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Preface

This book was written for a first-semester graduate course in matrix theory at North
Carolina State University. The students come from applied and pure mathematics,
all areas of engineering, and operations research. The book is self-contained. The
main topics covered in detail are linear system solution, least squares problems,
and singular value decomposition.

My objective was to present matrix analysis in the“eontext of numerical
computation, with numerical conditioning of problems, and numerical stability of
algorithms at the forefront. I tried to present the materialdt a basic level, but in a
mathematically rigorous fashion.

Main Features. This book differs in several regards from other numerical linear
algebra textbooks.

e Systematic development of numeiieal conditioning.
Perturbation theory is used to‘determine sensitivity of problems as well as
numerical stability of algorithms, and the perturbation results built on each
other.
For instance, a condition number for matrix multiplication is used to derive a
residual bound for linear system solution (Fact 3.5), as well as a least squares
bound for perturbations on the right-hand side (Fact 5.11).

® No floating.point arithmetic.
There, is>hardly any mention of floating point arithmetic, for three main
reasonsY First, sensitivity of numerical problems is, in general, not caused
by.arithmetic in finite precision. Second, many special-purpose devices in
engineering applications perform fixed point arithmetic. Third, sensitivity
is an issue even in symbolic computation, when input data are not known
exactly.

® Numerical stability in exact arithmetic.

A simplified concept of numerical stability is introduced to give quantitative
intuition, while avoiding tedious roundoff error analyses. The message is
that unstable algorithms come about if one decomposes a problem into ill-
conditioned subproblems.

Two bounds for this simpler type of stability are presented for general di-
rect solvers (Facts 3.14 and 3.17). These bounds imply, in turn, stability
bounds for solvers based on the following factorizations: LU (Corollary

3.22), Cholesky (Corollary 3.31), and QR (Corollary 3.33).
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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® Simple derivations.
The existence of a QR factorization for nonsingular matrices is deduced very
simply from the existence of a Cholesky factorization (Fact 3.32), without
any commitment to a particular algorithm such as Householder or Gram—
Schmidt.
A new intuitive proof is given for the optimality of the singular value de-
composition (Fact 4.13), based on the distance of a matrix from singularity.
I derive many relative perturbation bounds with regard to the perturbed so-
lution, rather than the exact solution. Such bounds have several advantages:
They are computable; they give rise to intermediate absolute bounds (which
are useful in the context of fixed point arithmetic); and they are easy’ 10
derive.
Especially for full rank least squares problems (Fact 5.14), such a petturba-
tion bound can be derived fast, because it avoids the Moore—Penrose inverse
of the perturbed matrix.

® High-level view of algorithms.
Due to widely available high-quality mathematical software for small dense
matrices, I believe that it is not necessary anymore to-present detailed im-
plementations of direct methods in an introductorysgraduate text. This frees
up time for analyzing the accuracy of the output.

e Complex arithmetic.
Results are presented for complex rather‘than real matrices, because engi-
neering problems can give rise to complex matrices. Moreover, limiting
one’s focus to real matrices makes,it difficult to switch to complex matrices
later on. Many properties that areloften taken for granted in the real case no
longer hold in the complex case.

® [Exercises.
The exercises contain many useful facts. A separate category of easier exer-
cises, labeled with'rornan numerals, is appropriate for use in class.

Acknowledgments.> I thank Nick Higham, Rizwana Rehman, Megan Sawyer,
and Teresa Selee for providing helpful suggestions and all MA523 students for
giving me the“opportunity to develop the material in this book. It has been a
pleasure working with the SIAM publishing staff, in particular with Sara Murphy,
who mdde possible the publication of this book, and Lou Primus, who patiently
and competently dealt with all my typesetting requests.

Ilse Ipsen

Raleigh, NC, USA
December 2008
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Introduction

The goal of this book is to help you understand the sensitivity of matrix ¢om-
putations to errors in the input data. There are two important reasons_ for such
errors.

(1) Input data may not be known exactly.
For instance, your weight on the scale tends to be 425 pounds, but may
change to 126 or 124 depending where you stand on-the scale. So, you are
sure that the leading digits are 12, but you are not ‘sure about the third digit.
Therefore the third digit is considered to be inerror.

(ii) Arithmetic operations can produce errors.
Arithmetic operations may not give the @xact result when they are carried
out in finite precision, e.g., in floating’point arithmetic or in fixed point
arithmetic. This happens, for instance; when 1/3 is computed as .33333333.

There are matrix computation$ithat are sensitive to errors in the input. Con-
sider the system of linear equatiQns

1 1

3% + 302 = 1,
1
= 3x2 =0,
3)6 1+.3x2
which has the'solution x; = —27 and x» = 30. Suppose we make a small change

in the second’equation and change the coefficient from .3 to % The resulting linear
systent

Lol
—x1+=x2=1,
3717372

SR T
33T

has no solution. A small change in the input causes a drastic change in the output,
i.e., the total loss of the solution. Why did this happen? How can we predict that
something like this can happen? That is the topic of this book.

Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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1. Matrices

We review the basic matrix operations.

1.1 What Is a Matrix?

An array of numbers

with m rows and n columngis-an m x n matrix. Element a;; is located in position
(i, ). The elements a;; are scalars, namely, real or complex numbers. The set of
real numbers is R, andithe set of complex numbers is C.

We write A € R if A is an m x n matrix whose elements are real numbers,
and A € C"™"" if A is an m x n matrix whose elements are complex numbers. Of
course, R"*% @ C™*". If m = n, then we say that A is a square matrix of order n.

For instance,
1 2 3 4
A= <5 6 7 8)

is a 2 x 4 matrix with elements aj3 = 3 and ay4 = 8.
Vectors. A row vector y = (y1 ym) is a 1 x m matrix, i.e., y € Cclxm A
column vector

X1

Xn
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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2 1. Matrices

is an n x 1 matrix, i.e., x € C"*! or shorter, x € C". If the elements of x are real,
then x € R".

Submatrices. Sometimes we need only those elements of a matrix that are situ-
ated in particular rows and columns.

Definition 1.1. Let A € C"™*" have elements a;;. If 1 <ij <ip <--- <ix <m
and 1 < j1 < jo <--- < ji <n, then the k x | matrix

Aiyjy Qo -+ iy,
Aiy,jy  Qiy,jp -++ Gig,j
Aig.j1 - Qigjo -+ Qig,j

is called a submatrix of A. The submatrix is a principal submatrix'if it is square
and its diagonal elements are diagonal elements of A, that ispk’="l and i1 = ji,

iD= Jj2,...,lk = Jk-
Example. If

A=

[c IRV, I \§)

1

4

7
then the following are submatrices of A:

a2 a3

1
(3;1 Z;>=<4 Z) (a2 m3) = (4 6), ap axs|=

asxy ass
aip a3\ _ (1 3
a1 asz)” \7 9

is a principal mattix of A, as are the diagonal elements ayi, a2, a33, and A it-
self. [ |

oo W N
O O\ W

The submatrix

Notation:~ Most of the time we will use the following notation:

® Matrices: uppercase Roman or Greek letters, e.g., A, A.
® Vectors: lowercase Roman letters, e.g., x, y.

e Scalars: lowercase Greek letters, e.g., o;
or lowercase Roman with subscripts, e.g., x;, a;;.

® Running variables: i, j, k, [, m, and n.

The elements of the matrix A are called a;; or A;;, and the elements of the vector
x are called x;.

Zero Matrices. The zero matrix 0,, %, is the m x n matrix all of whose elements

are zero. When m and n are clear from the context, we also write 0. We say A =0
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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1.1. What Is a Matrix? 3

if all elements of the matrix A are equal to zero. The matrix A is nonzero, A # 0,
if at least one element of A is nonzero.

Identity Matrices. The identity matrix of order n is the real square matrix

1
I, =
1

with ones on the diagonal and zeros everywhere else (instead of writing many,
zeros, we often write blanks). In particular, /1 = 1. When 7 is clear from,the
context, we also write /.

The columns of the identity matrix are also called canonical vectors«y. That
is,[y=(e1 e ... en), where

1 0 0

0 1 0
el: . B 62: . > cee en:

0 0 1

Exercises

(i) Hilbert Matrix.

A square matrix of order n .whose element in position (i,j) is
1 <i,j <mn,is called a Hilbert matrix.
Write down a Hilbert mafrix for n = 5.

(ii) Toeplitz Matrix.
Given 2n — 1 scalars ay, —n+1 <k <n — 1, a matrix of order n whose
element in pogition (i, j) isaj—;, 1 <i,j < n, is called a Toeplitz matrix.
Write down-the Toeplitz matrix of order 3 when o; =i, —2 <i <2.

