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Abstract
This paper presents a new method for detecting scale in-

variant interest points. The method is based on two recent
results on scale space: 1) Interest points can be adapted
to scale and give repeatable results (geometrically stable).
2) Local extrema over scale of normalized derivatives in-
dicate the presence of characteristic local structures. Our
method first computes a multi-scale representation for the
Harris interest point detector. We then select points at which
a local measure (the Laplacian) is maximal over scales.
This allows a selection of distinctive points for which the
characteristic scale is known. These points are invariant to
scale, rotation and translation as well as robust to illumina-
tion changes and limited changes of viewpoint.

For indexing, the image is characterized by a set of scale
invariant points; the scale associated with each point al-
lows the computation of a scale invariant descriptor. Our
descriptors are, in addition, invariant to image rotation,
to affine illumination changes and robust to small perspec-
tive deformations. Experimental results for indexing show
an excellent performance up to a scale factor of 4 for a
database with more than 5000 images.

1 Introduction

The difficulty in object indexing is to determine the iden-
tity of an object under arbitrary viewing conditions in the
presence of cluttered real-world scenes or occlusions. Lo-
cal characterization has shown to be well adapted to this
problem. The small size of the characteristic regions makes
them robust against occlusion and background changes. To
obtain robustness to changes of viewing conditions they
should also be invariant to image transformations. Recent
methods for indexing differ in the type of invariants used.
Rotation invariants have been presented by [10], rotation
and scale invariants by [8] and affine invariants by [13].

Schmid and Mohr [10] extract a set of interest points
and characterize each of the points by rotationally invari-
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ant descriptors which are combinations of Gaussian deriva-
tives. Robustness to scale changes is obtained by comput-
ing Gaussian derivatives at several scales. Lowe [8] extends
these ideas to scale invariance by maximizing the output
of difference-of-Gaussian filters in scale-space. Tuytelaars
et al. [13] have developed affine invariant descriptors by
searching for affine invariant regions and describing them
by color invariants. To find these regions they simultane-
ously use interest points and contours. Instead of using an
initial set of features, Chomat et al. [2] select the appropriate
scale for every point in the image and compute descriptors
at these scales. An object is represented by the set of these
descriptors. All of the above methods are limited to a scale
factor of 2.

Similar approaches exist for wide-baseline matching [1,
3, 5, 9, 12]. The problem is however more restricted. Addi-
tional constraints can be imposed and the search complexity
is less prohibitive. For example, Prichett and Zisserman [9]
first match regions bound by four line segments. They then
use corresponding regions to compute the homography and
grow the regions. Such an approach is clearly difficult to ex-
tend to the problem of indexing. Two of the papers on wide-
baseline matching have specifically addressed the problem
of scale. Hansen et al. [5] present a method that uses cor-
relation of scale traces through multi-resolution images to
find correspondence between images. A scale trace is a set
of values for a pixel at different scales of computation. Du-
fournaud et al. [3] use a robust multi-scale framework to
match images. Interest points and descriptors are computed
at different scale levels. A robust homography based match-
ing algorithm allows to select the correct scale. These two
approaches are not usable in the context of indexing, as im-
age to image comparison is necessary. In the context of
indexing we need discriminant features which can be ac-
cessed directly. Storage of several levels of scale is pro-
hibitive, as it gives rise to additional mismatches and in-
creases the necessary storage space.

In this papers we propose an approach which allows in-
dexing in the presence of scale changes up to a factor 4.



The success of this method is based on a repeatable and
discriminant point detector. The detector is based on two
results on scale space: 1) Interest points can be adapted
to scale and give repeatable results [3]. 2) Local extrema
over scale of normalized derivatives indicate the presence of
characteristic local structures [7]. The first step of our ap-
proach is to compute interest points at several scale levels.
We then select points at which a local measure (the Lapla-
cian) is maximal over scales. This allows to select a subset
of the points computed in scale space. For these points we
know their scale of computation, that is their characteris-
tic scale. Moreover, it allows to select the most distinctive
points. Points are invariant to scale, rotation and transla-
tion as well as robust to illumination changes and limited
changes of viewpoint. This detector is the main contribution
of this paper. We show that its repeatability is better than
the one of other approaches proposed in the literature and
therefore allows to obtain better indexing results. The sec-
ond contribution is the quality of our indexing and matching
results.

