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Abstract 

Background  Contrast-enhancing (CE) lesions are an important finding on brain magnetic resonance imaging (MRI) 
in patients with multiple sclerosis (MS) but can be missed easily. Automated solutions for reliable CE lesion detection 
are emerging; however, independent validation of artificial intelligence (AI) tools in the clinical routine is still rare.

Methods  A three-dimensional convolutional neural network for CE lesion segmentation was trained externally 
on 1488 datasets of 934 MS patients from 81 scanners using concatenated information from FLAIR and T1-weighted 
post-contrast imaging. This externally trained model was tested on an independent dataset comprising 504 
T1-weighted post-contrast and FLAIR image datasets of MS patients from clinical routine. Two neuroradiologists (R1, 
R2) labeled CE lesions for gold standard definition in the clinical test dataset. The algorithmic output was evaluated 
on both patient- and lesion-level.

Results  On a patient-level, recall, specificity, precision, and accuracy of the AI tool to predict patients with CE lesions 
were 0.75, 0.99, 0.91, and 0.96. The agreement between the AI tool and both readers was within the range of inter-
rater agreement (Cohen’s kappa; AI vs. R1: 0.69; AI vs. R2: 0.76; R1 vs. R2: 0.76). On a lesion-level, false negative lesions 
were predominately found in infratentorial location, significantly smaller, and at lower contrast than true positive 
lesions (p < 0.05).

Conclusions  AI-based identification of CE lesions on brain MRI is feasible, approaching human reader performance 
in independent clinical data and might be of help as a second reader in the neuroradiological assessment of active 
inflammation in MS patients.

Critical relevance statement  Al-based detection of contrast-enhancing multiple sclerosis lesions approaches 
human reader performance, but careful visual inspection is still needed, especially for infratentorial, small and low-
contrast lesions.

Key points 

•	 Proper external validation studies of AI systems on unseen data from clinical routine are still rare.
•	 An externally developed AI tool accurately predicts contrast-enhancing lesions in  clinical data of  patients 

with multiple sclerosis.
•	 Missed lesions were predominately infratentorial, small, and at low contrast.
•	 False positive lesions represented alternative diagnoses such as artifacts, vessels, or tumor.
•	 AI-based detection of contrast-enhancing lesions is approaching human reader performance.
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Graphical Abstract

Background
Multiple sclerosis (MS) is the leading neuroinflammatory 
disease in the Western world and is associated with high 
morbidity, long-term disability and socioeconomic bur-
den [1]. Magnetic resonance imaging (MRI) is a mainstay 
for the diagnostic work-up of patients with (suspected) 
MS [2]. By visualizing demyelinating and neurodegenera-
tive processes in the central nervous system, MRI repre-
sents the key tool for diagnosis and monitoring of disease 
course and therapy in MS patients [2].

In the neuroradiological workup, major pathologi-
cal changes in diseased nervous tissue of MS patients 
are focal areas of demyelination, so-called lesions [3]. 
Thereby, contrast-enhancing (CE) lesions point toward 
acute demyelinating processes, which has important 
implications for first-time diagnosis and changes in 
the therapeutic regime [4, 5]. Contrast enhancement 
characterizes lesions that are typically not older than 
eight weeks and is the key surrogate marker for active 
inflammation [4]. The detection of CE lesions next to 
non-enhancing lesions proves that brain white matter 
damage has occurred at multiple time points, referred to 

as dissemination in time, which is one fundamental diag-
nostic criterium for MS [6, 7]. Contrast enhancement is 
associated with the occurrence of clinical relapses [8] and 
the amount or volume of CE lesions is highly relevant for 
the evaluation of treatment efficacy [9]. Thus, an accurate 
and robust detection of CE lesions is critical for clinical 
decision making in MS patients.

