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On Centroidal Voronoi Tessellation —
Energy Smoothness and Fast Computation

Yang Liu, Wenping Wang, Bruno Lévy, Feng Sun, Dong-Ming Yan, Lin Lu, Chenglei Yang

Centroidal Voronoi tessellation (CVT) is a particular type of Voronoi tessellation that has many
applications in computational sciences and engineering, including computer graphics. The prevail-

ing method for computing CVT is Lloyd’s method, which has linear convergence and is inefficient

in practice. We develop new efficient methods for CVT computation and demonstrate the fast
convergence of these methods. Specifically, we show that the CVT energy function has 2nd order

smoothness for convex domains with smooth density, as well as in most situations encountered in

optimization. Due to the 2nd order smoothness, it is therefore possible to minimize the CVT en-
ergy functions using Newton-like optimization methods and expect fast convergence. We propose

a quasi-Newton method to compute CVT and demonstrate its faster convergence than Lloyd’s

method with various numerical examples. It is also significantly faster and more robust than
the Lloyd-Newton method, a previous attempt to accelerate CVT. We also demonstrate surface

remeshing as a possible application.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; G.1.6 [Numerical
Analysis]: Optimization; I.5.3 [Pattern Recognition]: Clustering

General Terms: Algorithms

Additional Key Words and Phrases: centroidal Voronoi tessellation, constrained CVT, Lloyd’s
method, remeshing, numerical optimization, quasi-Newton methods

1. INTRODUCTION

A centroidal Voronoi tessellation (CVT) is a particular Voronoi tessellation of a compact domain in Euclidean
space yielded by a set of samples (also called sites or generators) such that each site coincides with the centroid
of its Voronoi cell. For example, Figure 1(a) shows a Voronoi tessellation of a circular domain where the
sites do not coincide with the centroids of the Voronoi cells (not a CVT), and Figure 1(b) shows a CVT of
the same domain. CVT generates an evenly-spaced distribution of sites in the domain with respect to a
given density function and is therefore very useful in many fields, such as optimal quantization, clustering,
data compression, optimal mesh generation, cellular biology, optimal quadrature, coverage control and
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(a) (b)

Fig. 1. (a) An ordinary Voronoi tessellation of a circular domain with 7 sites marked with black dots and the the centroids of the
Voronoi cells marked with small circles; (b) a CVT of the same domain with 7 sites.

geographical optimization. An excellent introduction to the theory and applications of CVT is given in [Du
et al. 1999; Okabe et al. 2000].

CVT was recently applied to mesh generation and geometry processing [Du and Gunzburger 2002; Du and
Wang 2003; Alliez et al. 2003; Valette and Chassery 2004; Alliez et al. 2005] and vector field visualization [Du
and Wang 2004; McKenzie et al. 2005]. Peyré and Cohen [2004] extend CVT using geodesic metric on mesh
surfaces. Anisotropic CVT on surfaces is also considered by Du and Wang [2005a] and Valette et al. [2008].

Equivalently, CVT can be defined by the critical points (i.e., gradient-vanishing points) of a certain CVT
energy function F, which we will discuss in detail shortly. There are several outstanding problems with
CVT, such as computing a CVT with the globally minimal CVT energy and shape characterization of this
globally optimal CVT, as stipulated by Gersho’s conjecture [1979]. The globally minimal CVT is difficult
to obtain because the CVT energy function is non-linear and non-convex. Gersho’s conjecture in 2D has
been proved by Tòth [2001], asserting that in a globally optimal CVT, the shape of the Voronoi cells that are
far away from the boundary converge to regular hexagons as the number of sites tends to infinity [Gruber
2004]. Gersho’s conjecture is still open in nD, n ≥ 3, though partial empirical results are available in 3D [Du
and Wang 2005b].

In the present paper, we are interested in efficient CVT computation. The most popular method for com-
puting CVT is Lloyd’s method [Lloyd 1982]. The popularity of Lloyd’s method is due to its simplicity and
robustness–it decreases the CVT energy value monotonically. However, Lloyd’s method is not optimally
efficient–it has only linear convergence and is therefore slow for practical applications with a large number
of sites.

The probabilistic method by MacQueen [1966] is another method for CVT computation, but is not widely
used in practice for its lack of computational advantage. For acceleration of CVT computation, Lloyd’s
method has been implemented in a multi-grid framework [Du and Emelianenko 2006] and MacQueen’s
method on a parallel platform [Ju et al. 2002].

Although CVT is naturally formulated as the solution of an optimization problem, there has been little
progress in efficient CVT computation beyond Lloyd’s method from the optimization point of view. This is
probably due to the complicated piecewise nature of the CVT energy function F [Iri et al. 1984; Asami 1991;
Du et al. 1999] (more on this below). It is known that F has C1 smoothness [Cortés et al. 2005]. In this paper,
we gain more knowledge about the properties of F and prove that it has C2 smoothness, thus enabling us
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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to propose a Newton-type optimization algorithm.

One notable previous attempt at accelerating CVT computation is the Lloyd-Newton method [Du and
Emelianenko 2006]. Since this method minimizes a function that is different from the CVT energy func-
tion F, it often produces undesirable CVTs corresponding to unstable critical points of the CVT energy
function. We will analyze this in detail later in the paper (Section 5.2).

We make the following contributions in both theory and applications for efficient CVT computation :

—we show that the piecewise CVT function is C2 for a convex compact domain in 2D and 3D as well as other
commonly encountered domains with a sufficiently smooth (C2) density function;

—we accelerate CVT computation by applying quasi-Newton methods and show that these methods are
more efficient than both Lloyd’s method and the Lloyd-Newton method [Du and Emelianenko 2006], as
expected due to the newly established C2 smoothness of the CVT energy function;

—we develop an efficient quasi-Newton method for computing the constrained CVT on polyhedral sur-
faces for surface remeshing.

The organization of the paper is as follows: in Section 2 we present the formulation of the CVT problem and
review the existing work on CVT computation. We show in Section 3 that the CVT energy function is C2

for a convex compact domain with sufficiently smooth density in 2D/3D space and propose in Section 4 to
use quasi-Newton methods to accelerate CVT computation. We demonstrate the efficiency of the method
in Section 5. In Section 6, we apply our smoothness analysis and fast method to the more general context
of CVT computation on mesh surfaces in 3D, and show how it can be used for quality surface remeshing.
We conclude the paper in Section 7.

2. BACKGROUND AND PREVIOUS WORK

2.1 CVT formulation

We will first briefly review CVT. A good overview can be found in [Du et al. 1999]. Let X = (xi)
n
i=1 be an

ordered set of n sites in a connected compact region Ω ⊂ RN . The Voronoi region Ωi of xi is defined as

Ωi = {x ∈ Ω | ‖x− xi‖ ≤ ‖x− xj‖, ∀j 6= i}.
Here ‖ · ‖ denote Euclidean norm in RN . The Voronoi regions Ωi of all the sites form the Voronoi diagram
(VD) of X. A natural assumption is that any two sites are distinct, i.e., xi 6= xj, ∀i 6= j, for the Voronoi
boundary consists of bisecting lines of pairs of sites and a bisecting line is not well-defined for two identical
sites. Hence, the space of X that we will consider is Γ := {X ∈ RnN |xi 6= xj, ∀i 6= j; xi ∈ Ω, ∀i}.
Let the domain Ω be endowed with a density function ρ(x) > 0, which is assumed to be C2; therefore ρ(x)
is bounded, since Ω is closed; that is, supx∈Ω |ρ(x)| ≤ γ for some finite value γ > 0. Then the centroid of
Ωi is given by

ci =

∫
Ωi

ρ(x)x dσ∫
Ωi

ρ(x)dσ
,

where dσ is the area differential.

DEFINITION 1. The Voronoi tessellation {Ωi}n
i=1 is a centroidal Voronoi tessellation if xi = ci, i = 1, 2, . . . , n,

that is, each site xi coincides with the centroid of its Voronoi cell Ωi.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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A CVT can also be defined from a variational point of view. Define Fi(X) =
∫

x∈Ωi
ρ(x)‖x− xi‖2 dσ for each

site xi. Then the CVT energy function F : Γ → R of the Voronoi tessellation {Ωi}n
i=1 is defined as [Du et al.

1999]

F(X) =
n

∑
i=1

Fi(X) =
n

∑
i=1

∫
Ωi

ρ(x)‖x− xi‖2 dσ. (1)

The term Fi expresses the compactness (or inertia momentum) of the Voronoi cell Ωi. This requirement for
compactness is desirable in many applications. For instance, in sampling theory, we can imagine that Ω
represents a space that needs to be approximated (e.g., the color space of an image) and that the sites xi
correspond to samples (e.g., the elements of a colormap). In this case, minimizing the energy F ensures that
each sample xi is a representative of approximately the same amount of information in Ω. Hence, from a
quantization point of view, F corresponds to the quantization noise power [Lloyd 1982].

The gradient of F(X) is [Iri et al. 1984; Asami 1991; Du et al. 1999]:

∂F
∂xi

= 2mi(xi − ci), (2)

where

mi =
∫

x∈Ωi

ρ(x)dσ (3)

is the mass and ci the centroid of Ωi. With this expression for the gradient, it is easy to see that a CVT
corresponds to a critical point of the CVT function F(X), i.e., a point X0 where the gradient of F(X) is zero.
However, a critical point of F(X) may be unstable, that is, when it is a saddle point characterized by an
indefinite Hessian. In practice, we prefer a CVT that corresponds to a local minimizer of the CVT energy
function, since it represents a more compact Voronoi tessellation than a CVT given by an unstable critical
point. Hence, we have the following equivalent definition of CVT.

