi|[t−T−τ,t]
(63)

for all t ∈ [tj , tj+1) and j ≥ 0 when t ≥ r and r ≥ T + τ ,
where T̄ ] = T̄ (|A2|q2 + 1) + 1, the last inequality in (63)
used the fact that |ω̃(tj)| = |ε3(tj)| for all j ≥ 0, and µ is
from (42). Using (41), it follows from applying the trajectory
based approach from [10, Lemma 1] to the function w0(t) =
|ω̃(t+ r)| that

|ω̃(t)| ≤ |ω̃|[r−τ−T ,r]e
ln(Tµ)
τ+T

(t−r)
+ Tε(t, r) (64)

for all t ≥ r with

Tε(t, r) = T
]

1−Tµ

3∑
j=1

|εi|[t−T−τ,t]. (65)

The theorem now follows by using (64) to upper bound the
first right side term in (60).

V. ILLUSTRATIONS

A. Illustration of Theorem 1

Consider this model for a single-link direct-drive manip-
ulator actuated by a permanent magnet DC brush motor [1]:

Mq̈ +Bq̇ +N sin(q) = I and

Lİ = Ve −RI −KB q̇,

where M = J
Kτ

+
mL2

0

3Kτ
+

M0L
2
0

Kτ
+

2M0R
2
0

5Kτ
,

N = mL0G
2Kτ

+ M0L0G
Kτ

, and B = B0

Kτ

(66)

and where m is the mass of the link, J is the rotor inertia,
L0 is the length of the link, M0 is the mass of the load, B0 is
the viscous friction coefficient at the joint, R0 is the radius of
the load, G is the gravitational constant, q(t) is the position
of the load (which is the angular motor position), I(t) is
the motor armature current, the coefficient Kτ characterizes
the electromagnetic conversion of armature current to torque,
R is the armature resistance, L is the armature inductance,
KB is the back-emf coefficient, and Ve is the input current
voltage. All constants in (66) are positive, and we assume
that perturbed values of q are available for measurement.

The preceding model has been studied extensively. For
instance, see [9] for continuous-discrete observers for (66),
and [8] for full order observers for (66) with sampling and
input delays. However, we believe that the problem we solve

in this subsection of building reduced order observers for
(66) with arbitrarily small fixed convergence times τ under
continuous measurements was open.

By also allowing additive uncertainties in the model (66)
and in the measurements, we obtain the dynamics

χ̇1(t) = χ2(t) + δ1,1(t)
χ̇2(t) = b1χ3(t)− a1 sin(χ1(t))− a2χ2(t)

+ δ1,2(t)
χ̇3(t) = b0u(t)− a3χ2(t)− a4χ3(t) + δ1,3(t)
Y (t) = χ1(t) + δ2(t)

(67)

where χ1 = q, χ2 = q̇, χ3 = I, a1 = N/M , a2 = B/M ,
a3 = KB/L, a4 = R/L, b0 = 1/L, and b1 = 1/M , and
u = Ve is the control. As in [7], we choose b0 = 40, b1 = 15,
a1 = 35, a2 = 1, a3 = 36.4 and a4 = 200.

Adopting the notation ξ2 = χ1, ξ1,1 = χ2, ξ1,2 = χ3,
ε1,1(t) = δ1,2(t), ε1,2(t) = δ1,3(t), ε2(t) = δ1,1(t), and
ε3(t) = δ2(t), we can rewrite the system (67) as

ξ̇1,1(t) = −a2ξ1,1(t) + b1ξ1,2(t)
− a1 sin(Y (t)− ε3(t)) + ε1,1(t)

ξ̇1,2(t) = −a3ξ1,1(t)− a4ξ1,2(t) + b0u(t)
+ ε1,2(t)

ξ̇2(t) = ξ1,1(t)−kξ2(t)+k[Y (t)−ε3(t)]+ε2(t)
Y (t) = ξ2(t) + ε3(t)

(68)

for a constant k > 0 that will be specified.
Then the notation of Sections II-III produces the choices

A1 =

[
−a2 b1
−a3 −a4

]
, A2 = [1 0], (69)

F1(s, t) = (−a1 sin(s), b0u(t)), F2(s, t) = ks, K1 = a1 and
K2 = k. With the preceding parameter choices, A1 + kI is
invertible when k2 − 201k + 746 6= 0. Thus we can take
k = 1. Then the dynamic extension (7) of Section III is

˙̂
ξ1,1(t) = −ξ̂1,1(t) + 15ξ̂1,2(t)− 35 sin(Y (t))
˙̂
ξ1,2(t) = −36.4ξ̂1,1(t)− 200ξ̂1,2(t) + 40u(t)

˙̂
ξ2(t) = ξ̂1,1(t)− ξ̂2(t) + Y (t)

ψ̇1(t) = −ψ1(t)− 1
546

[
199
15

]
[Y (t)− ξ̂2(t)]

ψ̇2(t) =

[
−1 36.4
−15 198

]
ψ2(t)

− 1
546

[
199
15

]
[Y (t)− ξ̂2(t)].