Although CE lesions are an important finding on 
brain MRI of patients with MS, they may be eas-
ily missed by the radiologist. The morphology of CE 
lesions differs substantially between patients and scans 
with respect to size, shape (ring, punctual or linear 
enhancement), intensity and location [10]. Due to the 
steadily increasing patient throughput and the grow-
ing amount of imaging data, qualitative assessment of 
conventional MRI sequences comes along with non-
negligible intra- and inter-observer variability having 
relevant implications for subsequent treatment deci-
sions [11, 12]. Manual segmentation of CE lesions for 
further research or clinical questions remains a very 
time-consuming, tedious and error-prone task, which 
can become practically infeasible in clinical routine 
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when dealing with large amounts of data under time 
constraints [11–13]. Consequently, fully automated 
detection and segmentation of CE lesions is highly 
desirable and might have an impact on the diagnostic 
workup of MS patients.

During the last decade, Artificial Intelligence (AI) 
and Machine Learning (ML) have made significant 
advances in medical imaging and have been lining up 
to enter the clinical workflow [14, 15]. Innovative AI 
techniques together with broader availability of digital-
ized data and advanced computer hardware promise to 
improve many routine radiological tasks such as accel-
eration of image acquisition, artifact reduction, and 
anomaly detection [16–21]. ML-based segmentation 
algorithms for identification and segmentation of brain 
lesions have significantly improved [12, 22–24]. Next to 
segmentation of white matter lesions on non-contrast 
MRI [25–28], AI systems allow to particularly detect 
CE lesions in MS brain tissue [10, 11, 29–31]. ML net-
works were applied to non-standardized and standard-
ized (clinical trial) datasets for an automatic detection 
and delineation of CE lesions [10, 11, 29, 30] and deep 
learning (DL) networks can help to predict lesion 
enhancement based on non-contrast MRI [5].

High skepticism toward utility and applicability in the 
actual clinical setting remains, although such AI frame-
works have been validated in their respective internal 
test setting, and generalizability and benchmarking 
were also assessed in large computational challenges 
such as the “WMH Segmentation Challenge 2017” 
(https://​wmh.​isi.​uu.​nl) [25]. Whether the published 
network performance is restricted to specific test envi-
ronments and how the AI tool performs in real-world 
clinical scenarios are major questions that need to be 
addressed to overcome skepticism. Nevertheless, a 
proper external validation of AI systems in clinical rou-
tine is still rarely performed.

Therefore, in the present work, we aim to elucidate the 
potential of an externally developed and trained AI tool 
for CE lesion detection in our clinical setting.

We investigated the performance of an independently 
trained 3D convolutional neuronal network (CNN) for 
detection of CE lesions applied on brain images of MS 
patients in clinical routine, hypothesizing that the AI tool 
performs comparable to a human reader. With respect 
to two expert readers, we (i) assessed the potential of the 
automated AI tool for identifying patients with at least 
one CE lesion on a patient-level, and (ii) conducted a 
lesion-level analysis following a standardized reporting 
scheme to better understand the classifications made by 
the network.

Methods
Deep learning framework and external training
A 3D CNN with a U-Net like encoder–decoder archi-
tecture (Fig. 1) was externally developed by jung diag-
nostics GmbH, Hamburg, Germany, and provided for 
external validation on our dataset.

A total of 1488 pairs of fluid-attenuated inversion 
recovery (FLAIR) and T1-weighted post-contrast image 
datasets of 934 MS patients originating from 81 differ-
ent MRI scanners served as training data.

Two expert readers independently labelled CE lesions 
in the 1488 datasets (one trained radiology technologist 
with ten years of experience annotating MR images, 
and a PhD in neuroscience with ten years of experience 
in neuroimaging and lesion segmentation). A CE lesion 
was defined as a hyperintense area on the T1-weighted 
post-contrast images, on which enhancement could 
be punctual/filled or “ring-enhancing”. The enhance-
ment must show a hyperintensity on the corresponding 
FLAIR. It was carefully verified that the hyperintensity 
is not caused by an artifact or by a normal anatomical 
structure that may cause a hyperintense signal (such as 
vessels).