DEFINITION 2. A Voronoi tessellation {Ωi}n
i=1 of a compact domain Ω with n sites X0 = (xi)

n
i=1 is a centroidal

Voronoi tessellation if X0 is a critical point of the CVT energy function F(X). Furthermore, a CVT is called a stable
CVT if X0 is a local minimizer of F(X), and it is called an optimal CVT if X0 is a global minimizer of F(X).

(a) (b)

Fig. 2. (a) An unstable CVT of 2 sites in a rectangular domain; (b) a stable CVT, which is also an optimal CVT of the same domain.
Initialized with slightly perturbed positions of the sites from the unstable CVT, as shown in (a), Lloyd’s iteration will converge to the
stable CVT in (b).

For instance, the CVT of the rectangle shown in Figure 2(a) is unstable, as it corresponds to a saddle point of
F, where the Hessian is indefinite. A stable CVT, whose Hessian is positive-definite, is shown in Figure 2(b).
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Since in a CVT each site xi coincides with the centroid of its Voronoi cell Ωi, we have

∀i, xi = ci =

∫
Ωi

ρ(x)x dσ∫
Ωi

ρ(x)dσ
. (4)

This is a system of nonlinear equations, since the boundaries of any Voronoi cell Ωi are determined by all
the sites xi.

The fact that a CVT is a critical point of F naturally leads us to Lloyd’s method for computing CVT [Lloyd
1982]. Lloyd’s method operates by iteratively moving all the sites to the centroids of their Voronoi cells,
respectively. Its convergence to a CVT was proved in some particular cases by Du et al. [1999; 2006].
They showed that besides being a fixed-point iteration that solves Equation (4), Lloyd’s method can be
understood as a gradient descent method that always decreases the energy F with no need for step-size
control [Du et al. 1999]. A similar analysis can be applied to the discrete k-means algorithm for cluster-
ing [Ostrovsky et al. 2006].

So far, we have seen two equivalent definitions of CVT, from two different points of view.

—Variational characterization : CVT is a critical point of the energy F in Equation (1). In many applications
a stable CVT is desirable, rather than just a CVT given by an unstable critical point, since a stable CVT
provides more compact Voronoi cells. It is these stable CVTs that we aim to compute in the present paper.

—Geometric characterization : CVT is a solution of a system of non-linear equations expressing that each
site xi coincides with the centroid ci of its Voronoi cell (Equation (4)). The Lloyd-Newton method [Du
and Emelianenko 2006] is based on directly solving this system of equations; as a consequence, it often
produces an unstable CVT. We will give more details about this in Section 5.2.

The distinction between these two points of view is a key aspect of our approach. From the variational
point of view, Lloyd’s algorithm is a gradient descent method, with linear rate of convergence. We will
show how studying CVT computation from the variational point of view and studying the smoothness of
the CVT energy F leads to methods that are more efficient than Lloyd’s relaxation.

2.2 Variational point of view

To improve the speed of convergence, we consider computing CVT by minimizing the energy function F
with a quasi-Newton method. It is well known that a faster convergence rate can be obtained by using
higher-order methods (e.g., Newton’s method and its variants). As to be explained further, the piecewise
nature of the CVT energy function F and the complexity of its expression are impediments to the devel-
opment of fast CVT methods. For this reason, there were few successful attempts in the literature in this
direction [Iri et al. 1984; Du and Emelianenko 2006].

Newton’s iteration for non-linear optimization uses a second-order approximation of F :

F(X + δX) ' F∗(δX) = F(X) + δT
X ∇F + 1

2 δT
X H δX ,

where δX denotes a small displacement from X, ∇F denotes the gradient of F, and H is the Hessian. New-
ton’s iteration finds the step vector δX that minimizes the “model function” F∗(δX) as follows :

solve H δX = −∇F(X)
X ← X + δX.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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As can be seen, since it uses the second-order derivatives, Newton’s method requires F to be at least C2 [No-
cedal and Wright 2006]. Furthermore, Newton’s method is not suitable for large-scale problems for which
the computation of full Hessian is costly or when the Hessian matrix is not sparse. Therefore, in practice,
one often uses quasi-Newton methods to deal with large-scale problems.

An impediment to the development of fast Newton-like methods for CVT computation is the lack of under-
standing about the smoothness of F. It was conjectured [Iri et al. 1984] that F is non-differentiable, based
on the intuition that the structural change of the Voronoi diagram would make the CVT energy function
non-smooth. This conjecture was later infirmed by Cortés et al. [2005], who showed that the CVT function
F is C1. We go one step further in the study of F’s smoothness, and prove that it is almost always C2.
More specifically, F is C2 for any convex domain in 2D and 3D with C2 smooth density. When the domain
is non-convex, it is still C2 in most situations encountered in optimization but it can become C1 in some
rare cases. Furthermore, these results carry over to the constrained CVT problem on mesh surfaces. This
newly established smoothness of F provides justification for applying quasi-Newton methods to efficient
CVT computation.

Before entering the details of the smoothness analysis, we need to explain why studying the continuity
of F is a difficult problem. If one wants to evaluate F and its derivatives for a specific value of the set of
variables X = (xi)

n
i=1, it is necessary to first construct the Delaunay triangulation of the vertices defined by

X (i.e. all the sites), then evaluate the integrals over each cell of its dual Voronoi diagram (see Equation (1))
and differentiate them. The expression of these integrals is complicated, since the vertices of the domains
of integration Ωi are the circumcenters of the Delaunay simplices.

Now suppose that we move one of the vertices to change the combinatorial structure of the Delaunay
triangulation, then the expression of the CVT energy function F changes as well, since it will be based
on a different triangulation. In other words, F is piecewise defined in Γ (the space of X) and the pieces
correspond to the subsets of Γ where the combinatorial structure of the Delaunay triangulation remains
the same. A combinatorial change occurs in 2D when four or more sites become co-circular (or 5 or more
sites become co-spherical in 3D). While these degenerate configurations are often considered as nuisances
in mesh generation, they define gateways, or common faces, that connect the pieces of Γ. Crossing such a
gateway results in changes in the expression of F, hence possible discontinuity. We will show in Section 3
that F is C2 at such transitions.

3. ENERGY SMOOTHNESS

For CVT in a 2D convex domain, we have the following result.

THEOREM 1. The 2D CVT energy function is C2 in Γ if Ω is convex and compact and if the density function
ρ(x) is C2 in Ω.

The proof is given in Appendix A. Here we will only give an intuitive idea of the proof. The CVT energy
function F is C∞-smooth as a function of the coordinates of sites as long as the combinatorial structure of
Delaunay triangulation (as well as the Voronoi diagram) of the sites does not change. So we only need to
analyze how the energy function changes when the combinatorial structure changes at a degenerate con-
figuration. The Delaunay triangulation of such a degenerate configuration is non-unique and its multiple
Delaunay triangulations give rise to different expressions of F. Therefore, analyzing the smoothness of F
means proving that these expressions have C2 contact at the degenerated configuration. To do so, we con-
sider the Taylor expansions of these expressions of F at such a degenerate configuration, and show that
they match up to the second-order term.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Following the same idea of the proof for the 2D case, we can also prove the following result for the 3D case.
The proof will be given separately elsewhere, due to space limitation.

THEOREM 2. The 3D CVT energy function is C2 in Γ if Ω is convex and compact, and if the density function
ρ(x) is C2 in Ω.

REMARK 1. In the more general locational optimization problem [Okabe et al. 2000], the distance function in
Equation (1) is a smooth and strictly increasing function W(‖x− xi‖). Then the energy function becomes F(X) =
∑n

i=1
∫

x∈Ωi
ρ(x)W(‖x− xi‖)dσ. Theorem 1 and 2 still hold in this case.

p(t0)

p(t1)

l2

l1

q

A B

Fig. 3. A configuration where the CVT function is C1 Fig. 4. A 2D non-convex CVT after several Lloyd’s iterations. The
CVT energy is C2 around this configuration.

In general, Theorem 1 and 2 do not hold for a non-convex domain Ω. The C2 smoothness of the CVT
function F is lost when a continuous part of the boundary ∂Ω of Ω is contained in a face of a Voronoi cell
or when a smooth part of ∂Ω is tangent to some face of a Voronoi cell – the CVT function is C1 but not C2

in these cases. This is illustrated in 2D in Figure 3. Consider the two points p and q in the 2D non-convex
domain Ω. Fix the point q and let p move from p(t0) up to p(t1). When the bisector of p and q contains the
thick horizontal edge AB, F is C1 but not C2.

A similar situation can occur in 3D as well. It can be shown that this is the only type of situation where C2

smoothness of F is lost. Clearly, this situation rarely occurs in practice during optimization, since in most
cases the faces of the Voronoi cell are not parallel to the domain boundary when there are sufficiently many
sites with a reasonable distribution (see Figure 4). That is to say, even if the function F(X) is not everywhere
C2 in this case, the regions in which a method for computing CVT is applied almost always correspond to
a subspace of Γ where F is C2.

REMARK 2. It seems possible that the requirement on the C2 smoothness of the density function ρ(X) can be
relaxed. We conjecture that Theorems 1 and 2 still hold when ρ(X) is C0, as suggested by our empirical study.

We now use two examples to illustrate the smoothness of 2D and 3D CVT functions. We will see that, as
asserted by Theorems 1 and 2, C2 continuity of the CVT function is preserved even when the topological
structure of the Voronoi diagram changes.