(70)

Then, Theorem 1 provides the exact value

ξ1(t) = ξ̂1(t) +R(ξ2(t)− ξ̂2(t)) + εF(t)

+S−1 [e−τψ1(t− τ)− ψ1(t)]

+ S−1
[
ψ2(t)− e−(A>

1 +2I)τψ2(t− τ)
] (71)

for all t ≥ τ for a function εF satisfying (15). The preceding
observer contrasts significantly with the fixed time observer
for (67) that was presented in [7, Section 5.2], whose fixed
convergence time τ is required to be such that e−Hτ −e−τA
is invertible where H = A + LAC for a suitable matrix
LA, and where C is from the representation y = Cx of
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the output in terms of the state x. Moreover, [7, Section 5.2]
produces large coefficients in the final estimation error under
discrete time measurements for small τ > 0 values. Hence,
we believe that the observer designs from this work offer
potential advantages over previously available observers.

B. Illustration of Theorem 2

We next illustrate the sampled output case using the
following pendulum dynamics that was studied, e.g., in [1]: ẋ1(t) = x2(t)

ẋ2(t) = − sin(x1(t)),
y(tj) = x1(tj) + ε3(tj)

(72)

with x1(t) and x2(t) both valued in R. This has the form (38)
with ξ1 = x2, ξ2 = x1, A1 = 0, F1(s, t) = − sin(s), A2 =
1, F2(s, t) = ks, ε1 = ε2 = 0, and any positive constant k,
by subtracting and adding kx1(t) in the x1 dynamics. Hence,
Theorem 2 applies for any positive values k and τ if the sup
T of the sampling intervals satisfies T < 1/µ, where µ was
defined by (42). For example, by choosing k = 1.2 and
τ = 0.6, we get the bound T < 1/µ = 0.0159168. On the
other hand, smaller values of T produce faster convergence
rates in the exponential input-to-state stability estimate in
the theorem; see Remark 3 above. The upper bound 1/µ
depends on the choices of k and τ . In Figure 2, we used
Mathematica to plot 1/µ on the vertical axis, as a function
of k and τ for the preceding values of the other parameters.
Our figure shows how smaller k values for given choices

Fig. 1. Bound 1/µ on T for Values k ∈ [1.5, 10.5] and τ ∈ [0.01, 1].

of τ lead to larger values of the upper bound for T . This
illustrates the tradeoffs between the choices of τ and k and
the sample interval bounds T .

VI. CONCLUSION

We solved significant observer design problems for sys-
tems that are linear in the unmeasured variables and with
continuous but perturbed measurements, using a novel
Gramian approach which eliminates an invertibility condition
on the fixed convergence time from prior works such as [7],
while only requiring a single delay in the observer. We also
provided an analog for cases where only discrete measure-
ments are available and where we instead get arbitrarily large
exponential convergence rates. Our examples illustrated the

potential advantages of our new approaches and a tradeoff
between sample rates in the measurements and the parameter
choices in our observer. We aim to obtain extensions for
systems with state delays or measurement delays.

APPENDIX: INVERTIBILITY OF THE MATRIX S
Let us prove that the matrix S defined in (5) is invert-

ible, which was needed for the observer designs from our
theorems. Let V ∈ Rn−q be a vector such that SV = 0.
Then ∫ 0

−τ V
>λ(m)>λ(m)V dm = 0. (A.1)

As an immediate consequence, we get λ(m)V = 0 for
all m ∈ [−τ, 0]. It follows that for all integers j > 0,
λ(j)(0)V = 0. Also, simple calculations give λ(j)(0) =
−A2(A1 +kI)j−1. Thus A2(A1 +kI)lV = 0 for all integers
l ≥ 0. Using the fact that these equalities are equivalent to

A2

l∑
j=0

Cjl A
j
1V = 0 (A.2)

for suitable nonzero integers Cjl , we deduce that A2A
l
1V = 0

for all integers l ≥ 0, by induction on l. Since (A1, A2) is
observable, it follows that V = 0. This allows us to conclude.
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