For the DL framework, the heterogeneous input scans 
were re-sampled into an isometric 1 mm × 1 mm × 1 mm 
3D-space and fed into the encoder in zero mean unit 
variance 160 × 160 × 160 patches. A rigid registration 
was used to register the corresponding FLAIR on the 
T1-weighted images beforehand. Information from 
FLAIR images was included in order to enhance net-
work performance and reduce false positive rate. The 
two input patches were fed into the same encoder path 
with shared weights. Following every residual-block, 
the feature maps for the T1-weighted and the FLAIR 
input were concatenated and fed into the decoder. The 
encoder–decoder structure used was fully convolutional 
with 3 × 3 × 3 kernel size 3D convolutions. Four blocks 
with residual-block-connections reduced the spatial fea-
ture map four-times in the encoder path, before they got 
up-sampled to the original patch-size by the decoder. 
The output was six 3D probability masks at the same 
size as the original image, one for each segmentation 
that has been trained (CE lesions, FLAIR lesions, grey 
matter, white matter, cerebrospinal fluid, background). 
After the training, the final 3D CNN was transferred 
to the clinical institution which was responsible for the 
validation. Of note, the institution was not involved in 
the development and training phase and the training 
data did not include any scans from the MRI scanner 
used for testing.

https://wmh.isi.uu.nl
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Clinical performance evaluation
The ability of the externally developed and trained AI 
tool to detect CE lesions was assessed on an independent 
test dataset of MS patients from clinical routine.

Study population
We retrospectively identified 359 MS patients (68.5% 
female; mean age 38.2 ± 10.3 years) with relapsing–remit-
ting disease course (88%), clinically isolated syndrome 
(9.7%), primary progressive disease course (0.8%), sec-
ondary progressive disease course (0.8%), and radiologi-
cally isolated syndrome (0.8%) in our institutional PACS. 
Mean disease duration at baseline was 5.0 ± 4.4  years. 
This resulted in n = 504 datasets of baseline and follow-up 
scans acquired in our daily clinical practice consisting of 
FLAIR and T1-weighted post-contrast images originat-
ing from our clinical 3 T MRI scanner (Achieva, Philips 
Healthcare, Best, The Netherlands), respectively. The 
sequence parameters were implemented according to our 
side-specific clinical protocol (Table  1). The retrospec-
tive study was approved by the local institutional review 
board, and written informed consent was obtained from 
all patients.

Gold standard definition via clinical reading
Two expert readers (one neuroradiologist with six years 
of experience: reader 1 (R1); and one neuroradiologist 
with eight years of experience: reader 2 (R2)) performed 
data annotation for gold standard definition. Each reader 
independently labelled CE lesions in a similar approach 
as performed for data annotation during external train-
ing in the 504 T1-weighted post-contrast sequences to 
estimate inter-observer variability. After independent 
labeling, all T1-weighted post-contrast images were reas-
sessed by a consensus reading of both experts to define a 
ground truth (GT) CE lesion labeling.

Fig. 1  Architecture of the externally developed and trained 3D CNN with a fully convolutional encoder–decoder architecture with 3D convolutions, 
residual-block connections and four reductions of the feature map size. The two input images (T1-weighted post-contrast patch and registered 
FLAIR patch) were fed into the same encoder path with shared weights. Following every residual-block, the feature maps for the T1-weighted 
and the FLAIR input were concatenated and fed into the decoder. A segmentation mask was predicted, indicating contrast-enhancing 
lesions and background classes (grey matter, white matter, cerebrospinal fluid and FLAIR lesions). CNN, convolutional neural network; FLAIR, 
fluid-attenuated inversion recovery

Table 1  Sequence parameters

FLAIR T1-weighted 
post-contrast

Acquired voxel size [mm3] 1.03 × 1.03 × 1.5 1 × 1 × 1

Repetition time (TR) [ms] 10,000 9

Echo time (TE) [ms] 140 4

Acquisition time [min] 5 6

Acquisition plane axial sagittal
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Patient‑level analysis
The AI tool created a binary segmentation mask indi-
cating CE lesions for each dataset. The potential of the 
3D CNN to identify patients with at least one CE lesion 
on a patient-level (CE (+) patient) in contrast to a 
CE(−) patient (no CE lesion) was compared to the clini-
cal assessment by R1 and R2.