EXAMPLE 1. 2D case: Figure 5(a) shows the domain Ω = [−1, 1]2 with eight sites. One site p(t) moves along
a straight path linearly parameterized by t, and the other seven sites are fixed and located on a circle. The structure
of the Voronoi diagram of the eight sites changes at some points of the motion of p(t); for example, when p(t) crosses
the circle. Figures 5(b) to (d) show the graphs of the CVT function F(t) and its derivatives F′(t), F′′(t) with respect
to the motion parameter t. Figure 5(e) is a zoom-in view of part of the graph of F′′(t). We see that F(t) and F′(t) are

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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smooth and F′′(t) is C0. The kinks in the graph of F′′(t) correspond to the structural transitions of VD of the domain
when the site p(t) crosses the circle.

p(t)
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Fig. 5. Illustrations of C2 smoothness of the 2D CVT function.
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Fig. 6. Illustrations of C2 smoothness of the 3D CVT function.
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EXAMPLE 2. 3D case: Figure 6(a) shows the domain Ω = [−1, 1]3 with eight sites. One of the sites moves along
a linear trajectory p(t) and it passes through spheres formed by several subsets of four of the other sites. The graphs of
F(t), F′(t) and F′′(t) are shown in Figure 6(b)-(d), verifying that the CVT function F is C2 for this domain Ω in 3D.

Note that, just for the purpose of simple illustration, we only considered the CVT energy as a function of
one variable in the above examples. However, our conclusion on the C2 smoothness is about the general
case where the CVT energy is the function of all the sites X being variables.

4. NUMERICAL OPTIMIZATION

In this section we will briefly discuss the efficiency issues related with Newton-type methods. We expand
on quasi-Newton methods and describe the basic ideas of the two methods that we will use for efficient
CVT computation – the L-BFGS method (limited-memory BFGS) and the P-L-BFGS method (pre-conditioned
L-BFGS), which are two variants of the classical quasi-Newton BFGS method.

4.1 Newton’s method and quasi-Newton methods

Since the 2D and 3D CVT functions are almost always C2, we may consider using Newton’s method for
nonlinear optimization [Nocedal and Wright 2006] to compute a local minimizer of these functions. New-
ton’s method solves the linear system of equations H δX = −∇F to determine the search step δX in each
iteration, where H is the Hessian of the CVT function F. We note that the components of the gradient ∇F
are given by ∂F

∂xi
= 2mi (xi − ci) (cf. Equation (2)), and the explicit formulae for the second-order deriva-

tives, which are the elements of the Hessian, are given in [Iri et al. 1984; Asami 1991] and will be recalled in
Section 4.3.

Although the Hessian matrix H is sparse, it is in general not positive-definite, therefore it needs to be
modified to be so in order to define a meaningful search direction. Iri et al. [1984] replaced the Hessian with
the diagonal matrix D defined by the diagonal elements equal to 2mi (cf. Equation (3)). This simplification
in fact leads exactly to Lloyd’s method, with non-optimal speed of convergence.

With more sophisticated modifications, such as modified Cholesky factorization [Schnabel and Eskow 1999;
Nocedal and Wright 2006], Newton’s method is applicable to small and median size optimization problems.
Figure 7 shows a simple example in which Newton’s method is applied to computing a CVT of a square
with 20 sites. Due to the C2 smoothness of the CVT function, as expected, Newton’s method converges
quickly in this example (after 12 iterations, ‖∇F(X)‖ goes to 10−16), as shown by the plots in Figure 7 (c)
and (d).

The main problem of Newton’s method is the costly computation and modification of the Hessian matrix.
Therefore it is normally not recommended for large-scale problems, that is, when there is a large number
of sites in CVT computation. For large-scale CVT computation, the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) method [Nocedal and Wright 2006], a classical quasi-Newton method, is more suitable, since it
only requires at each step to evaluate the function value and the gradient, and only involves matrix-vector
multiplications. However, the major drawback of the BFGS method is its large space requirement for storing
the Hessian matrix, since the approximated inverse Hessian generated in each iteration is dense. In practice,
this drawback is circumvented by the limited memory BFGS method [Nocedal 1980], or the L-BFGS method for
short, to be discussed below.
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Fig. 7. (a) An initial Voronoi tessellation of 20 points; (b) The final Voronoi tessellation after optimization; (c) F(X) against the number
of iterations; (d) ‖∇F(X)‖ against the number of iterations.

4.2 L-BFGS method

The L-BFGS method is similar to the classical inverse BFGS method in that the inverse Hessian is corrected
by the BFGS formula. Below we quote the concise description of the main idea of L-BFGS method from [Liu
and Nocedal 1989] : The user specifies the number M of BFGS corrections that are to be kept, and provides a sparse
symmetric and positive definite H̃0, which approximates the inverse Hessian of f . During the first M iterations the
method is identical to the BFGS method. For k > M, H̃k is obtained by applying M BFGS updates to H̃0 using
information from M previous iterations. Here f (x) is the objective function and g is the gradient of f . Let xk
denote the iterate at the k-th iteration and sk = xk+1 − xk, yk = gk+1 − gk. The inverse BFGS formula is
H̃k+1 = VT

k H̃kVk + ρksksT
k , where ρk = 1/(yT

k sk) and Vk = I− ρkyksT
k . Typically M is set as 3 ∼ 20. The

explicit formula of H̃k+1 is

H̃k+1 =
(

VT
k · · ·VT

k−M̂

)
H̃0

(
Vk−M̂ · · ·Vk

)
+ ρk−M̂

(
VT

k · · ·VT
k−M̂+1

)
sk−M̂sT

k−M̂

(
Vk−M̂+1 · · ·Vk

)
+ ρk−M̂+1

(
VT

k · · ·VT
k−M̂+2

)
sk−M̂+1sT

k−M̂+1

(
Vk−M̂+2 · · ·Vk

)
...

+ ρksksT
k ,

where M̂ = min{k, M− 1}. The product −H̃k+1 gk+1 is computed by term-wise product using the above
expression of H̃k+1, with O(Mn) operations, where n is the number of the sites. This is much faster than
constructing H̃k+1 explicitly and computing −H̃k+1 gk+1 using matrix-vector multiplication, which would
use O(n2) operations. This saving is the key to the efficiency improvement of the L-BFGS over the BFGS
method.

Although only the gradient is required in the computation above, the objective function needs to be C2 to
ensure the proper convergence of the BFGS and L-BFGS algorithms [Nocedal and Wright 2006; Liu and
Nocedal 1989]. This requirement is indeed met by the CVT energy function in general (cf. Theorem 1 and
Theorem 2 in Section 3).

What follows is the pseudo code for updating the approximate inverse Hessian in a L-BFGS iteration.

L-BFGS update at step k:
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(1) initialization: r = −gk;
(2) 1st L-BFGS Update:

for i = min(M− 1, k− 1), . . . , 0{
γi := ρisT

i r;
r := r− γiyi;

(3) dk := H̃0
k r;

(4) 2nd L-BFGS Update:
for i = 0, . . . , min(M− 1, k− 1)
dk := dk + si(γi − ρiyT

i dk) ;
(5) update xk+1 = xk + αkdk and let k = k + 1.

A typical choice of H̃0
k is the diagonal matrix sT

k−1yk−1

yT
k−1yk−1

I [Liu and Nocedal 1989].

4.3 Preconditioned L-BFGS method

As we will see in the experimental results shortly, L-BFGS is significantly faster than Lloyd’s method. When
the Hessian is available, the convergence of L-BFGS can be further accelerated by frequently using the
Hessian as the initial value of H̃0 — this is the idea of the preconditioned L-BFGS method, or P-L-BFGS
method for short, by Schlick [1992] and Jiang et al. [2004]. Normally the exact Hessian should not be used
in every iteration, for otherwise the method becomes equivalent to Newton’s method that spends too much
time on evaluating the Hessian.

There are two integer parameters, M and T in the P-L-BFGS method, denoted as P-L-BFGS(M, T). The
parameter M means that the gradients of the previous M iterations are used to construct the approximate
inverse Hessian, and T means that the initial Hessian estimate H̃0 is updated using the exact Hessian once
every T iterations. Appropriate values of M and T can help achieve a balance between the accuracy of the
approximate inverse Hessian and the average time-cost per iteration.

In the case of computing CVT in 2D and 3D, the exact Hessian can be constructed as follows. Let Ji denote
the indices of those sites whose Voronoi cells are adjacent to Ωi. Let Ωi

⋂
Ωj be the common face shared by

the Voronoi cells of xi and xj, which is an edge in 2D or a polygon in 3D. Denote xT
i = (xi1, xi2, . . . , xiN) and

xT = (x1, x2, . . . , xN). Then the second-order derivatives of the CVT function are given by the following
explicit formulae [Iri et al. 1984; Asami 1991]:

∂2F
∂x2

ik
= 2mi −∑j∈Ji

∫
Ωi
⋂

Ωj

2
‖xj − xi‖

(xik − xk)
2ρ(x)dσ,

∂2F
∂xik∂xi`

= −∑j∈Ji

∫
Ωi
⋂

Ωj

2
‖xj − xi‖

(xik − xk)(xi` − x`)ρ(x)dσ, k 6= `,

∂2F
∂xik∂xj`

=
∫

Ωi
⋂

Ωj

2
‖xj − xi‖

(xik − xk)(xj` − x`)ρ(x)dσ, j ∈ Ji,

∂2F
∂xik∂xj`

= 0, j 6= i, j 6∈ Ji.

The combined pseudo code of the L-BFGS method and the P-L-BFGS method is as follows.
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Preconditioned L-BFGS (P-L-BFGS) Algorithm:

(1) Set k := 0 and choose the values of M, T. Set flag := true to indicate the exact Hessian is required; otherwise, the
exact Hessian is not required;

(2) Evaluate the CVT function and compute its gradient gk. Construct the Hessian matrix H and apply modified
Cholesky algorithm to obtain positive-definite Ĥ if flag = true and (T = 0 or k mod T = 0);

(3) Initialization: r := −gk;
(4) Call the 1st L-BFGS Update and obtain the updated r;

(5) Update dk: if flag = true, solve Ĥ dk = r; else dk := sT
k−1yk−1

yT
k−1yk−1

r when k > 0;

(6) Call the 2nd L-BFGS Update and obtain the updated dk;
(7) Apply the line-search algorithm to find xk+1 := xk + αkdk;
(8) Check the convergence and stop criterion. If they are satisfied, stop the algorithm;
(9) Set k := k + 1. Go to step 2.