Overview. This paper is organized as follows. In section 2
we introduce scale selection. In section 3 our scale invariant
interest point detector is described and section 4 presents al-
gorithms for matching and indexing. Experimental results
are given in section 5.

2. Scale selection

In the following we briefly introduce the concept of
scale-space and show how to select the characteristic scale.
We then present experimental results for scale selection.

Scale-space. The scale-space representation is a set of im-
ages represented at different levels of resolutions [14]. Dif-
ferent levels of resolution are in general created by convolu-
tion with the Gaussian kernel: ���������
	�������
	���������	 with
� the image and ������������	 . We can represent a feature (i.e.
edges, corners) at different resolutions by applying the ap-
propriate function (combinations of derivatives) at different
scales. The amplitude of spatial derivatives, in general, de-
creases with scale. In the case of scale invariant forms, like
step-edge, the derivatives should be constant over scales.
In order to maintain the property of scale invariance the
derivative function must be normalized with respect to the
scale of observation. The scale normalized derivative � of
order � is defined by:
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Normalized derivatives behave nicely under scaling of

the intensity pattern. Consider two images � and �87 imaged
at different scales. The relation between the two images is
then defined by: �6����	9�:� 7 ��� 7 	0�9;-<�=,>
=?� 7 �:@A� . Image
derivatives are then related by:
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Thus, for normalized derivatives we obtain:
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We can see that the same values are obtained at corre-

sponding relative scales.
To maintain uniform information change between suc-

cessive levels of resolution the scale factor must be dis-
tributed exponentially. Let H be a function used to build the
scale-space and normalized with respect to scale. The set of
responses for a point � is then H!�������
I�	 with �,I!�*J I �,K . �,K
is the initial scale factor at the finest level of resolution and
�,I denotes successive levels of the scale-space representa-
tion with J the factor of scale change between successive
levels.

Characteristic scale. The properties of local characteristic
scales were extensively studied in [7]. The idea is to select a
characteristic scale by searching for a local extremum over
scales. Given a point in an image we compute the func-
tion responses for several scale factors �LI , see Figure 1.
The characteristic scale is the local maximum of the func-
tion. Note that there might be several maxima, therefore
several characteristic scales. The characteristic scale is rel-
atively independent of the image scale. The ratio of the
scales, at which the extrema were found for corresponding
points in two rescaled images, is equal to the scale factor
between the images. Instead of detecting extrema we can
also look for other easy recognizable signal shapes such as
zero-crossings of the second derivative.

Figure 1: The top row shows two images taken with dif-
ferent focal lengths. The bottom row shows the response
H!�����0�MI�	 over scales where H is the normalized Laplacian
(cf. eq.2). The characteristic scales are at 10.1 and 3.89 for
the left and right image, respectively. The ratio corresponds
to the scale factor (2.5) between the two images.

Several derivative based functions H can be used to com-
pute a scale representation of an image. These functions
should be rotation invariant. Illumination invariance is less
critical because we are looking for extrema. In the follow-
ing we present the differential expressions used for our ex-
periments. Note that all expressions are scale normalized.

Square gradient �LNO����NPQ�������
	5RS��NTU�����0�
	�	 (1)



Laplacian � �,N ��� PMP �������
	5RS� T3T �������
	�	�� (2)

Difference-of-Gaussian � ������	�� ����LI���� 	�� �6����	�������,I6	��
(3)

Harris function �
	��M��!	���� trace N ����	 (4)
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Experimental results. The scale selection technique based
on local maxima has been evaluated for functions (1),(2),(3)
and (4). The evaluation was conducted on several sequences
with scale changes. The characteristic scale was selected for
every point in the image. Figure 2 displays image points for
which scale selection is possible (white and grey). Black
points are points for which the function (Laplacian) has no
maximum. Note that these points lie in homogeneous re-
gions and have no maximum in the range of considered
scales.

The selected scale for a point is correct if the ratio
between characteristic scales in corresponding points is
equal to the scale factor between the images. Correspond-
ing points are determined by projection with the estimated
transformation matrix. In the case of multiple scale max-
ima, the point is considered correct, if one of the maxima
corresponds to the correct ratio. Points with correctly se-
lected scales are displayed in white (cf. Figure 2).

original scale=1.2, 80%

scale=2.5, 35% scale=4.3, 16%

Figure 2: Characteristic scale of points. Black–no charac-
teristic scale is detected. Gray–a characteristic scale is de-
tected. White–a characteristic scale is detected and is cor-
rect. The scale of the images is given above the images and
corresponds to �����
� = ���!  #"0 I�$&%')( $&%+*!, . The scaled images were
enlarged to increase the visibility.