Lesion‑level analysis
To further understand the classifications made by the 
3D CNN, the AI segmentations of CE lesions were 
compared to the GT labeling of both readers. A sam-
ple of 50% of true positive (TP), false negative (FN) 
and false positive (FP) lesions was randomly selected 
and evaluated by one neuroradiologist with six years of 
experience. The following variables describing the CE 
lesions were evaluated: (specific) location, shape (ring, 
punctual or linear enhancement), maximum diam-
eter and apparent contrast-to-noise ratio (aCNR). The 
aCNR [32] was calculated using the following equation:

where SICE lesion is the signal intensity of the respective 
lesion, SINAWM is the signal intensity in a region of inter-
est (ROI) placed in the surrounding normal-appearing 
white matter (NAWM), and SD of SINAWM is the cor-
responding standard deviation. In addition, a possible 
alternative diagnosis was noted for FP lesions.

Statistical analysis
Statistical analysis was performed with SPSS (version 
27.0, IBM SPSS Statistics for MacOS, IBM Corp.) and 
Python (Python Software Foundation, Python Lan-
guage Reference, version 3.6, available at http://​www.​
python.​org). A p value of 0.05 was set as threshold for 
statistical significance.

On a patient-level, potential of the 3D CNN to cor-
rectly classify CE(+) patients was compared to the 
labeling by R1 and R2 using metrics for performance 
assessment: recall, specificity, precision, and accuracy. 
For comparison, inter-observer variability between R1 
and R2 was assessed with recall, specificity, precision, 
and accuracy. To compare agreement between AI ver-
sus R1/R2 and inter-rater agreement, Cohen’s kappa 
values were calculated (AI vs. R1, AI vs. R2, and R1 vs. 
R2).

On a lesion-level, statistical significance of describing 
variables for TP and FN lesions was evaluated using the 
Pearson’s chi-squared test (for location and shape) and 
the Mann–Whitney U test (for diameter and aCNR).

(1)aCNR =

(SICE lesion − SINAWM)

SDof SINAWM

Results
The threshold to create a binary CE lesion segmenta-
tion mask based on the output 3D probability mask of 
the network was set to 0.98 in order to obtain an optimal 
trade-off between a relatively high lesion wise sensitivity 
at an acceptable false positive rate.

Patient‑level analysis
When compared to R1, the resulting recall for classifica-
tion as CE(+) patient (at least one CE lesion) with the 3D 
CNN was 0.62 with a specificity of 0.99. 87% of classifica-
tions as CE(+) patient with the AI system were correct 
(precision). The accuracy was 0.94. Please refer to Addi-
tional file 1: Table SM1 for the corresponding confusion 
matrix.

When compared to R2, the resulting recall for clas-
sification as CE(+) patient (at least one CE lesion) with 
the 3D CNN was 0.75 with a specificity of 0.99. 91% of 
classifications as CE(+) patient with the AI system were 
correct (precision). The accuracy was 0.96. Please refer to 
Additional file 1: Table SM2 for the corresponding confu-
sion matrix.

Thereby, particularly recall and specificity of AI versus 
R2 were comparable to R1 versus R2 (recall: 0.76; speci-
ficity: 0.98). Compared to R1, 88% of R2 classifications as 
CE(+) patient were correct (precision) with an accuracy 
of 0.95. Please refer to Additional file 1: Table SM3 for the 
corresponding confusion matrix.