If flag is set to false in Step (1), the P-L-BFGS method reduces to the L-BFGS method. The interested
reader can find our P-L-BFGS implementation from http://www.loria.fr/~liuyang/software/HLBFGS/.

5. PERFORMANCE EVALUATION

In this section, we will first compare the quasi-Newton methods with Lloyd’s method to demonstrate the
improved efficiency of the quasi-Newton method in CVT computation. Then we will analyze the Lloyd-
Newton method, a previous attempt to compute CVT with a second-order optimization method.

5.1 Comparison with Lloyd’s method

Since Lloyd’s method is currently the most commonly used method for computing CVT, we will compare it
with our new methods based on the quasi-Newton methods. We will show that both L-BFGS method and
P-L-BFGS methods are significantly faster than Lloyd’s method.

We have implemented Newton’s method, the L-BFGS method, and the P-L-BFGS method. Our tests were
run on a desktop computer with a 2.33GHz Intel Xeon CPU and 4GB RAM in Windows XP 64-bit system
and our C++ implementation uses CGAL [Fabri 2001] to compute Voronoi diagrams via Delaunay triangula-
tion with hierarchy and QHULL [Barber et al. 1996] to obtain the boundary cells via half-space computation.
To avoid handling the boundary constraints in our P-L-BFGS framework explicitly, we use step size control
to reduce the increment of the sites if the P-L-BFGS iteration moves them outside the domain.

Our line-search routine in L-BFGS and P-L-BFGS is from [More and Thuente 1994]. We set the maximum
number of iterations to be 1, 000 and the iteration stops when ‖∇F(X)‖ ≤ 10−7 or as soon as there is no suf-
ficient decrease during the line-search phase. The numerical integration method over simplices from [Genz
and Cools 2003] is used when ρ(x) 6≡ constant. The modified Cholesky algorithm for Hessian correction
is from [Lin and Moré 1999].

In all the methods that we compare, a CVT function call is invoked in each iteration to construct the Voronoi
diagram of the current sites for computing the CVT energy value and gradient. It might be invoked multi-
ple times in each iteration due to line-search, such as in the P-L-BFGS method. Therefore, the total number
of CVT function calls is more relevant than the total number of iterations when considering the total com-
putation time of a particular method.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



On Centroidal Voronoi Tessellation — Energy Smoothness and Fast Computation · 13

EXAMPLE 3. 2D CVT with density ρ(x) ≡ 1: The 2D domain Ω is a regular octagon with the bounding box
[−2, 2] × [−2, 2]. We sample 2, 000 points randomly in Ω as the initial sites (see Figure 8(a)). Table I provides
detailed information of all the tested methods.

Method # of iter. # of CVT-func-calls time (seconds) F(X)final ‖∇F(X)‖final time (seconds) per iter.
L-BFGS(7) 304 320 6.14 1.0369816e-2 9.462e-8 0.020

L-BFGS(20) 451 490 9.75 1.0363602e-2 8.405e-8 0.022
Lloyd 1000 1000 17.75 1.0379564e-2 9.756e-6 0.018

Newton 144 263 15.44 1.0377779e-2 9.705e-8 0.107
P-L-BFGS(20,10) 182 239 6.17 1.0366966e-2 8.408e-8 0.034
P-L-BFGS(20,20) 203 264 6.14 1.0366771e-2 8.916e-8 0.030

P-L-BFGS(200,20) 228 280 8.43 1.0372586e-2 7.586e-8 0.037

Table I. Comparisons in Example 3. # of iter. is the number of iterations and # of CVT-func-calls is the total number of CVT function
calls.

Before reaching the stopping criterion ‖∇F(X)‖ ≤ 10−7, Lloyd’s method has used 1, 000 iterations and
was terminated with a CVT energy higher than the values produced by the other methods. All the other
methods have reached the stopping criterion ‖∇F(X)‖ ≤ 10−7 with less than 1,000 iterations.

Table I shows that P-L-BFGS(20,20) is more efficient than P-L-BFGS(20,10) and P-L-BFGS(200, 20), as also
attested in Figure 8(f) and (i). Although the number of iterations used by P-L-BFGS(20,10) and New-
ton’s method is less than that of P-L-BFGS(20,20), their more frequent use of costly Hessian computation
and modification slow them down. Therefore we choose P-L-BFGS(20,20) as the representative P-L-BFGS
method for further comparisons with the other methods, as shown in Figure 8(g), (h), (j) and (k) in terms of
the CVT energy and the gradient norm with respect of the number of iterations and the computation time.
Similarly, since L-BFGS(7) is more efficient than L-BFGS(20), we show only L-BFGS(7) in the above figures.

Figure 8(b)-(e) show particular results computed by the P-L-BFGS(20,20) and Lloyd’s method, starting from
the same initialization. It is easy to see that P-L-BFGS(20,20) yields better quality with the same computation
time by comparing the number of non-hexagonal Voronoi cells (with more or less than 6 sides, shown
in blue). This visual evaluation makes sense due to Gersho’s observation [1979] (see the discussion in
Section 1).

Because the CVT function has many local minimizers, different optimization methods may find different
minimizers even if they start with the same initial set of sites. Therefore the convergence rates of different
methods are better illustrated by the plots of their gradient norms ‖∇F(X)‖ (see Figures 8(h) and (k)), than
by the plots of the CVT energy alone.

The experimental data indicates that both L-BFGS and P-L-BFGS are significantly faster than Lloyd’s method.
We also note from Figure 8(j) that, as expected, Newton’s method is not much more efficient than Lloyd’s
method, due to its costly computation and modification of the Hessian matrix in every iteration.

EXAMPLE 4. 2D CVT with density ρ(x) 6≡ constant: The 2D domain Ω is a regular hexagon with the bounding
box [−2, 2]× [−1.732, 1.732]. We sample 2, 000 points randomly in Ω as the initial sites (see Figure 9) according to
the density function is ρ(x) = e−20(x2+y2) + 0.05 sin2(πx) sin2(πy). Figure 9 shows the comparisons of different
methods in terms of F(X) and ‖∇F(X)‖. Table II shows other statistics for all the tested methods.

In this example we see again that the L-BFGS and the P-L-BFGS yield the best performance as compared to
Lloyd’s method and Newton’s method.
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Fig. 8. Example 3. Non-hexagonal cells (with more or less than 6 edges) are marked in blue. (a) The initial Voronoi tessellation; (b)
the result after 100 iterations by P-L-BFGS(20, 20); (c) the result after 203 iterations by P-L-BFGS(20, 20); (d) the result after 153 Lloyd’s
iterations (which takes the same time as (b)); (e) the result after 1, 000 Lloyd’s iterations; (f) F(X) against the number of iterations of the
P-L-BFGS methods; (g) F(X) against the number of iterations of some selected methods; (h) ‖∇F(X)‖ against the number of iterations
of some selected methods; (i) F(X) against the computation time of the P-L-BFGS methods; (j) F(X) against the computation time of
some selected methods; (k) ‖∇F(X)‖ against the computation time of some selected methods.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



On Centroidal Voronoi Tessellation — Energy Smoothness and Fast Computation · 15

(a)

(b) (c)

(d) (e)

0 50 100 150 200

1.4e-4

1.5e-4

1.6e-4

1.7e-4

1.8e-4

# of iter.

F(X)
PLBFGS(20,10)
PLBFGS(20,20)
PLBFGS(200,20)

0 200 400 600 800 1000 1200

1.4e-4

1.5e-4

1.6e-4

1.7e-4

1.8e-4

1.9e-4

# of iter.

F(X)
LBFGS(7)
Lloyd
Newton
PLBFGS(20,20)

0 200 400 600 800 1000 1200

1e-8

1e-7

1e-6

1e-5

1e-4

# of iter.

‖∇F(X)‖
LBFGS(7)
Lloyd
Newton
PLBFGS(20,20)

(f) (g) (h)

0 5 10 15 20 25 30

1.4e-4

1.5e-4

1.6e-4

1.7e-4

1.8e-4

F(X)

time(in seconds)

PLBFGS(20,10)
PLBFGS(20,20)
PLBFGS(200,20)

0 20 40 60 80 100 120

1.4e-4

1.5e-4

1.6e-4

1.7e-4

1.8e-4

1.9e-4

F(X)

time(in seconds)

LBFGS(7)
Lloyd
Newton
PLBFGS(20,20)

0 20 40 60 80 100 120

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3
‖∇F(X)‖

time(in seconds)

LBFGS(7)
Lloyd
Newton
PLBFGS(20,20)

(i) (j) (k)

Fig. 9. Example 4. (a) The initial Voronoi tessellation with the sites distributed according to the density function; (b) the result after 100
iterations by P-L-BFGS(20, 20); (c) the result after 154 iterations by P-L-BFGS(20, 20); (d) the result after 178 Lloyd’s iterations (which
takes the same time as (b)); (e) the result after 1, 000 Lloyd’s iterations; (f) F(X) against the number of iterations of the P-L-BFGS
methods; (g) F(X) against the number of iterations of some selected methods; (h) ‖∇F(X)‖ against the number of iterations of some
selected methods; (i) F(X) against the computation time of the P-L-BFGS methods; (j) F(X) against the computation time of some
selected methods; (k) ‖∇F(X)‖ against the computation time of some selected methods.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Method # of iter. # of CVT-func-calls time (seconds) F(X)final ‖∇F(X)‖final time (seconds) per iter.
L-BFGS(7) 332 338 30.39 1.4287259e-4 4.406e-8 0.092

L-BFGS(20) 270 272 24.58 1.4314150e-4 4.406e-8 0.091
Lloyd 1000 1000 88.72 1.4401771e-4 4.778e-7 0.089

Newton 177 304 105.52 1.4192786e-4 3.491e-8 0.596
P-L-BFGS(20,10) 140 168 21.47 1.4173879e-4 3.489e-8 0.153
P-L-BFGS(20,20) 154 221 23.37 1.4175610e-4 4.254e-8 0.152

P-L-BFGS(200,20) 172 229 26.06 1.4162808e-4 4.223e-8 0.152

Table II. Comparisons in Example 4.