We can observe that only a small percentage of selected
scales are correct for large scale factors. In table 1 we have
compared results for different functions H in the presence

of a scale factor of 4.3. Results are averaged over several se-
quences. The first row shows the function used. The second
shows the percentage of points for which a characteristic
scale is detected. We can observe that most points are de-
tected by the Laplacian. The percentage of correct points
with respect to detected points is given in row three. The
Laplacian and the DOG obtain the highest percentage. The
last row shows the overall percentage of correct detection.
Most correct points are detected by the Laplacian. The per-
centage is twice as high as for the gradient, and four times
higher than for the Harris function. Results are similar to
those of the DOG which is not surprising as this function is
very similar to the Laplacian.

Laplacian DOG gradient Harris

detected 46% 38% 30% 16%
correct/
detected 29% 28% 22% 23%
correct 13.3% 10.6% 6.6% 3.4%

Table 1: Row 2: percentage of points for which a charac-
teristic scale is detected. Row 3: percentage of points for
which a correct scale is detected with respect to detected
points. Row 4: percentage of correct / total.

We have observed that the performance degrades in the
presence of large scale changes. This can be explained by
the fixed search range of scales, which must be the same
for all images if we have no a priori knowledge about the
scale factor between the images. If the characteristic scale
found in a coarse resolution image is near the upper limit
of the scale range, the corresponding point at a finer scale
is likely to be too far from significant signal changes to be
detected in our scale limits. Our experiments shows, that
characteristic scale found by searching for extrema only in
the scale direction, are sensitive to this fact. Furthermore,
we cannot apply too large a range of scales as we lose the
local character, and the effect of image borders becomes too
important.

3. Scale invariant interest points

The previous section shows that using all points gives
unstable results. Feature points permit stabilizing the re-
sults.

Existing methods search for maxima in the 3D representa-
tion of an image ( ����� and �����
� = ). A feature point represents
a local maximum in the surrounding 3D cube and its value
has to be higher than a certain threshold. In Figure 3 the
point � is a feature point, if -�.-H!��� ���LI�	0/ H!�.8����%�	 with�2143�56�87 �95��!5 R:7�; and H!��� ���,I6	</ @ .
Lindeberg [7] searches for 3D maxima of the Laplacian, as
well as the magnitude of the gradient and Lowe [8] uses the
difference-of-Gaussian.



Figure 3: Searching for maxima in scale-space.

Our approach does not use a single function to search in
3D, but uses the Harris function (cf. eq. 4) to localize points
in 2D and then selects points for which the Laplacian attains
a maximum over scales. In the following, it is referred to as
the Harris-Laplacian.

The Harris detector is used for 2D localization as it has
shown to be most reliable in the presence of image rota-
tion, illumination transformations and perspective deforma-
tions as shown in a comparative evaluation [11]. However,
the repeatability of this detector fails when the resolution
of images changes significantly. In order to deal with such
changes, the Harris detector has to be adapted to the scale
factor [3]. Repeatability results for such an adapted ver-
sion are excellent. The remaining problem is scale selec-
tion. During our experiments we noticed that the adapted
Harris function rarely attains maxima in 3D space. If too
few points are detected, the image representation is not ro-
bust. Therefore, we propose to use a different function, the
Laplacian, for scale maxima detection. We have seen in the
previous section that this function allows to find the highest
percentage of correct maxima.

Our detection algorithm works as follows. We first build
a scale-space representation for the Harris function. At each
level of the scale-space we detect interest points by detect-
ing the local maxima in the image plane:

H!�����0�MI�	</ H!����� ���,I�	 - ��� 1 �
H!�����0�,I�	 /S@��

where
�

denotes the 8-neighbourhood of the point � .
In order to obtain a more compact representation, we ver-

ify for each of the candidate points found on different levels
if it forms a maximum in the scale direction. The Laplacian
is used for selection.
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Figure 5 shows the scale-space representation for two
real images with points detected by the Harris-Laplacian
method. For these two images of the same object imaged at
different scales we present for each scale level the selected
points. There are many point-to-point correspondences be-
tween the levels for which the scale ratio corresponds to the
real scale change between the images (indicated by point-
ers). Additionally, very few points are detected in the same

location but on different levels. Our points are therefore
characteristic to the image plane and the scale dimension.