In Table 2, all recall, specificity, precision, and accuracy 
values with 95% confidence intervals (CI) are shown.

Cohen’s kappa for agreement between AI system and 
R1 was 0.69 (0.65–0.74) and between AI system and 
R2 was 0.76 (0.72–0.81)—both well within the range 
of agreement between R1 and R2 (Cohen’s kappa: 0.79 
(0.75–0.83)).

According to the GT consensus reading of R1 and R2, 
of the CE(+) patients 46 patients only had one CE lesion. 
Of this patient cohort, the AI system detected 22 patients 
correctly and missed 24 patients.

Lesion‑level analysis
The two expert readers labelled 164 CE lesions in total 
(GT labeling). When compared to the GT labeling on a 
lesion-level, the AI system detected 73 lesions correctly 
(TP), 91 lesions were missed (FN), and 22 lesions were 
misclassified as CE lesions (FP). Table 3 shows the results 
of the manual lesion-level analysis for TP and FN. FN 
lesions were predominantly located in the infratentorial 
location (p = 0.020). Relatively more TP lesions showed 
a ring enhancement, while FN lesions predominately 
showed punctual enhancement (p = 0.093). Mean aCNR 
was significantly lower in FN cases compared to TP cases 

http://www.python.org
http://www.python.org
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(p = 0.001). Mean maximum diameter of FN lesions was 
significantly smaller compared to TP cases (p = 0.001). 
In Fig.  2, two representative TP lesion segmentations 
are shown. The 3D CNN correctly labeled the subcor-
tical, ring enhancing lesion in the right occipital lobe 
(Fig. 2a) and the juxtacortical, punctual enhancing lesion 
in the left frontal lobe (Fig. 2b). Whereas in Fig. 3, typi-
cal FN lesions, that are relatively small, at low contrast, 
and often in the infratentorial location, are provided. 
Common alternative diagnoses for FP lesions were pul-
sation artifacts in the temporal lobe (n = 3), cerebral ves-
sels (n = 2), meningioma (n = 2), and hyperintensities in a 
tumor resection cavity (n = 2) (Fig. 4).

Discussion
Our work demonstrates that the implementation of 
an externally developed and trained AI system for CE 
lesion detection can substantially contribute to the 

neuroradiological workup of MS patients in clinical 
routine. AI-based detection of CE lesions represent-
ing active inflammation in MS patients is feasible, 
approaching human reader performance with respect 
to recall, precision, and accuracy. Hence, lesions missed 
by the algorithm are rather small (< 4 mm) and at low 
contrast.

In current clinical practice, conventional MRI is a 
mainstay in the diagnostic workup of MS patients [2]. 
Disease activity is characterized by lesion load in the 
initial scan and the amount of newly formed lesions 
in follow-up scans [33]. Thereby, the detection of CE 
lesions is of outmost importance, as their presence 
demonstrates active inflammation and its suppres-
sion is the main target of current MS treatment [4, 5]. 
Consequently, in MRI examinations of MS patients, an 
accurate and reliable identification of CE lesions is cru-
cial for an optimal patient care.

Particularly, for such complex tasks that require the 
precise analysis of large amounts of medical imaging 
data, AI frameworks promise to support the radiologi-
cal reporting [34]. Recently, several AI tools for iden-
tification and delineation of CE MS lesions have been 
developed and presented [10, 11, 29–31]. However, 
their implementation and external validation in the 
real-world clinical setting is still rare.