(iii)) Hankel Matrix.
Given2n — 1 scalars o, 0 < k < 2n — 2, a matrix of order n whose element
mposition (i, j) is aj4j—2, 1 <i,j < n,is called a Hankel matrix.
Write down the Hankel matrix of order 4 for o; =i,0 <i <6.

(iv) Vandermonde Matrix.
Given n scalars ¢;, 1 <i < n, a matrix of order n whose element in position
@i,j)1is otl.]_l, 1 <i,j <n,is called a Vandermonde matrix. Here we inter-
pret a? =1 even for @; = 0. The numbers «; are also called nodes of the
Vandermonde matrix.
Write down the Vandermonde matrix of order 4 when o; =i, 1 <i <3, and
oy =0.

1
fEy

(v) Is asquare zero matrix a Hilbert, Toeplitz, Hankel, or Vandermonde matrix?
(vi) Is the identity matrix a Hilbert, Toeplitz, Hankel, or Vandermonde matrix?

(vii) Is a Hilbert matrix a Hankel matrix or a Toeplitz matrix?
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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4 1. Matrices

1.2 Scalar Matrix Multiplication

Each element of the matrix is multiplied by a scalar. If A € C"*" and X a scalar,
then the elements of the scalar matrix product LA € C"*" are

(AA)jj = Aayj.
Multiplying the matrix A € C"™*" by the scalar zero produces a zero matrix,
0A= Omxn,

where the first zero is a scalar, while the second zero is a matrix with the same
number of rows and columns as A. Scalar matrix multiplication is associativey

() A=A (pA).
Scalar matrix multiplication by —1 corresponds to negation,

—A=(—1A.

Exercise

(1) Let x € C" and a € C. Prove: ax = 0 if and onlysif « =0 or x = 0.

1.3 Matrix Addition

Corresponding elements of two matrices*are added. The matrices must have the
same number of rows and the same mumber of columns. If A and B € C"*", then
the elements of the sum A + B € €™*" are

(A+B)ij =a;j +b,'j.

Properties of Matrix Addition.

® Adding the~zero matrix does not change anything. That is, for any m x n
matrix 43
Omxn+A = A+0m><n =A.

o Matrix addition is commutative,
A+B=B+A.
o Matrix addition is associative,
(A+B)+C=A+(B+0).
® Matrix addition and scalar multiplication are distributive,
A(A+B)=AA+AB, A+p)A=rA+puA.
One can use the above properties to save computations. For instance, com-

puting LA + AB requires twice as many operations as computing A(A + B). In
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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the special case B = —C, computing (A + B) + C requires two matrix additions,
while A + (B + C) = A+ 0 = A requires no work.
A special type of addition is the sum of scalar vector products.

Definition 1.2. A linear combination of m column (or row) vectors vi,..., Uy,
m>1,is
o U]+ Ay Uy,

where the scalars ay,...,ay are the coefficients.

Example. Any vector in R"” or C" can be represented as a linear combination 0f
canonical vectors,
X1
X2
=xie; +x2ex+ -+ xpep. [ |

Xn

1.4 Inner Product (Dot Product)

The product of a row vector times an equally long ¢olumn vector produces a single
number. If
M

x:(x1 xn), y=1:1,
Yn

then the inner product of x and s the scalar

Xy =X1y1+- - +XpVn.

Example. A sum of % scalars a;, 1 <i <n, can be represented as an inner product
of two vectors with n elements each,

ai

n 1 az
Zajz(al a ... an) . =(1 1 ... 1) . [ |

j=1 : :

1 a,

Example. A polynomial p(«) = Z?:o A jaj of degree n can be represented as an
inner product of two vectors with n + 1 elements each,

Ao 1
A o

p@=(1 o ... ") . =G0 2 ... M) . [ i
A o

Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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6 1. Matrices

Exercise

(i) Let n > 1 be an integer. Represent n(n + 1)/2 as an inner product of two
vectors with n elements each.

1.5 Matrix Vector Multiplication

The product of a matrix and a vector is again a vector. There are two types of
matrix vector multiplications: matrix times column vector and row vector times
matrix.

Matrix Times Column Vector. The product of matrix times column veetor is
again a column vector. We present two ways to describe the operations,that are
involved in a matrix vector product. Let A € C"*" with rows r; and eélumns c;,
and let x € C" with elements x;,

r] X1
'm Xn

View 1: Ax is a column vector of inner products, so that element j of Ax is the
inner product of row r; with x,

Ax =
ImX
View 2: Ax is a linear combination of columns
Ax =c1x1+---+cpxp.

The-yectors in the linear combination are the columns c; of A, and the
coelficients are the elements x; of x.

Example. Let

A=

— O O
N OO
W o o

The first view shows that Ae; is equal to column 2 of A. That is,

0 0 0 0
Aey=0|0]+1-{0])+0-10}=]0
1 2 3 2

Buy this book from ‘SIAM at www.ec-securéhost.com/SIAM/OT113.html
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The second view shows that the first and second elements of Ae;, are equal to zero.
That is,

(0 0 0O)e 0
Ax = (0 0 0)82 =10 [ |
(1 2 3)e 2

Example. Let A be the Toeplitz matrix

01 00 x|
~loo 10 | x
A=lo 0 0 1" *=|x

0000 x4

The first view shows that the last element of Ax is equal to zero. Tha(s,

0 1 0 0) o
oo 10| (s

Ax‘(0001)x_x4' "
0 0 0 0) 8

Row Vector Times Matrix. The product ofiarow vector times a matrix is a row
vector. There are again two ways to think”about this operation. Let A € C™*"
with rows r; and columns c;, and let y' & C'™>™ with elements Yjs

View 1: yA is a row vector of inner products, where element j of yA is an inner
product of ‘y'with the column ¢},

YA = (yc1 yc,,).

View 2: yA is a linear combination of rows of A,
YA=yiri+-+ Ymtm-

The vectors in the linear combination are the rows r; of A, and the coefficients
are the elements y; of y.

Exercises

(i) Show that Ae; is the jth column of the matrix A.

(ii) Let A be an m x n matrix and e the n x 1 vector of all ones. What does Ae
do?
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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8 1. Matrices

(iii) Let vy +---+ a; v, = 0 be a linear combination of vectors vy, ..., Uy,.
Prove: If one of the coefficients «; is nonzero, then one of the vectors can
be represented as a linear combination of the other vectors.

1. Let A,B € C™*". Prove: A = B if and only if Ax = Bx for all x € C".

1.6 Outer Product

The product of a column vector times a row vector gives a matrix (this is not to be
confused with an inner product which produces a single number). If

x=| 1. y=01 - ),
Xm

then the outer product of x and y is the m x n matrix
X1yr ... X1Yn
xy=| : :
XmYl - XmYn

The vectors in an outer product are allowed to haveldifferent lengths. The columns
of xy are multiples of each other, and so are the-fows. That is, each column of xy
is a multiple of x,

xy = (xxf>".. Xya),
and each row of xy is a multiple of'y,

X1y
Xy =

XmY

Example. A Vandermonde matrix of order n all of whose nodes are the same, e.g.,
equal to o, can be represented as the outer product

Exercise

(i) Write the matrix below as an outer product:

4 5
8 10
12 15

Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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1.7. Matrix Multiplication 9

1.7 Matrix Multiplication

The product of two matrices A and B is defined if the number of columns in A is
equal to the number of rows in B. Specifically, if A € C"*"* and B € C"*?, then
AB € C"™*P. We can describe matrix multiplication in four different ways. Let
A e C"*" withrows aj, and let B € C"*? with columns b;:

ai

View 1: AB is a block row vector of matrix vector products. The columnsef’A B
are matrix vector products of A with columns of B,

AB = (Ab; ... Ab),).

View 2: AB is a block column vector of matrix vector products, where the rows
of AB are matrix vector products of the rows of A-with B,

alB
AB = X

ay B

View 3: The elements of AB are innét~products, where element (i, j) of AB is
an inner product of row i ofsA'with column j of B,

(AB);j =aibj, l<i<m, 1<j=<p.

View 4: If we denoteby c; the columns of A and r; the rows of B,

r
A:(c1 c,,), B=1]":1,

'n

then AB is a sum of outer products, AB =cir; +-- -+ cuty.

Properties of Matrix Multiplication.

e Multiplying by the identity matrix does not change anything. That is, for an

m X n matrix A,
I,A=AI, =A.

e Matrix multiplication is associative,
A(BC)=(AB)C.

Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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10 1. Matrices

e Matrix multiplication and addition are distributive,
AB+C)=AB+AC, (A+B)C=AC+ BC.

e Matrix multiplication is not commutative.

For instance, if
0 1 1 0
=(0) o=(02)

0 2 0 1
AB:(O 0)7’5(0 O):BA.

Example. Associativity can save work. If

then

2 3
A=|3|, B=(1 2 3), cC=[23
4 1
5
then computing the product
1 2 3
2 4 6 3
(AB)C=|3 69
4N 87 12 1
5010 15
requires more operations than
1
2
A(BC)=]3]-10 [ |
4
5

Warning ) Don’t misuse associativity. For instance, if

B=(1 2 3), C=

S
I
DW=
N B~ W=
—_ N W

it looks as if we could compute

A(BC) = -10.

DW=
EENIUS I S

5
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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1.7. Matrix Multiplication 11

However, the product ABC is not defined because AB is not defined (here we
have to view BC as a 1 x 1 matrix rather than just a scalar). In a product ABC, all
adjacent products A B and BC have to be defined. Hence the above option A (BC)
is not defined either.

Matrix Powers. A special case of matrix multiplication is the repeated multi-
plication of a square matrix by itself. If A is a nonzero square matrix, we define
A = I, and for any integer k > 0,

k times

—
A=A . A= AT A=AAT

Definition 1.3. A square matrix is

e involutory if A> =1,
e idempotent (or a projector) if A*> = A,
e nilpotent if AK =0 for some integer k > 0.

Example. For any scalar o,

1 «o < involuts
0 —1 is involutory,

l «o \.
<() O> isidempotent,

and
Oy o .
(0 0) is nilpotent. |

Exercises

(1) Which.is'the only matrix that is both idempotent and involutory?

(i) Whiehis the only matrix that is both idempotent and nilpotent?
(iii) Cetx € C"*!, y € C'*". When is xy idempotent? When is it nilpotent?
(iv) Prove: If A is idempotent, then I — A is also idempotent.

(v) Prove: If A and B are idempotentand AB = B A, then A B is also idempotent.
(vi) Prove: A is involutory if and only if (I — A)(I + A) =0.
(vii) Prove: If A is involutory and B = (I + A), then B is idempotent.

(viii) Let x € C"*!, y € C!*". Compute (xy)3x using only inner products and
scalar multiplication.

1. Fast Matrix Multiplication.
One can multiply two complex numbers with only three real multiplications

instead of four. Let @ = o1 +10p and B = B1 418> be two complex numbers,
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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12 1. Matrices

where 12 = —1 and ar,a2,P1, P2 € R. Writing

af =a1f1 —afr+1 (a1 +a2)(B1+ B2) —a1 f1 — a2 B2l

shows that the complex product a8 can be computed with three real multi-
plications: a1 81, o282, and (a1 + B1) (2 + B2).

Show that this approach can be extended to the multiplication AB of two
complex matrices A = A; +1A, and B = By +1 B, where A1, Ay € R™*"
and Bp, By € R"*P, In particular, show that no commutativity laws are
violated.

1.8 Transpose and Conjugate Transpose

Transposing a matrix amounts to turning rows into columns and vice, versa. If

all a1 . a]n
any ann azn

A = . 9
aml Adm2 Amn

then its transpose A7 € C"*™ is obtained by convértitig rows to columns,

aill an] WO aml
AT aipn apv... am2
iy A2n ... Amn

There is a second typerof transposition that requires more work when
the matrix elements are‘complex numbers. A complex number « is written
o = o + 10, where 12 = —1 and o, € R. The complex conjugate of the
scalar @ is @ = o] =10,

If A e C"*4 is a matrix, its conjugate transpose A* € C"*™ is obtained by
converting rows to columns and, in addition, taking the complex conjugates of the
elements,

ay az ... ami
r ap ap ... am
dip  doy Amn
Example. If
1+21 5
A= ( 3—1 6) ’
then
r_(1+2t 3—1 « _(1=2t 3+1
AT = 5 6 )’ A= 5 6 |- u
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1.8. Transpose and Conjugate Transpose 13

Example. We can express the rows of the identity matrix in terms of canonical
vectors,

T *

€ €
Li=|:]|=|: |

T *

e, er

Fact 1.4 (Properties of Transposition).

e For real matrices, the conjugate transpose and the transpose are identical;
That is, if A € R"™*" then A* = AT .
e Transposing a matrix twice gives back the original,

ANHT =4, (AH*=A.

e Transposition does not affect a scalar, while conjugate transposition conju-
gates the scalar,

AT =2AT, (LAY =WA*.
® The transpose of a sum is the sum of theitransposes,
(A+B)T =AT + BT, o)V (A+B)* = A* + B*.

® The transpose of a product is the‘product of the transposes with the factors
in reverse order,

(AB)= BT AT, (AB)* = B*A*.
Example. Why do we have to reverse the order of the factors when the transpose

is pulled inside,the product AB? Why isn’t (AB)T = AT BT? One of the reasons
is that one of the products may not be defined. If

=01 #=()

then

AR =(2 2),
while the product A7 BT is not be defined. [ |
Exercise

(i) Let A be an n x n matrix, and let Z be the matrix with z; ;41 =1,
1 < j <n—1, and all other elements zero. What does ZAZ T 40?
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14 1. Matrices

1.9 Inner and Outer Products, Again

Transposition comes in handy for the representation of inner and outer products. If

X1 V1
X = s y= . s
Xn Yn
then
XFy=Xiyitoo+Xaye VX=XtV xn
Example. Let « = o + 12 be a complex number, where 12=—1land o, @€ R.
With

X =
o2
the absolute value of & can be represented as the inner product, || = +v/x*x. N

Fact 1.5 (Properties of Inner Products). Let x,y € C4:

1. y*x is the complex conjugate of x*y, i.e., yix = (x*y).
2. yIx =xTy.

3. x*x =0if and only if x = 0.

4. If x is real, then xTx = 0 if and only if x = 0.

Proof. Let x = (x1 xn)T and y = (y1 yn)T. For the first equality
write y*x = Z?‘:] yixj= Z?:] XjVj Sinc_e complex conjugating twice gives
lﬁk the original, we get 3 43 x;y; =31 X5, =21 Xy, =211 Xy =
x*y, where the long overbar denotes complex conjugation over the whole sum.
As for the thifd'statement, 0 = x*x = Y7_, X;x; = >_j_; |x;|* if and only
ifx; =0,1<j <, if and only if x = 0. a

Example:The identity matrix can be represented as the outer product

T T T
I, =eje] +ere; +--+epe,. |

Exercises

(i) Let x be a column vector. Give an example to show that x” x = 0 can happen
for x # 0.
(i) Letx € C" and x*x = 1. Show that I, — 2xx™ is involutory.
(iii) Let A be a square matrix with a; ;11 =1 and all other elements zero. Rep-

resent A as a sum of outer products.
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1.10. Symmetric and Hermitian Matrices 15

1.10 Symmetric and Hermitian Matrices

We look at matrices that remain unchanged by transposition.

Definition 1.6. A matrix A € C"*" js

o symmetric if AT = A,
Hermitian if A* = A,
skew-symmetric if AT = —A,
skew-Hermitian if A* = —A.

The identity matrix [, is symmetric and Hermitian. The square zeromatrix
0, xn 1s symmetric, skew-symmetric, Hermitian, and skew-Hermitian.

Example. Let 12 = —1.
It 21 . i 1 21\ . Hérhiti
5, 4 ) is symmetric, _9, 4 ) s Hermitian,

0 2\ . . i 20\ .
<_2, 0) is skew-symmetric, (21 41) is skew-Hermitian. [ |

Example. Let 1> = —1.
0
1 0

is symmetric and skew-Hermitian, while

0 —
1 0
is Hermitian and skew-symmetric. |

Fact 10Mf A € C"*" then AAT and AT A are symmetric, while AA* and A*A
are Hermitian.
If A e C"™ " then A+ AT is symmetric, and A + A* is Hermitian.

Exercises

(i) Is a Hankel matrix symmetric, Hermitian, skew-symmetric, or skew-
Hermitian?
(ii)) Which matrix is both symmetric and skew-symmetric?

(iii) Prove: If A is a square matrix, then A — AT is skew-symmetric and A — A*
is skew-Hermitian.

(iv) Which elements of a Hermitian matrix cannot be complex?
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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(v) What can you say about the diagonal elements of a skew-symmetric matrix?
(vi) What can you say about the diagonal elements of a skew-Hermitian matrix?