A comparative evaluation of different scale invariant in-
terest point detectors is presented in the following. We
compare the approaches of Lindeberg (Laplacian and gra-
dient), Lowe as well as our Harris-Laplacian detector. To
show the gain compared to the non-scale invariant method,
we also present the results of the standard Harris detector.
The stability of detectors is evaluated using the repeatabil-
ity criteria introduced in [11]. The repeatability score is
computed as a ratio between the number of point-to-point
correspondences that can be established for detected points
and the mean number of points detected in two images:
> �
	 N � ���� " 	 �����

+ *)$3I � + " 	 + ��� where ����� �O��� N 	 denotes the number
of corresponding couples and � � �B� N the numbers of de-
tected points in the images. Two points correspond if the
error in relative location does not exceed 7���� pixel in the
coarse resolution image and the ratio of detected scales for
these points does not differ from the real scale ratio by more
than 20%. Figure 4 presents the repeatability score for the
compared methods. The experiments were done on 10 se-
quences of real images. Each sequence consists of scaled
and rotated images for which the scale factor varies from 1.2
up to 4.5. Best results are obtained for the Harris-Laplacian
method. The results are 10% better than those of the second
best detector, the Laplacian.

Figure 4: Repeatability of interest point detectors with re-
spect to scale changes.

4. Robust matching and indexing
In the following we briefly describe our robust matching

and indexing algorithms. The two algorithms are based on
the same initial steps:

1. Extraction of Harris-Laplacian interest points (cf. sec-
tion 3).

2. Computation of a descriptor for each point at its char-
acteristic scale. Descriptors are invariant to image ro-
tation and affine illumination changes. They are robust
to small perspective deformations.
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Figure 5: Points detected on different resolution levels with the Harris-Laplacian method.

3. Comparison of descriptors based on the Mahalanobis
distance.

Interest points. To extract interest points we have used
a scale representation with 17 resolution levels. The initial
scale � K is 1.5 and the factor J between two levels of resolu-
tion is 1.2. The parameter � is set to 0.06 and the thresholds
@ � and @ % are set to 1500 and 10, respectively.

Descriptors. Our descriptors are Gaussian derivatives
which are computed at the characteristic scale. Invariance
to rotation is obtained by “steering” the derivatives in the
direction of the gradient [4]. To obtain a stable estimation
of the gradient direction, we use the peak in a histogram of
local gradient orientations. Invariance to the affine inten-
sity changes is obtained by dividing the derivatives by the
steered first derivative. Using up to 4th order derivatives,
we obtain descriptors of dimension 12.

Comparison of descriptors. The similarity of descriptors
is measured by the Mahalanobis distance. This distance
requires the estimation of the covariance matrix � which
encapsulates signal noise, variations in photometry, inaccu-
racy of interest point location, and so forth. � is estimated
statistically over a large set of image samples.

Robust matching. To robustly match two images, we first
determine point-to-point correspondences. We select for
each descriptor in the first image the most similar descrip-
tor in the second image based on the Mahalanobis distance.
If the distance is below a threshold the match is kept. This
allows us to obtain a set of initial matches. A robust esti-
mation of the transformation between the two images based
on RANdom SAmple Consensus (RANSAC) allows to re-
ject inconsistent matches. For our experimental results the
transformation is either a homography or a fundamental ma-

trix. A model selection algorithm [6] can of course be used
to automatically decide what transformation is the most ap-
propriate one.

Indexing. A voting algorithm is used to select the most
similar images in the database. This makes retrieval robust
to mismatches as well as outliers. For each point of a query
image, its descriptor is compared to the descriptors in the
database. If the distance is less than a fixed threshold , a vote
is added to the corresponding database image. Note that a
point cannot vote several times for the same database im-
age. The database image with the highest number of votes
is the most similar one.