EXAMPLE 5. 3D CVT with density ρ(x) ≡ 1: 2, 000 sites are sampled in a convex polyhedron with the bounding
box [−3.236, 3.236]× [−2.427, 2.427]× [−1.942, 1.942] (see Figure 10(a)). Figure 10(f) to (k) show the comparisons
of different methods in terms F(X) and ‖∇F(X)‖. Table III shows other information of all the tested methods, in the
same format as in the previous two test examples. Again we conclude from the data that the L-BFGS and P-L-BFGS
are more efficient than the other methods, and that all these methods are more efficient than Lloyd’s relaxation.

Method # of iter. # of CVT-func-calls time (seconds) F(X)final ‖∇F(X)‖final time (seconds) per iter.
L-BFGS(7) 487 498 100.17 1.3513974 8.850e-8 0.206

L-BFGS(20) 645 665 136.25 1.3511813 9.971e-8 0.211
Lloyd 1000 1000 197.53 1.3530904 2.144e-4 0.198

Newton 236 493 202.39 1.3519816 9.864e-8 0.858
P-L-BFGS(20,10) 266 439 102.00 1.3519459 6.684e-8 0.383
P-L-BFGS(20,20) 313 428 94.33 1.3517604 9.865e-8 0.301
P-L-BFGS(200,20) 299 400 91.36 1.3519590 7.620e-8 0.306

Table III. Comparisons in Example 5.

5.2 Lloyd-Newton method

The Lloyd-Newton method [Du and Emelianenko 2006] is a previous attempt at speeding up CVT compu-
tation. The Lloyd-Newton method uses Newton’s root-finding method to solve the system of non-linear
equations given by Equation (4). Note that Newton’s root-finding method used in the Lloyd-Newton’s
method needs to be distinguished from the Newton-like minimization method used by our method. We
will show that Lloyd-Newton is essentially equivalent to the Gauss-Newton method applied to minimizing
an objective function different from the CVT energy function in Equation (1). In contrast, the quasi-Newton
method we have considered so far for CVT computation directly minimizes the CVT energy function.
Hence, the two methods work by quite different principles. We will see that the Lloyd-Newton method
often fails to find a stable CVT, unless many Lloyd iterations are first used to pre-initialize the algorithm,
but this then makes the overall method behave like Lloyd’s relaxation, which is inefficient.

Equation (4) can be rewritten as G(X) ≡ X− T(X) = 0. Here, T(X) = (ci(X))n
i=1 is termed the Lloyd map,

which maps the sites to their corresponding centroids. Newton’s method for solving a system of non-linear
equations, used in [Du and Emelianenko 2006], operates by using a first-order approximation of G around
X :

G(X + δX) ' G(X) + JG δX,
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Fig. 10. Example 5. (a) The initial Voronoi tessellation; (b) the result after 100 iterations by P-L-BFGS(20, 20); (c) the result after 313
iterations by P-L-BFGS(20, 20); (d) the result after 129 Lloyd’s iterations (which takes the same time as (b)); (e) the result after 1, 000
Lloyd’s iterations; (f) F(X) against the number of iterations of the P-L-BFGS methods; (g) F(X) against the number of iterations of
some selected methods; (h) ‖∇F(X)‖ against the number of iterations of some selected methods; (i) F(X) against the computation
time of the P-L-BFGS methods; (j) F(X) against the computation time of some selected methods; (k) ‖∇F(X)‖ against the computation
time of some selected methods.
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where δX denotes a small displacement around X and JG = [ ∂Gi
∂xj

]i,j is the Jacobian matrix of G. Then it
repeatedly applies the following iteration until some convergence criterion is reached :

solve JG δX = −G(X) (5)
X ← X + δX,

where G(X) = X− T(X) and JG = (I− JT).

We will show that the Lloyd-Newton method can be recast in a variational formulation, as it is essentially
equivalent to applying the Gauss-Newton method to a least squares problem that minimizes the function

F̂ =
1
2 ∑ ‖xi − ci‖2 =

1
2
‖G(X)‖2. (6)

The gradient ∇F̂ and Hessian H′ of F̂ are given by :

∇F̂ = JT
G G,

H′ = JT
G JG + Q ' JT

G JG,

where Q contains some second-order terms that are neglected by the Gauss-Newton method. This gives
the following expression to compute the step vector δX in each Gauss-Newton iteration:

JT
G JG δX = −JT

G G(X).

Since the system has as many equations as unknowns, JG is a square matrix. When JG is non-singular, JT
G

can be removed from both sides, and this produces exactly the same update scheme as in the Lloyd-Newton
method (cf. Equation (5)).

There are two aspects that make it difficult to compute CVT by minimizing F̂ = 1
2‖X−T(X)‖2 = 1

2‖G(X)‖2

using a Newton-like method. First, the Lloyd map T(X) is only a C1 function. Therefore, the quadratic
convergence cannot be expected in general by either applying Newton’s method to solving G(X) = 0
or by applying the Gauss-Newton method to minimizing F̂ = 1

2‖G(X)‖2. Second, when such a method
converges, it may well converge to a solution of G(X) = 0 that is an unstable critical point of the CVT
energy function F.

The Lloyd-Newton method is a hybrid method consisting of Lloyd’s method and Newton’s root-finding
method. In the Lloyd-Newton method, to increase the chance of converging to a stable CVT, a large number
of Lloyd’s iterations are first used to pre-initialize the input before Newton’s root finder is invoked, hence
the name Lloyd-Newton.

To compare it with other methods, we implemented the Lloyd-Newton method according to the following
flow provided in [Du and Emelianenko 2006]:

(1) Perform Lloyd’s algorithm. If the difference between the centroids and the sites is larger than ε, the
sites are updated by centroids, goto 1; otherwise set stepsize to 1, goto 2;

(2) Perform Newton’s method to solve the system of nonlinear equations in Equation (4);

(3) Let n be the number of computed sites which are outside of the domain Ω. If n = 0, update sites; if
n = 1, halve the stepsize, goto 3; if n > 1, goto 1.

The performance of the Lloyd-Newton algorithm is sensitive to the parameter ε, which decides when one
should switch from Lloyd’s iteration to Newton’s iteration. If ε is too small, the Lloyd-Newton method is
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equivalent to Lloyd’s method. If ε is not very small (e.g., ε > 10−5), the Lloyd-Newton algorithm cannot
benefit from the robustness of Lloyd’s method and is therefore more likely to converge to an unstable CVT.

Incidentally, there is a minor robustness issue in the above procedure for the Lloyd-Newton method as
provided in [Du and Emelianenko 2006]. In step (1), if the difference between the centroids and the sites is
smaller than ε, then we go to (2). In step (2), if two or more updated sites computed by Newton’s method
are outside the domain Ω, then we go back to step (1). Therefore, when both conditions are satisfied
simultaneously, the Lloyd-Newton method is stuck in an infinite loop. Such a case is referred to as a failure
in the following. Although we do not undertake to fix this defect, we note that the issue is not essential to
the idea of the Lloyd-Newton method and may be fixed by some modifications in the implementation flow
without much difficulty.

We now provide experimental results about the Lloyd-Newton method. For each different value of the
parameter ε, we collected statistics by performing 100 tests of computing CVT in the square [−1, 1]2 with
100 sites. In each test, the 100 sites are initialized with a uniform random distribution. For each value of
ε, we recorded the number of Lloyd’s iterations needed, the number of Newton’s iterations needed, and
the numbers of stable CVTs and unstable CVTs computed by the Lloyd-Newton method. The termination
condition is that ‖∇F(X)‖ ≤ 0.5× 10−15. The results are shown in the following table.

ε # of failures # of unstable CVTs # of stable CVTs # of Lloyd’s iter. # of Newton’s iter.
10−5 96 4 0 124.25 28.25
10−6 31 31 38 317.72 40.86
10−7 3 17 80 388.59 25.41
10−8 3 6 91 481.98 18.22
10−9 2 4 94 622.11 11.72
10−10 0 1 99 776.98 5.13

In this table, # of failure is the number of tests (out of a total of the 100 tests) in which the Lloyd-Newton
method fails to find a critical point of F–that is, it falls into an infinite loop; # of unstable CVTs is the number
of times it returns an unstable CVT; # of stable CVTs is the number of times it returns a stable CVT; # of
Lloyd’s iter is the average number of Lloyd iterations used in each test; # of Newton’s iter is the average
number of Newton’s iterations used in each test.

We see that, when ε = 10−6, even with more than 300 Lloyd iterations, the Lloyd-Newton method still fails
to compute a stable CVT most of the time – 62 out of 100 times. In contrast, running L-BFGS 100 times with
this example using the same initialization and termination condition, we obtained stable CVTs in all the 100
tests. The average number of L-BFGS iterations used in each test is 116.98, costing about one third of the
time used by the Lloyd-Newton method. The P-L-BFGS has the similar level of robustness and efficiency
as the L-BFGS method with this example.