(vii) If A is symmetric and A is a scalar, does this imply that LA is symmetric? If
yes, give a proof. If no, give an example.

(viii) If A is Hermitian and A is a scalar, does this imply that AA is Hermitian? If
yes, give a proof. If no, give an example.

(ix) Prove: If A is skew-symmetric and A is a scalar, then LA is skew-symmetric.

(x) Prove: If A is skew-Hermitian and A is a scalar, then LA is, in general, not
skew-Hermitian.

(xi) Prove: If A is Hermitian, then 1 A is skew-Hermitian, where 12 =-1.
(xii) Prove: If A is skew-Hermitian, then 1 A is Hermitian, where 12 = —1.
(xiii) Prove: If A is a square matrix, then 1 (A — A*) is Hermitian, where 2= 1.

1. Prove: Every square matrix A can be written A = Ar%\A», where Aj is
Hermitian and A, is skew-Hermitian.

2. Prove: Every square matrix A can be written A ="AYy+1A,, where A| and
Ay are Hermitian and 12=—1.

1.11 Inverse

We want to determine an inverse with respect to matrix multiplication. Inversion
of matrices is more complicated than.inversion of scalars. There is only one scalar
that does not have an inverse: 0. But'there are many matrices without inverses.

Definition 1.8. A matrixxA’e C"*" is nonsingular (or invertible) if A has an
inverse, that is, if there is'amatrix A~" so that AA~™" = I = AV A. If A does not
have an inverse, it is sihgular.

Example.

e A-X 1 matrix is invertible if it is nonzero.
e An involutory matrix is its own inverse: A2 = I. |

Fact 1.9. The inverse is unique.

Proof. Let A e C"" andlet AB=BA =1, and AC = CA = I, for matrices
B,C € C"*", Then

B=BI,=B(AC)=(BAC=1,C=C. a

It is often easier to determine that a matrix is singular than it is to determine

that a matrix is nonsingular. The fact below illustrates this.
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1.11. Inverse 17

Fact 1.10. Let A € C"*" and x,b € C".

e If x A0 and Ax =0, then A is singular.
e If x # 0 and A is nonsingular, then Ax # 0.
e [f Ax = b, where A is nonsingular and b # 0, then x # 0.

Proof. To prove the first statement, assume to the contrary that A is nonsingular
and has aninverse A~!. Then0 = Ax implies 0 = A~'Ax = I,x =x,hence x =0,
which contradicts the assumption x # 0. Therefore A must be singular.

The proofs for the other two statements are similar. a

Fact 1.11. An idempotent matrix is either the identity or else is singular.

Proof. 1If A is idempotent, then A2 = A. Hence 0 = A2 — A = A(AS). Either
I — A =0, in which case A is the identity, or else I — A # 0, in,which case it has
a nonzero column and Fact 1.10 implies that A is singular. d

Now we show that inversion and transposition canr b€ exchanged.
Fact 1.12. If A is invertible, then AT and A* are also)invertible, and
AH'=@hy @yt =@h
Proof. Show that (A~")* fulfills the conditions for an inverse of A*:
A A A A A =" =1

and
@ A =AA Y =1 =1

The proof for AT is similar. a
Because inverse and transpose can be exchanged, we can simply write A~™*
and A°T.
The expression below is useful because it can break apart the inverse of a

sum.

Fact 1.13 (Sherman-Morrison Formula). If A € C"*" is nonsingular, and
V e C"™*" U e C are such that I + V A~ U is nonsingular, then

_1
(A+UV) ' =a~'—a-lU (1 n VA_1U> va~l,

Here is an explicit expression for the inverse of a partitioned matrix.

Fact 1.14. Let A € C"*" and

A= A A
) Ayl Ax)’
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If Aq; and A, are nonsingular, then

-1 -1 -1
ATl = ( _fl » -4y ‘:‘;252 )
—Aj A2, S,

where S = A1 — A12A2_21A21 and Sp = Ay — A21A1_11A12.

Matrices of the form S| and S, are called Schur complements.

Exercises

(i) Prove: If A and B are invertible, then (AB)~! = B~14~1,
(i) Prove: If A, B € C"*" are nonsingular, then B l'=A"1-B Y(B—DA"".
(iii) Let A € C™*", B € C"*™ be such that I + BA is invertible, ~Show that
(I+BA)'=I—-BUI+AB)'A.
(iv) Let A € C"*" be nonsingular, u € Cc"1 yeC* and vANn # —1. Show

that
A lyva/d

1+ vANN

(v) The following expression for the partitioned.iftverse requires only A1 to be
nonsingular but not Aj;.
Apy A
A= .
<A21 Azz)

Let A € C"" and
Show: If A1 is nonsingular.and’™S = Ay — AglAilAlz, then

(A—i—uv)*1 =A"!

Aol (AUEAT AsT A A AT ApsT
—S5 1Ay AT s ‘

(vi) Letx € C"*"@nd A € C"™ . Prove: If x £ 0and x A =0, then A is singular.
(vii) Prove: The“nverse, if it exists, of a Hermitian (symmetric) matrix is also
Hermitian\(symmetric).
(viii) Prover Hf A is involutory, then / — A or I 4+ A must be singular.
(ix) Let'A be a square matrix so that A+ A2 = I. Prove: A is invertible.
(x) Prove: A nilpotent matrix is always singular.

1. Let S € R"*". Show: If S is skew-symmetric, then / — S is nonsingular.
Give an example to illustrate that / — S can be singular if S € C"*".

2. Let x be a nonzero column vector. Determine a row vector y so that yx = 1.
3. Let A be a square matrix and let «; be scalars, at least two of which are
nonzero, such that Zﬁ:o aj AJ =0. Prove: If ag # 0, then A is nonsingular.

4. Prove: If (1 — A)~' = Z];:() A/ for some integer k > 0, then A is nilpotent.

5. Let A,B € C"*", Prove: If I + BA is invertible, then I + AB is also

invertible.
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1.12. Unitary and Orthogonal Matrices 19

1.12  Unitary and Orthogonal Matrices

These are matrices whose inverse is a transpose.

Definition 1.15. A matrix A € C**" is
o unitary if AA* =A*A =1,
o orthogonal if AAT = ATA = 1.

The identity matrix is orthogonal as well as unitary.

Example 1.16. Let ¢ and s be scalars with |c|? + |s|> = 1. The matrices

(59 (%)

are unitary. |

The first matrix above gets its own name.

Definition 1.17. If ¢,s € C so that |c|* + |s|? = 1, theithe unitary 2 x 2 matrix

(5 3)

is called a Givens rotation. If ¢ and $\gre also real, then the Givens rotation
c s\,

( ) is orthogonal.
s c

When a Givens rotatioh is real, then both diagonal elements are the same.
When a Givens rotation 1$\complex, then the diagonal elements are complex con-
jugates of each other. Alunitary matrix of the form

(7 1),

where theseal parts of the diagonal elements have different signs, is a reflection;
it is nof.@ Givens rotation.

An orthogonal matrix that can reorder the rows or columns of a matrix is
called a permutation matrix. It is an identity matrix whose rows have been re-
ordered (permuted). One can also think of a permutation matrix as an identity
matrix whose columns have been reordered. Here is the official definition.

Definition 1.18 (Permutation Matrix). A square matrix is a permutation matrix
if it contains a single one in each column and in each row, and zeros everywhere
else.

Example. The following are permutation matrices.

® The identity matrix /.
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® The exchange matrix

| X1 Xn
X2
J = . N ] . = .
| : X2
Xn X1
® The upper circular shift matrix
0 1
0 1 X1 Xn
: X1
Z= , zZ| - = |
Xn—1
1 Xn Xn—1
1 0

Fact 1.19 (Properties of Permutation Matrices).

1. Permutation matrices are orthogonal and unitary
That s, if P is a permutation matrix, then PPN PTP = PP*=P*P =1.
2. The product of permutation matrices is again a permutation matrix.

Exercises

(i) Prove: If A is unitary, then A*yA”, and A are unitary.
(i) Whatcan you say aboutaninvolutory matrix thatis also unitary (orthogonal)?
(iii) Which idempotent matrix is unitary and orthogonal?
(iv) Prove: If A is unitary, so is 1 A, where 12=—-1.
(v) Prove: The product of unitary matrices is unitary.