In the present work, we translated an externally pro-
vided 3D CNN to our clinical routine. Our institution 
received the finalized AI framework without having 
been involved in the development and training phase, 
thus guaranteeing a truly independent test set. For test-
ing, the algorithm was applied to routinely acquired 
MRI data from in-house MS patients. As publicly avail-
able clinical MRI datasets to test AI systems in the 
diagnostics of MS patients are scarce, studies often 
use datasets from large research studies for testing of 
their systems, which has important implications [5, 
35]. First, the prevalence of the pathology of interest is 
often overrepresented. Second, most of the time, addi-
tional pathological changes on the MR images due to 

Table 2  Results of the patient-level analysis

Recall, specificity, precision and accuracy of AI tool versus R1 and R2, as well as R1 versus R2

CI, confidence interval; AI, artificial intelligence; R1, reader 1; R2, reader 2

Recall (95% CI) Specificity (95% CI) Precision (95% CI) Accuracy

AI versus R1 0.62
(0.52–0.80)

0.99
(0.97–1.00)

0.87
(0.70–1.00)

0.94

AI versus R2 0.75
(0.55–0.88)

0.99
(0.97–1.00)

0.91
(0.76–0.99)

0.96

R1 versus R2 0.76
(0.63–0.92)

0.98
(0.97–1.00)

0.88
(0.82–0.98)

0.95

Table 3  Results of the lesion-level analysis

Variables describing true positive and false negative CE lesions are shown

CE, contrast-enhancing; std, standard deviation; aCNR, apparent contrast-to-
noise ratio

*Indicates statistical significance (p < 0.05)

True positive CE 
lesions (n = 37)

False negative 
CE lesions 
(n = 46)

p value

Location

 (Juxta)Cortical 9 4 0.020*

 Periventricular 10 13

 Infratentorial 1 11

 Subcortical 17 18

Shape

 Ring enhancement 13 7 0.093

 Punctual/filled 19 33

 Linear 5 6

Diameter

 Mean; std 5.67; 2.09 3.52; 1.45 0.001*

aCNR

 Mean; std 20.37; 13.86 6.26; 17.02 0.001*
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secondary diagnoses represent exclusion criteria. On 
the contrary, in our cohort, the percentage of patients 
with CE lesions was relatively low (15%) and thus, more 
realistic compared to values from other studies using 
clinical trial data (> 20%) [30, 36–39]. Moreover, the 
vast majority of FP lesions in our study represented 
alternative diagnoses such as meningiomas or tumor 
resection cavities, which would be excluded in large 
research studies, although reflecting the true clinical 
patient population. Consequently, we could investi-
gate the applicability of an externally provided AI tool 
in our clinical routine by testing in a real-word clini-
cal scenario rather than under artificial “laboratory” 
conditions.

Our findings highlight that AI-based identification of 
MS patients with CE lesions and thus, active inflamma-
tion is comparable to human reader performance. The 
agreement between the AI segmentation and human 
reader labeling of CE lesions was in the range of inter-
observer variability of the two expert readers. Among 
the unidentified CE(+) patients were mainly patients 
with only a single CE lesion. In the clinical setting, the 
AI system might replace the typically performed second 
reading by another radiologist and consequently sig-
nificantly speed up the neuroradiological workflow. Of 

note, the agreement between the AI system and R2 is 
better than between the AI system and R1, which might 
be due to the slightly greater clinical experience of R2. 
The remaining inter-observer variability between R1 
and R2 underlines how difficult and subjective an accu-
rate manual annotation of CE lesions is, which on the 
one hand means a challenge in developing algorithms 
with high accuracy, however, on the other hand, under-
lines the need for robust AI tools to objectively perform 
this task [10]. On a patient-level, we concentrated our 
analysis on the performance of the binary classifica-
tion as CE(+) patient (with at least one CE lesion) and 
CE(−) patient (no CE lesion), as assessment of active 
inflammation (represented by at least one CE lesion) is 
one of the main tasks for radiologists in MS imaging.

The applied 3D CNN incorporates information from 
T1-weighted post-contrast and FLAIR sequences. 
Considering that CE lesions also appear hyperintense 
on FLAIR images [11, 40] and thus, excluding non-
lesion enhancement (e.g., in vessels) might be the 
cause for the extremely low number of FP classifica-
tions as CE(+) patient (around 1% compared to both 
readers) despite the clinically very heterogeneous 
patient collective.