To conclude, when the Jacobian matrix JG is non-singular, the Lloyd-Newton method is equivalent to min-
imizing the energy F̂ = 1

2 ∑ ‖xi − ci‖2 with the Gauss-Newton method. This approach is not optimally
efficient because it requires to first use a large number of Lloyd iterations to provide a very good initial
value, making the computation inefficient. Without such an expensive initialization, it will suffer from a
lack of robustness as it will often get stuck in an unstable CVT.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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6. FAST CVT COMPUTATION ON MESH SURFACES

In this section we will test the efficiency improvement brought about by the quasi-Newton method for CVT
computation on a surface. CVT can be extended to manifolds for several applications, including surface
remeshing [Alliez et al. 2003]. It is natural to use geodesic metric in CVT formulation [Kunze et al. 1997;
Leibon and Letscher 2000; Peyré and Cohen 2004], but the computational cost would then be quite high.
Du et al. [2003] propose Constrained Centroidal Voronoi Diagram (CCVT), in which geodesic metric on a
surface is approximated by Euclidean metric in 3D. We adopt this formulation of CVT on a surface in the
following experiments.

6.1 Constrained centroidal Voronoi tessellation

Denote a given smooth surface by Ω ⊂ R3. Let X denote the distinct sites (xi)
n
i=1 in Ω, that is, ∀i 6= j, xi 6= xj.

The Voronoi region of the site xk is defined as Ωk = {x ∈ Ω | ‖x− xk‖ ≤ ‖x− xj‖, ∀j 6= k}. The constrained
centroid of Ωk is defined as

ck = arg min
y∈Ω

∫
x∈Ωk

ρ(x)‖y− x‖2 dσ,

which exists but may not be unique [Du et al. 2003]. For an ordered set of sites X = (xi)
n
i=1 on Ω, its CCVT

energy function is defined as

F(X) =
N

∑
i=1

∫
x∈Ωi

ρ(x)‖x− xi‖2 dσ.

Du et al. [2003] show that Lloyd’s method works well for CCVT.

On a surface F(X) is also defined in a piecewise manner–its expression takes different expressions for com-
binatorially different Voronoi tessellations, and the change in this expression occurs when there is a struc-
tural change of the Voronoi tessellation. From the discussion on the smoothness of CVT energy in Section
3, it can be argued that the constrained CVT energy function is also C2 for most situations encountered in
optimization.

For computing CCVT, we need the projection of the gradient of CVT onto the tangent plane of the surface
Ω, which can be derived from the gradient component ∂F

∂xi
= 2mi (xi − ci) of F(X) as follows:

∂F
∂xi

∣∣∣∣
Ω
=

∂F
∂xi
−
(

∂F
∂xi
·N(xi)

)
·N(xi), (7)

where N(xi) is the unit normal vector of the surface Ω at xi.

This gradient function is used in the L-BFGS method for computing CCVT on a surface. Note that the
updated sites xi in every iteration need to be projected to their nearest points on the surface, as required by
the formulation of CCVT.

6.2 Computing Voronoi diagram on mesh surface

The most time-consuming part of CVT computation is to determine the Voronoi region for each site. Face
clustering by the flood-fill algorithm [Cohen-Steiner et al. 2004] and boundary edge updating method [Valette
and Chassery 2004; Valette et al. 2008] have proven extremely fast in approximating Voronoi diagrams.
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(a) (b) (c) (d)

Fig. 11. Voronoi diagrams and their dual. (a) Voronoi diagram by face-clustering CVT; (b) the dual triangulation by face-clustering
CVT; (c) Voronoi diagram by face-splitting CVT; (d) the dual triangulation by face-splitting CVT. Clearly, the result via face-splitting
is more regular.

Valette and Chassery [2004] employed face clustering with approximated CCVT energy using Lloyd’s al-
gorithm. These methods are discrete in the sense that each triangle face of the input mesh is the smallest
primitive that is not subdivided anymore. Therefore, these methods terminate quickly but often yield a
sub-optimal solution since the result is highly sensitive on the quality of the input mesh.

In contrast, we treat a mesh surface as a piecewise continuous surface and split the triangle faces to accu-
rately evaluate the CVT energy when computing Voronoi cells. This leads to better remeshing quality as
shown by the following example. Consider a sphere-shaped mesh surface with 2,562 vertices and 5,120
faces. The discrete CVT of 200 sites generated by the method of Valette et al. [2004] using Lloyd’s iteration
and its dual triangle mesh are shown in Figure 11(a) and (b). The CCVT of 200 sites generated by Lloyd’s
method with face splitting and its dual triangle mesh are shown in Figure 11(c) and (d). Clearly, splitting
the triangles results in a mesh with more regular triangles and more regular distribution of vertex degrees.
The method by Valette et al. [2004] stops after 33 iterations, while Lloyd’s method with face splitting stops
after 70 iterations (‖δX‖ < 0.5× 10−4). Indeed, in this example the former is much faster – it takes only 0.95
seconds, while Lloyd’s method based on face splitting takes 4.33 seconds.

Careful implementation is needed to split triangle faces of a mesh surface by the boundaries of Voronoi
cells. We skip the details of this geometric computation due to space limitation, since they are not so
directly related to our main contribution of the present paper. The geometric details are given in [Yan et al.
2009].

6.3 Comparison of Lloyd’s method and L-BFGS for CCVT

We present two test examples to demonstrate the speedup by the L-BFGS method over Lloyd’s method.
The two input surfaces are the mesh surfaces of two 3D models, Rocker and Lion. The vertices of the input
meshes are used as the initial sites. The input mesh, the initial Voronoi tessellation, the Voronoi diagram
computed by L-BFGS, and the dual triangle mesh are shown as in Figures 12 and 13, respectively. We use
M = 7 for L-BFGS (see the discussion in Section 4.1). Figure 12(e) and (f) (Figure 13 (e) and (f), respectively)
show the CVT energy computed by Lloyd’s method and the L-BFGS method, against the number of itera-
tions and computation time. The gradient curve is shown in Figure 12(g) (Figure 13(g), respectively). From
these data we see that the L-BFGS method is significantly faster than Lloyd’s method. For the Rocker model,
for instance, Lloyd’s method takes 1,000 iterations to reduce the CVT energy to 4.18544× 10−5 (with gradi-
ent norm ‖∇F(X)‖ = 3.37589× 10−6), taking 1,268.25 seconds. In comparison, the L-BFGS method reaches
about the same CVT energy value (F(X) = 4.18519× 10−5 with gradient norm ‖∇F(X)‖ = 2.82868× 10−6)
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Fig. 12. Rocker model (the number of faces: 11,316, the number of vertices: 5,658, the number of sites: 5,658, size of bounding box:
0.49× 0.29× 0.96). (a) The input mesh; (b) the initial Voronoi diagram; (c) CCVT computed by the L-BFGS method (the number of
iterations: 284, F(X)final=4.0909e-5, ‖∇F(X)‖final=8.3197e-7, computation time: 272.021 seconds); (d) the triangle mesh dual to CCVT;
(e) F(X) against the number of iterations; (f) F(X) against the computation time (in seconds); (g) ‖∇F(X)‖ against the number of
iterations.

using 36 iterations, taking 34.51 seconds.

For the Lion model, Lloyd’s method takes 1,000 iterations to reduce the CVT energy to 2.29266 × 10−5

(with gradient norm ‖∇F(X)‖ = 2.4994 × 10−6), taking 6112.38 seconds; in comparison, the L-BFGS
method reaches about the same CVT energy value (F(X) = 2.29232× 10−5 with gradient norm ‖∇F(X)‖ =
1.58981× 10−6, using 44 iterations, taking 216.49 seconds.
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Fig. 13. Lion model (the number of faces: 50,000, the number of vertices: 25,002, the number of sites: 25,002, size of bounding box:
0.47× 0.85× 0.83). (a) The input mesh; (b) the initial Voronoi diagram; (c) CCVT computed by the L-BFGS method (the number of
iterations: 447, F(X)final=2.2572e-5, ‖∇F(X)‖final=7.3149e-7, computation time: 2,090.95 seconds); (d) the triangle mesh dual to CCVT;
(e) F(X) against the number of iterations; (f) F(X) against the computation time (in seconds); (g) ‖∇F(X)‖ against the number of
iterations.
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7. CONCLUSION AND DISCUSSION

We have introduced a new numerical framework for CVT computation in 2D, 3D and on mesh surfaces.
We have shown the C2 smoothness of the CVT energy function in a convex domain, as well as the practical
importance of this result by demonstrating the high efficiency of quasi-Newton methods for computing
CVT in 2D, 3D and on mesh surfaces. These quasi-Newton methods are significantly faster than Lloyd’s
method and more robust than the Lloyd-Newton method. All the applications of CVT, ranging from mesh-
ing, sampling theory, compression to optimization, are expected to benefit from this acceleration by simply
replacing Lloyd’s method with our method.

Computing a Voronoi tessellation is the most time-consuming task in every iteration of all the methods
discussed here. In practical applications, one may exploit the coherence of the Voronoi tessellations between
successive iterations to speed up the computation. After a certain number of iterations, the structure of
the Voronoi tessellation remains stable, or only undergoes small local modifications. Therefore, it may be
possible to quickly check the validity of the triangulation inherited from the previous iteration and/or to
perform local operations to update the triangulation. However, this issue does not affect much the relative
comparison of the different methods we have considered, since all these methods would benefit greatly
from this potential speedup.