(vi) Partitioned Unitary Matrices.
Let A €% be unitary and partition A = (A; Az), where A; has k
columiis, and A; has n —k columns. Show that ATA| = Iy, A5Ay = I,
andATA =0.
(vii) Let x € C" and x*x = 1. Prove: I, —2xx™ is Hermitian and unitary. Con-
clude that 7, —2xx™ is involutory.
(viii) Show: If P is a permutation matrix, then P” and P* are also permutation
matrices.
(ix) Show: If (P;  P») is a permutation matrix, then (P2  Pp) is also a permu-
tation matrix.

1.13 Triangular Matrices

Triangular matrices occur frequently during the solution of systems of linear equa-

tions, because linear systems with triangular matrices are easy to solve.
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Definition 1.20. A matrix A € C"*" is upper triangular ifa;; =0 fori > j. That is,

aill ... Adip
A=

Qnn
A matrix A € C"™" is lower triangular if AT is upper triangular.

Fact 1.21. Let A and B be upper triangular, with diagonal elements a;; and bj;,
respectively.

® A+ B and AB are upper triangular.
® The diagonal elements of AB are a;;b;;.

® Ifaj; #0 forall j, then A is invertible, and the diagonal elements of Al
are 1/aj;.

Definition 1.22. A triangular matrix A is unit triangulacif it has ones on the
diagonal, and strictly triangular if it has zeros on the diagonal.

Example. The identity matrix is unit upper triangular and unit lower triangular.
The square zero matrix is strictly lower triangularrand strictly upper triangular. Wl

Exercises

(i) What does an idempotent triafigular matrix look like? What does an involu-
tory triangular matrix 1og0k’like?

1. Prove: If A is.unittriangular, then A is invertible, and A~! is unit triangular.
If A and B aréwnit triangular, then so is the product AB.

2. Show that.astrictly triangular matrix is nilpotent.
3. Explainywhy the matrix I — ae; ejr is triangular. When does it have an in-
verse)! Determine the inverse in those cases where it exists.

4. Prove:
1 a o o - 1 —a
1 o . 1 —
az =
1 o 1 —o
1 1

5. Uniqueness of LU Factorization.
Let L1, L, be unit lower triangular, and Uy, U, nonsingular upper triangular.

Prove: If L1U| = LU, then L1 = Ly and Uy = U,.
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6. Uniqueness of QR Factorization.
Let Q1, Q2 be unitary (or orthogonal), and Ry, Ry upper triangular with
positive diagonal elements. Prove: If Q1R; = Q2R», then Q1 = Q> and
R =Ry.

1.14 Diagonal Matrices

Diagonal matrices are special cases of triangular matrices; they are upper and lower
triangular at the same time.

Definition 1.23. A matrix A € C"*" is diagonal if a;; = 0 for i # j. That is,

The identity matrix and the square zero matrix aré\diagonal.

Exercises

(i) Prove: Diagonal matrices are symmettic. Are they also Hermitian?

(i) Diagonal matrices commute.
Prove: If A and B are diagonalsthen A B is diagonal, and AB = BA.

(iii) Represent a diagonal matrix’as’a sum of outer products.
(iv) Which diagonal matrices‘are involutory, idempotent, or nilpotent?

(v) Prove: If a matrix is ufitary and triangular, it must be diagonal. What are its
diagonal elements?

1. Let D be a diagonal matrix. Prove: If D = (I + A)~LA, then A is diagonal.

Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html



Copyright ©2009 by the Society for Industrial and Applied Mathematics
This electronic version is for personal use and may not be duplicated or distributed.

2. Sensitivity, Errors, and
Norms

Two difficulties arise when we solve systems of linear equations or perform other
matrix computations.

(i) Errors in matrix elements.
Matrix elements may be contaminated ‘with  errors from measurements or
previous computations, or they may simply not be known exactly. Merely
inputting numbers into a computer of @alculator can cause errors (e.g., when
1/3 is stored as .33333333). To account for all these situations, we say that
the matrix elements are afflicted with uncertainties or are perturbed. In
general, perturbations of the ihputs cause difficulties when the outputs are
“sensitive” to changes in‘the inputs.

(ii) Errors in algorithms.
Algorithms may not ¢ompute an exact solution, because computing the exact
solution may(not be necessary, may take too long, may require too much
storage, or may not be practical. Furthermore, arithmetic operations in finite
precision*imay not be performed exactly.

In this'book, we focus on perturbations of inputs, and how these perturbations
affect the) outputs.

2.1 Sensitivity and Conditioning

1

99 G

Inreal life, sensitive means’ “acutely affected by external stimuli,” “easily offended
or emotionally hurt,” or “responsive to slight changes.” A sensitive person can be
easily upset by small events, such as having to wait in line for a few minutes.
Hardware can be sensitive: A very slight turn of a faucet may change the water
from freezing cold to scalding hot. The slightest turn of the steering wheel when
driving on an icy surface can send the car careening into a spin. Organs can be

IThe Concise Oxford English Dictionary
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sensitive: Healthy skin may not even feel the prick of a needle, while it may cause
extreme pain on burnt skin.

It is no different in mathematics. Steep functions, for instance, can be sen-
sitive to small perturbations in the input.

Example. Let f(x) = 9* and consider the effect of a small perturbation to the
input of £(50) = 9°0_ such as

£(50.5) = v/99°° =3 £(50).
Here a 1 percent change in the input causes a 300 percent change of the output. . B

Systems of linear equations are sensitive when a small modification~if'the
matrix or the right-hand side causes a large change in the solution.

Example 2.1. The linear system Ax = b with

(13 13 e
A—<1/3 .3>’ b‘(o)
(-2
X = 30 .

However, a small change of the (2,2) elg:ment from .3 to 1/3 results in the total
loss of the solution, because the system,Axc= b with

- {173 13
A—(I/S 1/3)

has no solution. [ |

has the solution

A linear system like the one above whose solution is sensitive to small per-
turbations in the mattix is called ill-conditioned. Here is another example of
ill-conditioning.

Example. Fhe linear system Ax = b with

1 1 -1
A:(1 1+6>, b=<1), D<exl,
has the solution
x—l —2—¢
=~ ) .

But changing the (2,2) element of A from 1+ € to 1 results in the loss of the
solution, because the linear system Ax = b with

~ 11
has no solution. This happens regardless of how small € is. |
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An ill-conditioned linear system can also be sensitive to small perturbations
in the right-hand side, as the next example shows.

Example 2.2. The linear system Ax = b with

1 1 2
i 1) v=() veesn

has the solution x = (2 O)T. Changing the leading element in the right-hand side
from 2 to 2+ € alters the solution radically. That is, the system AX = b with

()

has the solution X = (1 l)T, which is completely different from x: [ |

Important. Ill-conditioning of a linear system has nothirg’to do with how we
compute the solution. Ill-conditioning is a property of the linear system. Hence
there is, in general, nothing you can do about ill-conditioning.

In an ill-conditioned linear system, errors ifixthéymatrix or in the right-hand
side can be amplified so that the errors in the soliation are much larger. Our aim is to
determine which properties of a linear systemi‘are responsible for ill-conditioning,
and how one can quantify ill-conditioning.

2.2 Absolute and Relative Errors

To quantify ill-conditioning;we need to assess the size of errors.

Example. Suppose.yeivhave y = 10 dollars in your bank account. But the bank
makes a mistake andysubtracts 20 dollars from your account, so that your account
now has a negative balance of y = —10 dollars. The account is overdrawn, and all
kinds of bad consequences ensue.

Now,imagine this happens to Bill Gatez. He has g = 10! dollars in his
accountyand if the bank subtracts by mistake 20 dollars from his balance, he still
has § = 10'! —20 dollars.

In both cases, the bank makes the same error,

y—y=g—-8=20.

But you are much worse off than Bill Gatez. You are now in debt, while Bill Gatez
has so much money, he may not even notice the error. In your case, the error is
larger than your credit; while in Bill Gatez’s case, the error is only a tiny part of
his fortune.

How can we express mathematically that the bank’s error is much worse for
you than for Bill Gatez? We can compare the error to the balance in your account:

nyi = 2. This shows that the error is twice as large as your original balance.
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For Bill Gatez we obtain £=& = 210719, 5o that the error is only a tiny fraction
of his balance. Now it’s clear that the bank’s error is much more serious for you
than it is for Bill Gatez. |

A difference like y — § measures an absolute error, while 2=¥ and %

measure relative errors. We use relative errors if we want to know how large the
error is when compared to the original quantity. Often we are not interested in the

signs of the errors, so we consider the absolute values I)MVI and |y|y|y|.