Fig. 2  Two representative true positive lesions. The 3D CNN correctly labeled the subcortical, ring enhancing lesion in the right occipital 
lobe (a) and the juxtacortical, punctual enhancing lesion in the left frontal lobe (b). FLAIR and T1C as well as zoomed views of the CE lesions 
without and with segmentation masks are shown. CNN, convolutional neural network; T1C, T1-weighted post-contrast; CE, contrast-enhancing
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Whereas the 3D CNN is reliably identifying ring 
enhancing and bigger (> 5.5 mm) lesions, the vast major-
ity of missed lesions was rather small and at low contrast. 
Other AI frameworks for CE lesion identification report 
similar problems with the detection of small lesions 
[10, 11, 30]. Particularly small lesions mean a challenge 
also for human readers, which is reflected by high inter-
observer variability, and affects accurate labeling of train-
ing datasets. Incorporating multiple radiologists in the 
labeling task for training data might help to overcome 
this challenge [10]. Additionally, in our clinical cohort, 
the AI system predominantly missed infratentorial 
lesions. The identification of infratentorial CE lesion is 
particularly challenging [41]. The posterior cranial fossa 
is known to be prone to artifacts due to the surround-
ing structures filled with air or consisting of bone, which 
compromises CE lesion detection in this area in general. 
Additionally, in adults, infratentorial lesions are less com-
mon than supratentorial lesions [42], which might lead 
to an underrepresentation of these lesions in the training 

dataset, consequently impacting the overall network 
performance.

As MRI has been revolutionizing medical imaging 
and patient care for at least four decades now, with ever 
faster,  more robust, and specialized acquisition tech-
niques, the patient load and amount of available imaging 
data is exponentially growing. To still be able to handle 
the provided big data, radiologists can rely on support of 
an increasing pool of AI algorithms which promise to help 
during the image reporting process [24]. In order to bridge 
the gap between development of these AI frameworks in 
controlled research settings and their implementation in 
real-world clinical practice, studies that validate the algo-
rithms in daily routine are indispensable. Our work con-
tributes to the translation of high-quality AI tools to the 
actual radiological workup. Future studies relating clinical 
outcomes to the network performance are necessary.

The present work is not without limitations. First, the 
two expert readers had different clinical experience, which 
might account for some inter-observer variability. Second, 

Fig. 3  Two representative false negative lesions. Relatively small, low-contrast lesions (a) and predominantly lesions with infratentorial location (b) 
were missed by the 3D CNN. FLAIR and T1C as well as zoomed views of the CE lesions with annotation of the respective lesion are shown. CNN, 
convolutional neural network; T1C, T1-weighted post-contrast; CE, contrast-enhancing
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the overall accuracy might be affected by class imbalance 
because of the considerably low number of patients with 
CE lesions (15%). Third, on a patient-level, datasets are not 
completely independent as multiple follow-up scans of some 
patients are included in the dataset. However, the dataset 
reflects an actual clinical patient population with baseline 
and follow-up scans. Fourth, also on the lesion-level, individ-
ual lesions cannot be treated as though they were statistically 
independent as several patients contributed multiple lesions 
to the analysis. Consequently, lesions from the same patient 
might appear more uniform with respect to the evaluated 
lesion describing variables (location, shape, diameter, and 
aCNR); however, this was not subject of the present work.

Conclusion
In conclusion, we could confirm that the implementa-
tion of an externally developed and trained AI tool for 
CE lesion detection in MS patients in our clinical rou-
tine is feasible and valuable, approaching human reader 
performance with respect to recall, precision, and accu-
racy. In the future, the AI tool might be a potential 
alternative to a second reader in the neuroradiological 
assessment of active inflammation in MS patients.
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