All existing techniques, including the quasi-Newton approaches presented in this paper, are only capable of
computing a local minimum. We have tested the “Region Teleportation” approach as proposed in [Cohen-
Steiner et al. 2004]. Although it does help find a better local minimum sometimes, there is no theoretical
justification to ensure or strong experimental evidence to show that it works most of the time. Because the
CVT objective function has a large number of local minima, it is a challenge to devise an effective method
to find the global minimizer or even a local minimizer with guarantees of optimality, e.g. bounded distance
to the global optimizer, or bounded difference of CVT energy from the global minimum. Such a method
would be very useful to generating high-quality meshes. It would be also of great utility to empirically
study the possible configuration of a globally optimal CVT in 3D, in relation to Gersho’s conjecture, along
the line of investigation of [Du and Wang 2005b].

There are several problems to be considered in further research. One problem is to study the impact of the
initialization on the speed of convergence of the optimization method. For instance, sophisticated initial-
ization methods can significantly improve the speed of k-means[Arthur and Vassilvitskii 2007]. The same
idea is probably applicable in our context. Another important problem is the generalization to the CVT
framework with an arbitrary metric, with the aim of designing efficient anisotropic mesh generation algo-
rithms. In particular, this generalized setting raises interesting questions about the smoothness of F and
effective optimization techniques.

When applying CVT to meshing on a surface or a domain with boundary, one also needs to consider special
sites that are constrained to lie on sharp feature curves or boundaries in order to ensure that the resulting
mesh preserves the features and boundaries of the input surface. This poses the problem of defining a CVT
framework that accommodates both free sites and constrained sites, and issues of efficient computation
with these constraints.

We have shown that the CVT energy function is C2 for a convex domain in 2D and 3D when the density
function ρ(x) is C2. We conjecture that this is still true if ρ(x) is C0, as supported by our empirical study.
It would be important to settle this conjecture, as this relaxed condition on the smoothness of the den-
sity function is assumed in many applications where both the domain and background function ρ have a
piecewise-linear representation.
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A. PROOF OF THEOREM 1

To prove Theorem 1, we first need to explain the structure changes of a Voronoi tessellation and classify
degenerate configurations where the C2 continuity of the CVT function is to be established.

Let VD(X) denote the Voronoi tessellation of an ordered set of sites X = (xi)
n
i=1 ∈ R2n. Suppose that the

boundary of the domain Ω is a C0 piecewise curve consisting of a finite number of smooth curve segments.
For a given X, a vertex u0 of VD(X) is singular if it is one of the following three types:

Type I: u0 is at the center of a circle containing more than three sites in X0 (see Figure 14(a));

Type II: u0 is at the joining point u0 of two consecutive boundary curve segments and on a Voronoi edge
passing through u0 (see Figure 15(a));

Type III: u0 is the center of a circle containing at least three sites and located on a boundary curve segment
of the domain (see Figure 16(a)).

The Voronoi tessellation VD(X) is degenerate if at least one of its vertices is singular; otherwise, VD(X) is
proper. If VD(X) is degenerate, we call X a degenerate set of sites, or a degenerate point in R2n; if VD(X) is
proper, then we call X a proper set of sites, or a proper point in R2n.

Oriented abstract cell complex – Given a specific proper point Xp, we encode the structure of VD(Xp) by an
oriented abstract cell complex (or a complex, for short), denoted as C(Xp). The complex C(Xp) is composed of
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oriented faces, edges, and vertices (as cells of dimensions 2, 1 and 0), which correspond to the faces, edges
and vertices of VD(Xp). Specifically, an oriented face fC of C(Xp) corresponds to a face fV of VD(Xp) formed
by the corresponding vertices, and the orientation of fC corresponds to the counterclockwise orientation of
the boundary of fVD. And the oriented edges in C(Xp) are defined likewise. A vertex uC of C(Xp) is encoded
as the triple of sites such that the center of the circumcircle of the three sites is uC’s corresponding vertex
uV in VD(Xp).

We stress that C(Xp) encodes only the structure of VD(Xp), not its geometry. Therefore, VD(Xp) is a partic-
ular geometric realization of the complex C(Xp), and two different proper sets of sites, X1 and X2, may have
the same complex, that is, C(X1) = C(X2). The set of all complexes with n sites, which are finite in number,
induces equivalence classes in the set of all proper sets of sites. We will use the following two properties of
the abstract complex C(X): 1) C(X) is detached from its geometric realization VD(X); and 2) a C(Xp) serves
as a representative of its equivalence class of cell complexes.

Given a complex C0 and any set of sites X, we use the connectivity information in C0 and the geometry
of X to form a configuration on the plane, which we will denote as (X; C0). The configuration (X; C0) is an
embedding of the complex C0–the cells of C0 and the cells (X; C0) are in one-to-one correspondence and
the vertices of (X; C0) are the circumcenters of the triples of sites in X as specified by C0, assuming that
the triples of sites are not collinear and thus their circumcenters are finite. For an oriented face fC in C0, its
corresponding face f ′C in (X; C0) may well be a self-intersecting polygon; the configuration (X; C0) coincides
with VD(X) only when C(X) = C0.

CVT energy expression Φ(X; C) – Each proper cell complex C is associated with an expression for the
CVT energy function F(X). For a particular proper point Xp, each term Fi(Xp) of F(Xp) is an integral of a
smooth function over a Voronoi cell of VD(Xp). This expression of the CVT energy function F(Xp), denoted
Φ(X; Cp), is associated with the complex Cp ≡ C(Xp). Denote Πp = {X ∈ R2n|C(X) = Cp}, that is, the open
set of all the proper sets of sites whose VD have the same structural as that of VD(Xp). Let ΠXp denote the
closure of Πp. Then F(X) = Φ(X; Cp) if X ∈ ΠXp .

The expression Φ(X; Cp) is naturally extended to a neighborhood of Πp. Denote N(S; r) =
⋃

x∈S{B(v; r)},
where B(v; r) is the closed ball in R2n which is centered at v and has radius r > 0. Then N(Πp; δ) is
δ-neighborhood of Πp for some δ ≥ 0. We skip the detailed argument here but state that there exists a
sufficiently small δ > 0 such that the expression Φ(X; Cp) is well-defined and C2 in N(Πp; δ). For a point
Xq ∈ N(Πp; r) which is not in Πp, the domains of integration for evaluating the integrals in Φ(X; Cp)
may be self-intersecting polygons in the configuration (Xq; Cp). By Green’s theorem, these integrals can be
converted to line integrals and evaluated along the sequence of oriented edges in (Xq; Cp) as indicated by
the edges of the oriented faces in Cp. Clearly, Φ(X; C) is C2 for any complex C, since the density function
ρ(x) is assumed to be C2.

Neighborhood of a degenerate point – Let X0 be a degenerate set of sites. Applying an arbitrarily small
perturbation δX to X0, we may obtain a proper point X0 + δX that defines the complex C(X0 + δX). All
complexes that can be obtained this way are denoted by the set H(X0); that is, H(X0) consists of all the
neighboring complexes given by the proper points X in the neighborhood of the degenerate point X0, and
VD(X0) is a degenerate geometric realization of all the complexes in H(X0). This reflects the fact that a
degenerate set of sites X0 allows multiple Delaunay triangulations. Obviously, |H(X0)| ≥ 2.

As an illustration, a local view involving four co-circular sites xi, i = 1, 2, 3, 4, of a degenerate set of sites X0
along with its Voronoi tessellation is shown in Figure 14(a). The two complexes C1 and C2 (or, their corre-
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Fig. 14. An illustration for a type I singular vertex.

sponding configurations) incident to this degenerate point are shown in Figure 14(b) and (c)–they are ob-
tained by applying two perturbations δX and δ′X to X0, respectively. For C1, we have the following oriented
faces associated with the sites xi in terms of counterclockwise oriented sequences of their boundary vertices
: R1,1 : v1w1w′1v2u4u2v1, R1,2 : v2w2w′2v3u4v2, R1,3 : v3w3w′3v4u2u4v3, and R1,4 : v4w4w′4v1u2v4. For C2,
we have R2,1 : v1w1w′1v2u3v1, R2,2 : v2w2w′2v3u1u3v2, R2,3 : v3w3w′3v4u1v3, and R2,4 : v4w4w′4v1u3u1v4.

Smoothness of CVT function F(X) – With the above preparation, we now turn to the analysis of smooth-
ness of CVT energy function F(X). For any proper point X ∈ Γ, we have the CVT function F(X) = Φ(X; C0),
where C0 = C(X). Thus, F(X) is piecewise defined, since it has different expressions for configurations
(X; C(X)) with different complexes C(X).

First we consider the smoothness of F(X) at a proper point Xp ∈ Γ. For any sufficiently small change δX,
X0 + δX is also proper and defines the same complex as given by X0, that is, Cp ≡ C(X0 + δX) = C(X0).
It follows that the CVT functions F(X0) and F(X0 + δX) are evaluated using the same expression Φ(X; Cp).
Hence, F(X) is C2 at a proper point, since it inherits the C2 smoothness of Φ(X; Cp).

To complete the proof Theorem 1, it remains to establish the C2 smoothness of F(X) at a degenerate point
X0. For this we have the following lemma.

LEMMA 1. Let X0 be a degenerate set of sites. Let C1 and C2 be any two distinct complexes inH(X0). Then their
CVT expressions Φ(X; C1) and Φ(X; C2) have C2 contact at X0.
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PROOF: Suppose that an arbitrary perturbation δX of order O(h), where h > 0 is arbitrarily small, is applied
to X0 to yield X = X0 + δX. Since Φ(X; C1) and Φ(X; C2) are C2, we can write down their second-order Taylor
expansions at X0: Φ(X; C1) = Q1(X0; δX) +O(h3) and Φ(X; C2) = Q2(X0; δX) +O(h3). Here, Q1(X0; δX) and
Q2(X0; δX) are, respectively, quadratic polynomials in δX with their coefficients being various derivatives of
Φ(X; C1) and Φ(X; C2) at X0, up to the second order. In order to show that Φ(X; C1) and Φ(X; C2) have C2

contact at X0, we need to show that Q1(X0; δX) = Q2(X0; δX), ∀δX, that is, all their corresponding coefficients
agree with each other.