Definition 2.3. [f the scalar x is an approximation to the scalar x, then we call

|x — X| an absolute error. If x # 0, then we call ‘xl ‘x‘ a relative error. If X #A,

X—X .
then | H I is also a relative error.

A relative error close to or larger than 1 means that an approXimation is
totally inaccurate. To see this, suppose that |x| |X | > 1. Then |x« &= |x|, which
means that the absolute error is larger than the quantity we are {tying to compute.
If we approximate x = 0 by X # 0, however small, then the relative error is always

‘le‘x‘ = 1. Thus, the only approximation to O that has“a‘small relative error is O
itself.
In contrast to an absolute error, a relative etror'can give information about

how many digits two numbers have in commopn, As a rule of thumb, if

|x —X]|
x|

then we say that the numbers x and*x agree to d decimal digits.

%5107,

Example. If

X agree to three decimat digits.
According to theabove definition, the numbers x = 1 and X = .997 also agree

to three decimal digits because Ix x' =3.103<5.1073. |

\xl ‘i\ =3.10"3 <5-1073, so that x and

2.3 CFloating Point Arithmetic

Many computations in science and engineering are carried out in floating point
arithmetic, where all real numbers are represented by a finite set of floating point
numbers. All floating point numbers are stored in the same, fixed number of bits
regardless of how small or how large they are. Many computers are based on IEEE
double precision arithmetic where a floating point number is stored in 64 bits.

The floating point representation x of a real number x differs from x by a
factor close to one, and satisfies>

T=x(14ey), where |ex| < u.

2 We assume that x lies in the range of normalized floating point numbers, so that no underflow
or overflow occurs.
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Here u is the “unit roundoff” that specifies the accuracy of floating point arithmetic.
In IEEE double precision arithmetic u = 2753~ 10710, If x # 0, then

|x — x|

< |&x].

This means that conversion to floating point representation causes relative errors.
We say that a floating point number x is a relative perturbation of the exact num-
ber x.

Since floating point arithmetic causes relative perturbations in the inputs, it
makes sense to determine relative—rather than absolute—errors in the output. ‘As
a consequence, we will pay more attention to relative errors than to absolute errOrs.

The question now is how elementary arithmetic operations are affectedwhen
they are performed on numbers contaminated with small relative pertdrbations,
such as floating point numbers. We start with subtraction.

2.4 Conditioning of Subtraction

Subtraction is the only elementary operation that is sensitive to relative perturba-
tions. The analogy below of the captain and the battleship can help us understand
why.

Example. To find out how much he weighsythe captain first weighs the battleship
with himself on it, and then he steps off the battleship and weighs it without himself
on it. At the end he subtracts the twosweights. Intuitively we have a vague feeling
for why this should not give an accurate estimate for the captain’s weight. Below
we explain why.

Let x represent the weight of the battleship plus captain, and y the weight of
the battleship without the ‘eaptain, where

F=1122339,  §=1122337.

Due to the limited precision of the scale, the underlined digits are uncertain and
may be in.grror. The captain computes as his weight X — y = 2. This difference
is totallythaccurate because it is derived from uncertainties, while all the accurate
digits have cancelled out. This is an example of “catastrophic cancellation.” W

Catastrophic cancellation occurs when we subtract two numbers that are
uncertain, and when the difference between these two numbers is as small as
the uncertainties. We will now show that catastrophic cancellation occurs when
subtraction is ill-conditioned with regard to relative errors.

Let x be a perturbation of the scalar x and y a perturbation of the scalar y.
We bound the error in X — y in terms of the errors in x and ¥.

Absolute Error. From

(X =) —(x =y =[x —x[+]y—yl,
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we see that the absolute error in the difference is bounded by the absolute errors in
the inputs. Therefore we say that subtraction is well-conditioned in the absolute
sense. In the above example, the last digit of X and y is uncertain, so that |x —x| <9
and |y — y| <9, and the absolute error is bounded by |[(Xx — y) — (x — y)| < 18.

Relative Error. However, the relative error in the difference can be much larger
than the relative error in the inputs. In the above example we can estimate the
relative error from

= -G-nl _18 —o,

X — I 2
which suggests that the computed difference x — y is completely inaccurate.

In general, this severe loss of accuracy can occur when we“spbtract two
nearly equal numbers that are in error. The bound in Fact 2.4 below shows that
subtraction can be ill-conditioned in the relative sense if the«difference is much
smaller in magnitude than the inputs.

Fact 2.4 (Relative Conditioning of Subtraction). Let.»,” y, X, and y be scalars.
Ifx #0,y #0, and x # y, then

&=y —(x—y)I <Kmax{li—XI Iﬁ—yl}

b
lx =yl |x| |yl
relative error in output relative error in input
where
x|+ 1yl
K=—""—"".
Ix =yl

The positive number « is a relative condition number for subtraction, because
it quantifies how.felative errors in the input can be amplified, and how sensitive
subtraction can be’to relative errors in the input. When « > 1, subtraction is
ill-conditioned in the relative sense and is called catastrophic cancellation.

If we do not know x, y, or x — y, but want an estimate of the condition
number,"Wwe can use instead the bound

=) — (=)l
X =yl

X1+ 151

K= —"—,
|x — ¥l

§Emax{ |xjx|’ ijyl}
| x| [y]

provided x # 0, y # 0, and X # y,

Remark 2.5. Catastrophic cancellation does not occur when we subtract two
numbers that are exact.

Catastrophic cancellation can only occur when we subtract two numbers
that have relative errors. It is the amplification of these relative errors that leads
to catastrophe.
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Exercises

1. Relative Conditioning of Multiplication.
Let x, y, X, ¥ be nonzero scalars. Show:

Xy —XxXy xX—X

< (2+4¢€)e, where € = max {

y—y
x bl y b

and if € < 1, then

Xy —Xy
xy

< 3e.

Therefore, if the relative error in the inputs is not too large, then the condition
number of multiplication is at most 3. We can conclude that multiplication is
well-conditioned in the relative sense, provided the inputs have'small relative
perturbations.

2. Relative Conditioning of Division.
Let x, y, X, ¥ be nonzero scalars, and let

¥
€ = max Nt
X Y
Show: If € < 1, then
x/y=X%/y - 2e
Xy “1—€’
and if € < 1/2, then
XY=XV) 4
x/y 1T

Therefore, if(the relative error in the operands is not too large, then the
condition number of division is at most 4. We can conclude that division is
well-conditioned in the relative sense, provided the inputs have small relative
perturbations.

2.5 Vector Norms

In the context of linear system solution, the error in the solution constitutes a
vector. If we do not want to pay attention to individual components of the error,
perhaps because there are too many components, then we can combine all errors
into a single number. This is akin to a grade point average which combines all
grades into a single number. Mathematically, this “combining” is accomplished
by norms. We start with vector norms, which measure the length of a vector.

Definition 2.6. A vector norm || - || is a function from C" to R with three properties:

N1: ||x|| >0 forall x € C", and || x|| =0 if and only if x = 0.
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N2: x4yl < x|+ Iyl forall x, y € C" (triangle inequality).
N3: |lax| = la|||lx]|| forallx € C, x € C".

The vector p-norms below are useful for computational purposes, as well as
analysis.

Fact 2.7 (Vector p-Norms). Letx € C" with elements x = (x; ... xn)T. The

p-norm
1/p

n
Ixl, =Y 117 . p=1

is a vector norm.

Example.

® If e; is a canonical vector, then |lej||, =1 for p > 1.
olfe=(1 1 - 1)" €R" then
leli=n,  llelo=1,  llel, =n 1<p<oo, L

The three p-norms below are the most popular, because they are easy to
compute.

® One norm: [|lx|ly = 35—y |x;l.
e Two (or Euclidean) norm: |[x]» = Z?:l |x 12 = V/x*x.

® Infinity (or maximum)noem: ||x oo = max<;<n [x;[.

Example. If x = (1 2 - n)Te]R",then

1 1
lxlh = zn(n-*— D), lxll2 = \/gn(n-i- D@2n+1), [Xlloo = 1. L

The\inequalities below bound inner products in terms of norms.
Fact 2.8. Let x,y € C". Then

Holder inequality: [x*y| < [lx /11 [1¥lloo
Cauchy-Schwarz inequality: [x*y| < ||x]l2 [|¥ll2.

Moreover, [x*y| = ||x||l2||y|l2 if and only if x and y are multiples of each other.