5. Experimental results

In the following, we validate our detection algorithm by
matching and indexing results. Figure 6 illustrates the dif-
ferent steps of our matching algorithm. In this example the
two images are taken from the same viewpoint, but with a
change in focal length and image orientation. The top row
shows the detected interest points. There are 190 and 213
points detected in the left and right images, respectively.
The number of detected points is about equivalent to results
obtained by a standard interest point detector. This clearly
shows the selectivity of our point detection method. If no
scale peak selection had been used, more than 2000 points
would be detected. The middle row shows the 58 matches
obtained during the initial matching phase. The bottom row
displays the 32 inliers to the estimated homography, all of
which are correct. The estimated scale factor between the
two images is 4.9 and the estimated rotation angle is 19 de-
grees.

Figure 7 shows an example for a 3D scene where the
fundamental matrix is used for verification. There are 180



and 176 detected points detected in the left and right im-
ages. The number of initial matches is 23 and there are 14
inliers to the robustly estimated fundamental matrix, all of
them correct. Note that the images are taken from different
viewpoints, the transformation includes a scale change, an
image rotation as well as a change in the viewing angle. The
building in the middle is almost half occluded.

Extracted interest points

Initial points matches

Inliers to the estimated homography

Figure 6: Robust matching: there are 190 and 213 points
detected in the left and right images, respectively (top). 58
points are initially matched (middle). There are 32 inliers
to the estimated homography (bottom), all of which are cor-
rect. The estimated scale factor is � � � and the estimated
rotation angle is 7�� degrees.

In the following we show the results for retrieval from a
database with more than 5000 images. The images in the
database are extracted from 16 hours of video sequences
which include movies, sport events and news reports. Sim-
ilar images are excluded by taking one image per 300
frames. Furthermore, the database contains one image from
each of our 10 test sequences. The total number of descrip-
tors in our database is 2539342.

The second row of figure 8 shows five images of the test
sequences which are contained in the database. The top row
displays images for which the corresponding image in the

database (second row) was correctly retrieved, that is it was
the most similar one. The approximate scale factor is given
in row three. The changes between the image pairs (first and
second row) include important changes in the focal length,
for example 5.8 for the image pair (a). They also include
important changes in viewpoint, for example for pair (b).
Furthermore, they include important illumination changes
(image pair (e)).

Figure 7: Example of images taken from different view
points. There are 14 inliers to a robustly estimated funda-
mental matrix, all of them are correct. The estimated scale
factor is � ��� .

The test sequences where used to systematically evalu-
ate the performance of retrieval. Results are shown in ta-
ble 2. For each of the 10 test sequences, we have evaluated
the performance at different scale factors (1.4 to 4.4). For
each scale factor, we have evaluated the percentage that the
corresponding image is the most similar one or among the
five or ten most similar images. We can see that up to a



(a) 1/5.8 (b) 3.7 (c) 1/4.4 (d) 1/4.1 (e) 5.7

Figure 8: The first row shows some of the query images. The second row shows the most similar images in the database, all
of them are correct. The approximative scale factor between query image and database image is given in row three.

scale factor of 4.4, the performance is very good. At the
scale of 4.4, 30% of the images are correctly retrieved, 50%
are among the 5 best matches and 70% are among the 10
best matches. These results were obtained with 12 dimen-
sional descriptors. If we use derivatives up to order 3, that is
7 dimensional descriptors, the results degrade significantly.
This justifies using the fourth order derivatives.

# retrieved scale factor
1.4 1.8 2.4 2.8 3.4 4.4

1 60 60 60 50 30 30
5 100 90 60 80 50 50
10 100 100 90 90 80 70

Table 2: Indexing results for our test sequences at different
scale factors. The first row of the table gives the percentage
of correct retrieval, that is the corresponding image is re-
trieved as the most similar one. The second/third row give
percentages that the corresponding image is among the 5/10
most similar images.

6. Conclusions and perspectives

We have presented an algorithm for interest point detec-
tion that is invariant to important scale changes. A com-
parison with existing detectors shows that our interest point
detector gives better results. Experimental validation for
matching and indexing was carried out on a significant
amount of data. Matching and indexing results are very
good up to a scale factor of 4. To our knowledge none of
the existing approach allows to deal with such scale factors
in the context of indexing. Furthermore, our approach is in-
variant to image rotation and translation as well as robust to
illumination changes and limited changes in viewpoint. Per-
formance could be further improved by using more robust
point descriptors. In our future research, we intend to focus
on the problem of affine invariance of point descriptors.
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