We claim that Φ(X; C2)−Φ(X; C1) = O(h3) implies Q1(X0; δX) = Q2(X0; δX). This can be seen as follows.
Suppose that Φ(X; C2) − Φ(X; C1) = O(h3). Assume that Q1(X0; δX) 6= Q2(X0; δX). Then Q1(X0; δX) −
Q2(X0; δX) can only be of the order O(hq), q = 0, 1 or 2. However, from the above Taylor expansions of
Φ(X; C1) and Φ(X; C2), we derive

Q2(X0; δX)−Q1(X0; δX) = Φ(X; C2)−Φ(X; C1) + O(h3) = O(h3).

This is a contradiction. Hence, Φ(X; C2)−Φ(X; C1) = O(h3) implies Q1(X0; δX) = Q2(X0; δX).

In the following we will only prove Φ(X; C2)−Φ(X; C1) = O(h3) in detail when VD(X0) contains exactly
one singular vertex, for when there are multiple singular vertices in VD(X0), we still have Φ(X; C2) −
Φ(X; C1) = O(h3) by adding up the individual terms of order O(h3) contributed by all the singular vertices.

Let u0 be the only singular vertex in VD(X0). Suppose that u0 is incident to k Voronoi regions and we
may suppose that these regions, denoted Ri, are associated with the sites xi, i = 1, 2, . . . , k. Apply an
arbitrary but fixed perturbation δX of order O(h) to the degenerate point X0, and denote X = X0 + δX.
Let Φ(X; C1) = ∑n

i=1 φ1,i and Φ(X; C2) = ∑n
i=1 φ2,i. The k terms φ1,i and φ2,i associated with the sites xi,

i = 1, 2, . . . , k, are integrals over oriented regions R1,i and R2,i in the configurations (X, C1) and (X, C2),
respectively. Then we have Φ(X; C2) − Φ(X; C1) = ∑k

i=1(φ2,i − φ1,i). Here, all other terms φ2,i and φ1,i,
i = k + 1, . . . , n, are canceled out, because they have the identical domains of integration R1,i and R2,i,
i = k + 1, . . . , n. This means that the geometric change alone (i.e., the change of positions of the sites)
without structural change of VD(X0) does not contribute to the difference between Φ(X; C2) and Φ(X; C1).

Denote Ti = R2,i − R1,i, where the operation “−” is the connected sum between two chains [Massey 1991]
with the boundary orientation of R1,i reversed. Let ∑ denote the connected sum of multiple chains. Clearly,
∑n

i=1 R1,i = ∑n
i=1 R2,i = Ω, where the input domain Ω is regarded as an oriented region. Also, we have

Ti = R2,i − R1,i = 0̄ for i = k + 1, . . . , n, where 0̄ stands for the empty path or the empty oriented region. It
follows that

k

∑
i=1

Ti =
n

∑
i=1

Ti =
n

∑
i=1

(R2,i − R1,i) =
n

∑
i=1

R2,i −
n

∑
i=1

R1,i = Ω−Ω = 0̄.

Here 0̄ can also be regarded as the empty set ∅ when used as a domain of integration. That ∑k
i=1 Ti = 0̄ is

critical to our proof. To help better explain this fact, we now illustrate it using simple examples with the
singular vertex u0 being of each of the three types.

Case 1 –Type I singular vertex: Consider the degenerate set of sites X0 with a singular vertex u0 shown in
Figure 14(a). Here u0 is the circumcenter of 4 sites; this is the case of k = 4. The two complexes C1 and
C2 in H(X0) correspond to the proper configurations shown in Figure 14(b) and (c). With the perturbation
δX, we have X = X0 + δX. Without loss of generality, suppose that C1 = C(X + δX). Superimposing the
configurations (X + δX; C1) and (X + δX; C2), we obtain the situation in Figure 14(d). The oriented regions
Ti = R2,i − R1,i, i = 1, 2, 3, 4, as differences of oriented regions, are represented by the following sets of ori-
ented edges, denoted as ordered pairs (u, u′), on the boundaries of the Ti: T1 = {(u2, u4), (u4, u3), (u3, u2)},
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Fig. 15. An illustration for a type II singular vertex.

T2 = {(u1, u3), (u3, u4), (u4, u1)}, T3 = {(u1, u4), (u4, u2), (u2, u1)}, T4 = {(u1, u2), (u2, u3), (u3, u1)}. Re-
call that two oriented edges with the same endpoints but opposite orientations cancel each other. It follows
that ∑4

i=1 Ti = 0̄.

Case 2 – Type II singular vertex: Consider the degenerate set of sites X0 with a singular vertex u0 shown in
Figure 15(a). Here u0 is the joint of two boundary curve segments and thus incident to two Voronoi cells;
this is the case of k = 2. The two complexes C1 and C2 in H(X0) correspond to the proper configurations
shown in Figure 15(b) and (c). With the perturbation δX, we have X = X0 + δX. Without loss of generality,
suppose that C1 = C(X + δX). Superimposing the configurations (X + δX; C1) and (X + δX; C2), we obtain
the situation in Figure 15(d). Note that the vertex u2, as required by the complex C2, which is originally
the intersection of a bisecting line and the curve segment B2 in Figure 15(c), is now the intersection point
between the bisecting line vu1 and the extended tangent line of the boundary curve B2 at u0. The two
oriented faces of x1 and x2 in the complexes C1 and C2 are, respectively, R1,1 : vu1u0w1v, R1,2 : u1vw2u1
and R2,1 : u2w1vu2, R2,2 : u2vw2u0u2. Then the oriented regions Ti = R2,i − R1,i, i = 1, 2, are represented
by the following sets of oriented edges: T1 = {(u0, u1), (u1, u2), (u2, u0)}, T2 = {(u1, u0), (u0, u2), (u2, u1)}.
It follows that ∑k

i=1 Ti = T1 + T2 = 0̄.

Case 3 – Type III singular vertex: Consider the degenerate set of sites X0 with a singular vertex u0 shown in
Figure 16(a). Here u0 is incident to three Voronoi cells; this is the case of k = 3. The two complexes C1 and
C2 in H(X0) correspond to the proper configurations shown in Figure 16(b) and (c). With the perturbation
δX, we have X = X0 + δX. Without loss of generality, suppose that C1 = C(X + δX). Superimposing the
configurations (X + δX; C1) and (X + δX; C2), we obtain the situation in Figure 16(d). The three oriented
faces of x1, x2 and x3 in the complexes C1 and C2 are, respectively, R1,1 : w3u0ow1w3, R1,2 : w2ou0w4w2,
R1,3 : w4u0w3w4 and R2,1 : w1w3u1w1, R2,2 : w2u2w4w2, R2,3 : w3w4u2u1w3. Then the oriented regions
Ti = R2,i − R1,i, i = 1, 2, 3, are: T1 = {(u0, u1), (u1, o), (o, u0), T2 = {(u0, o), (o, u2), (u2, u0)}, and T3 =
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Fig. 16. An illustration for a type III singular vertex.

{(u0, u2), (u2, o), (o, u1), (u1, u0)}. It follows that ∑k
i=1 Ti = T1 + T2 + T3 = 0̄.

Now we come back to the discussion of the general case. Denote gi(x) = ρ(x)‖x − xi‖2. Then φ1,i =∫
x∈R1,i

gi(x)dσ and φ2,i =
∫

x∈R2,i
gi(x)dσ, i = 1, 2, . . . , k. Since the sites xi, i = 1, 2, . . . , k, are co-circular

in X0, we have ‖xi − o‖ = r, where o is the center and r the radius of the circle S containing the sites xi,
i = 1, 2, . . . , k. Clearly, after the perturbation, at X1 we have ‖x − o‖ = O(h), ∀x ∈ Ti. Consequently,
gi(x) = ρ(x)‖x− xi‖2 = ρ(x)[r2 + O(h)], ∀x ∈ Ti, i = 1, 2, . . . , k.

Due to the convexity of the domain Ω, the vertices of Ti, i = 1, 2, . . . , k, are all in the O(h) neighborhood of
u0. Therefore, the length of any edge of Ti is O(h). It follows that the area of Ti is

∫
x∈Ti

dσ = O(h2).

Since the density function ρ(x) is continuous on the compact input domain Ω, it is bounded. Denote γ =
maxx∈Ω ρ(x).
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From the observations above, we have

Φ(X; C2)−Φ(X; C1) =
k

∑
i=1

[φ2,i − φ1,i]

=
k

∑
i=1

[
∫

x∈R2,i

gi(x)dσ−
∫

x∈R1,i

gi(x)dσ]

=
k

∑
i=1

∫
x∈Ti

gi(x)dσ =
k

∑
i=1

∫
x∈Ti

ρ(x)[r2 + O(h)]dσ

≤ r2
k

∑
i=1

∫
x∈Ti

ρ(x)dσ + γ
k

∑
i=1

∫
x∈Ti

O(h)dσ

= r2
∫

x∈∑k
i=1 Ti

ρ(x)dσ + O(h3)

= r2
∫

x∈0̄
ρ(x)dσ + O(h3) = O(h3) (8)

Now we have shown Φ(X; C1)−Φ(X; C2) = O(h3) at a degenerate point X0. Hence, the lemma is proved.
2

This completes the proof of Theorem 1. �
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