Example. Let x € C" with elements x = (x; - x,,)T. The Holder inequality
and Cauchy-Schwarz inequality imply, respectively,

n

Zx,' <n max |x], ’Zx, < Vnllxll2. u
1<i<n 1
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Definition 2.9. A nonzero vector x € C" is called unit-norm vector in the || - || norm
if |x|| = 1. The vector x/| x| has unit norm.

Example. Let e be the n x 1 vector of all ones. Then

L= |le]| H 1 H !
=|lellcc = ||—€ll =|—=¢e]| .
noh NP
The canonical vectors e¢; have unit norm in any p-norm. |

Normwise Errors. We determine how much information the norm of an error
gives about individual, componentwise errors.

Definition 2.10. If x is an approximation to a vector x € C", thenN\[x= x| is a

normwise absolute error. If x # 0 or X # 0, then ”T‘ ﬁ‘” and 5= ﬁ”

relative errors.

dre normwise

How much do we lose when we replace componentwise errors by normwise
errors? For vectors x,X € C", the infinity norm is equal to the largest absolute
error,

Il = Flloo = max Jy; 5.
I<j=n

For the one and two norms we have

max (Xj—Xj| < |[%* x1<nmaxx—x
max ) =1 < Bl < max [ -5

and

max. X% <llx =% <n [max. |x; — X
<< /

Hence absolute errors in the one and two norms can overestimate the worst com-
ponentwise errot by a factor that depends on the vector length n.

Unfortunately, normwise relative errors give much less information about
componentwise relative errors.

Example. Let x be an approximation to a vector x where

1 - 1
x=<€>, D<exl, x:(o).

Ix=Xlloo

The normwise relative error . =€ is small. However, the componentwise
relative error in the second component, % = 1, shows that x; is a totally
inaccurate approximation to x> in the relative sense. |

The preceding example illustrates that a normwise relative error can be
small, even if individual vector elements have a large relative error. In the in-

finity norm, for example, the normwise relative error only bounds the relative
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error corresponding to a component of x with the largest magnitude. To see this,
let |xx| = || x||co. Then

lx —%lloo Mmaxi<j<nlx; —X;] - |xx — Xg|

lIxloo x| ]

For the normwise relative errors in the one and two norms we incur additional
factors that depend on the vector length 7,

llx — X1l

llxl1

1 |xp—x X —X 1 |xk—X
z_Ik k|’ [ ||22 | Xk — X |

nolxgl lIxll2 N
Therefore, normwise relative errors give no information about relative errorssin
components of smaller magnitude. If relative errors in individual vector compo-
nents are important, then do not use normwise errors.

Remark 2.11. When measuring the normwise relative error of an‘@pproximation

llx—x| llx <Fh 5 .
O NErl FIEl A e,

then the two errors are about the same. In general, the twonerrors are related as
follows. Let x #0, x £ 0, and

X to x, the question is which error to measure,

I R P
flx 1l x|l
Ife <1, then
€ - €
=6
14+¢€ 1—¢

This follows from € = €||x||/||X|| and’1 —€ < ||x||/|IX]| < 1 +¢€.

Exercises

(i) Letx € C". Prove: [x[l2 < /llx[l1llx [ oo-

(ii) For each equality below, determine a class of vectors that satisfy the equality:
Ixllt =@ loos  lxlli =nlxlloos  Ixll2=l%lloos  llxll2 = v7llxllco-

(iii) Give) examples of vectors x,y € C" with x*y # 0 for which
Ix*y| = llx 11y lloo- Also find examples for |x*y| = [lx[l2[ly[2.

(iv) The p-norm of a vector does not change when the vector is permuted.
Prove: If P is a permutation matrix, then || Px||, =[x .

(v) The two norm of a vector does not change when the vector is multiplied by
a unitary matrix.
Prove: If the matrix V € C"*" is unitary, then || Vx||» = ||x||» for any vector
x eCn.

(vi) Prove: If Q € C"*" is unitary and x € C" is a nonzero vector with Qx = Ax,
where A is a scalar, then |A| = 1.

1. Verify that the vector p-norms do indeed satisfy the three properties of a

vector norm in Definition 2.6.
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2. Reverse Triangle Inequality.
Letx,y € C" and let || - | be a vector norm. Prove: | lxll =Nyl | <lx=y].

3. Theorem of Pythagoras.
Prove: If x,y € C" and x*y = 0, then ||x £ y|I3 = ||x]|5 + l|yII3.
4. Parallelogram Equality.
Letx,y € C". Prove: [lx+yl3+ lx — yl3 = 2(Ix[53+ I y113)-
5. Polarization Identity.
Letx,y € C". Prove: R(x*y) = 1 (Ilx +yl3 — Ilx — y[|3), where %(c) is the
real part of a complex number «.
6. Let x € C". Prove:

lxll2 < llxllt < Vrllxll2,
Ixlloe <l1xll2 < VRl xlloo,

[xlloo <llxll1 < nllxloo-

7. Let A € C"*" be nonsingular. Show that | x||4 = [|Ax|[,"is"a vector norm.

2.6 Matrix Norms

We need to separate matrices from vectors inside”the norms. To see this, let
Ax = b be a nonsingular linear system, and let Ax = bbea perturbed system.
The normwise absolute error is | x — X || =41 (b — b) |. In order to isolate the
perturbation and derive a bound of the*fortm |A™!|| ||b — 15||, we have to define a
norm for matrices.

Definition 2.12. A matrix norm| - || is a function from C™*" to R with three
properties:

N1: ||A]| =0 forall A.e €™ and ||A| =0 if and only if A = 0.
N2: ||[A+B| < ||A#+||B|l forall A, B € C"*" (triangle inequality).
N3: | Al =&l Al foralla € C, A € C™*",

B€oause of the triangle inequality, matrix norms are well-conditioned, in the
absolute sense and in the relative sense.

Fact 2.13. If A,E € C™", then | |[A+ E| — |All| < | E].

Proof.  The triangle inequality implies ||A + E| < ||A| + |E], hence
A+ Ell— Al < IE|. Similarly [|Al = [[(A+E)—E| < A+ El+EI,
sothat —||E|| < ||A+ E|| — ||A||. The result follows from

—lIEI <A+ E| - [All < | E]. 0

The matrix p-norms below are based on the vector p-norms and measure

how much a matrix can stretch a unit-norm vector.
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Fact 2.14 (Matrix p-Norms). Let A € C"*™. The p-norm

o lAxl,

= max = max [[Ax]|p
A0 lxllp  Ixlp=1

1Al p

is a matrix norm.

Remark 2.15. The matrix p-norms are extremely useful because they satisfy the
following submultiplicative inequality.
Let A€ C"*" and y € C". Then

Ayl < 1Al Iy Ilp-
This is clearly true for y = 0, and for y # 0 it follows from

_ max AXl  14Y1p

Al p = ma b :
x#£0 x| Iyllp

The matrix one norm is equal to the maximal absolute column sum.

Fact 2.16 (One Norm). Let A € C"*", Then
m
Al = max |Ae;l = 12’?;‘,12'“”"
1=

Proof.

® The definition of p-norms implies
IIAI|1=H§IﬁaX1IIAXII1 > || Aejll1, l<j=n
=

Hence [|All1 z maxi<j<n | Aej|1.

T .

e Let y=(yr ... yn) bea vector with |[A[; = |Ay|; and [[y[; = L.

Viewing_ the matrix vector product Ay as a linear combination of columns

of A, see Section 1.5, and applying the triangle inequality for vector norms
gives

Al = 1Ayl = ly1Aer +- -+ ynAenlls < IyilllAerlli+- -+ |ynlllAenlls
< (y1l+---+lysl) max [|Ae;ll;.
1<j<n

From |yi|4 -+ |ya| =yl = 1 follows [|A[l; < maxj<j<, || Ae;ll;. O

The matrix infinity norm is equal to the maximal absolute row sum.

Fact 2.17 (Infinity Norm). Let A € C"*". Then

n

1Alloo = max [[A*e;[l; = max Y |-
1<i<m 1<i<m % 1
j:
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Proof. Denote the rows of A by rl.* = e;‘A, and let r; have the largest one norm,
lrxllh = maxy<j<m lI7ill1.

® [et y be a vector with ||A|lco = [|AY|leo @and || ¥|lco = 1. Then
[Alloe = lAylloo = max |ri'y| < max [IrillilIyllco = lIrell1,
1<i<m 1<i<m

where the inequality follows from Fact 2.8. Hence || A|loc < maxi<;<||7i|l1-
® For any vector y with ||y[loc = 1 we have [|Allcc > [[Ayllco > I y]. Now

we show how to choose the elements of y such that ||r}y|| = [Irx|l1. Let
ri=(p1 ... pa)be the elements of rj. Choose the clements of y sueh
that p;y; = |p;|. Thatis,if p; =0, then y; = 0, and otherwise y; = | o ;{0 .
Then ||ylloo = 1 and |rfyl =3"1_1 pjy; =3 Ipjl = lrcll1. Heuee

[Alloo > Irgyl = llrellt = max [|r;ll;. 0
1<i<m

The p-norms satisfy the following submultiplicative gnequality.
Fact 2.18 (Norm of a Product). If A € C"*" and B.&("*P, then
I1ABl, < Al 18]l

Proof. Let x € C? such that ||AB||, = |ABx]|, and |lx]|, = 1. Applying Remark
2.15 twice gives

IABIll, =IABx|, < |Allp|BXIp < 1Al IIBlIpllxllp = [IAllp Bl p- 0

Since the computation*of the two norm is more involved, we postpone it
until later. However, eyen without knowing how to compute it, we can still derive
several useful propeiti€s of the two norm. If x is a column vector, then ||x ||% =x*x.
We show below that an analogous property holds for matrices. We also show that
a matrix and itstranspose have the same two norm.

Fact 2,19 (Fwo Norm). Let A € C"*", Then
[A%]2 = [All2, IA*All2 = [|All3.

Proof. The definition of the two norm implies that for some x € C" with || x|, =1
we have ||A||2 = ||Ax]|2. The definition of the vector two norm implies

IAI5 = | Ax]I3 = x*A*Ax < |lx[l2| A* Ax]l2 < || A*All2,

where the first inequality follows from the Cauchy—Schwarz inequality in Fact 2.8
and the second inequality from the two norm of A*A. Hence ||A||% < ||A*All>.
Fact 2.18 implies ||[A*A|2 < [|[A*|l2]|A|l2- As a consequence,

2
[All; < |A*All2 < |A*[I12]|All2, [All2 < [|A¥]|2.
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html



Copyright ©2009 by the Society for Industrial and Applied Mathematics
This electronic version is for personal use and may not be duplicated or distributed.
36 2. Sensitivity, Errors, and Norms

The same reasoning applied to AA™ gives
IA*]3 < |AA*[l2 < |All2 [l A*[l2, IA*]2 < Al

Therefore | A*[|2 = [|All2 and [|A*All2 = [|A[3. a

If we omit a piece of a matrix, the norm does not increase but it can decrease.

Fact 2.20 (Norm of a Submatrix). Let A € C™*", If B is a submatrix of A, then
I1Bllp <1Allp.

Exercises

(i) Let D € C"*" be a diagonal matrix with diagonal elements d;;. Show that

DIl p = maxi<j<nldjjl.

(i) Let A € C"™*" be nonsingular. Show: ||A||,,||A_1 I, > 1.

(iii) Show: If P is a permutation matrix, then || P||, = 1.

(iv) Let P e R™™ QO € R"*" be permutation matricesandlet A € C"*". Show:
IPAQI, = lAllp-

(v) Let U € C"™*™ and V € C"*" be unitary. Show¥ ||U|l» = ||V |2 = 1, and
|UBV |, = ||B|l, for any B € C"™*".

(vi) Let x € C*. Show: [|x*||2 = ||x||» withoat'using Fact 2.19.
(vii) Letx € C". Is ||x|l1 = llx™|l1, and || ¥t = |Xx*|lco? Why or why not?
(viii) Let x € C" be the vector of all.ones. Determine

Il lx* s, oW lloos  1x%loos  llxll2, Ix* 2.

(ix) For each of the two equalities, determine a class of matrices A that satisfy
the equality [[Alloc 5 1[All1, and [|Allcc = [[All1 = [|All2.
(x) Let A € C™*E. Then || Alloo = [|A*]I1.

1. Verify that“the matrix p-norms do indeed satisfy the three properties of a
matrix norm in Definition 2.12.

2. Let Ase C™*" Prove:

max |a;j| < ||All2 < vmnmax |a;;|,
i,j t.J

1
ﬁllAllooillAllziﬂllAlloo,
1
—IAll1 £ |All2 < Ally.
ﬂll I < IAll2 < v/l Al

3. Norms of Outer Products.
Let x € C" and y € C". Show:

lxy*ll2 = lxll2llyll2, [xy*lloo = llxllooll¥ 1.
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4. Given an approximate solution z, here is the matrix perturbation of smallest
two norm that “realizes” z, in the sense that the perturbed system has z as a
solution.

Let A e C"™", Ax = b, and z # 0. Show: Among all matrices E with
(A+ E)z = b the matrix Eg = (b— Az)z" has the smallest two norm, where
7= ()7

5. Norms of Idempotent Matrices.

Show: If A # 0 is idempotent, then ||A||, > 1. If A is also Hermitian, then
Al =1.

6. Let A € C"*". Show: Among all Hermitian matrices, %(A + A*) is the

matrix that is closest to A in the two norm.

2.7 Conditioning of Matrix Addition and
Multiplication

We derive normwise relative bounds for matrix addition and subtraction, as well
as for matrix multiplication.

Fact 2.21 (Matrix Addition). LetU,V,U,V € C"*"guchthatU,V,U +V #0.
Then L

||U+V—(U+V)|Ip<||U||p+||VIIp

w+vi, = IU&VI,

max{ey, ey},

where _ _
0 -Ul, V=V,

€U = €y =
U110 VIlp

Proof. The triangle inequality implies

IU+V —U+WV)p<IU=Ulp+IV =V, =lUllpev + IV pev
<(IU|l, +IVIl,) max{ey,ev}. a

The condition number for adding, or subtracting, the matrices U and
Vis (IUllp% I VIIp)/IIU + V] p. It is analogous to the condition number for
scalar subtraction in Fact 2.4. If U], + VI, ~ [lU + V||, then the matrix
addition. U + V is well-conditioned in the normwise relative sense. But if
U, + IV, > U+ V], then the matrix addition U + V is ill-conditioned
in the normwise relative sense.

Fact 2.22 (Matrix Multiplication). Let U, U e C"<"and V,V € C" P such that
U,V,UV #£0. Then

107UVl _ Wl IVl

< U t+ey teyey),
vy Nuvilp

where . .
_ v =Ulp _ V=Vl

EU - ’ EV -
U1l p VI,
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Proof. fU =U+E and V =V + F, then
UV—-UV=(WU+E)V+F)—UV=UF+EV+EF.
Now take norms, apply the triangle inequality, and divide by [U V|| . a

Fact 2.22 shows that the normwise relative condition number for multiply-
ing matrices U and V is |U|,[IVIp/IIUVIp. IENUNRIVIp = UV p, then
the matrix multiplication UV is well-conditioned in the normwise relative sense.
However, if [[U||,|IVIl, > IIUV]|p, then the matrix multiplication UV is ill-
conditioned in the normwise relative sense.

Exercises

(i) What is the two-norm condition number of a product where on¢>of the ma-
trices is unitary?

(i) Normwise absolute condition number for matrix multiplication when one of
the matrices is perturbed.
Let U,V € C"" and U be nonsingular. Show:

I1E1lp

1 S WUV +F)=UV{IF = |[UlplFllp-
1= p

(iii) Here is a bound on the normwise relative error for matrix multiplication with
regard to the perturbed product.
Let U e C"*" and V € C"*™¢ Show: If (U + E)(V + F) #0, then

IU+EYV+F)-U¥ip _ IU+EIIV+FEIp (e

+ev+ :
IWU+EYV+ERY, ~ IU+EXV+F), Utev+eyey)

where
1ENp _Flp

€Gg=—""-"—, €y = ———.
IU+EIlp IV+Flp

2.8 ~Conditioning of Matrix Inversion

We determine the sensitivity of the inverse to perturbations in the matrix.

We start by bounding the inverse of a perturbed identity matrix. If the
norm of the perturbation is sufficiently small, then the perturbed identity matrix is
nonsingular.

Fact 2.23 (Inverse of Perturbed Identity). If A € C*"*" and ||A||, < I, then
I + A is nonsingular and

_ 1
<Ia+ My < 1=

LAl 1Al

If also ||A||p < 1/2, then ||(I—i—A)_1 ||p <2.
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Proof. Suppose, to the contrary, that [|A||, < 1 and I + A is singular. Then there
is a vector x # 0 such that (/ + A)x = 0. Hence ||x||, = [|Ax|l, < [ Allpllx]lp
implies ||A||, > 1, a contradiction.

e Lower bound: I = (I +A)(I +A)~! implies
L=y < I+ AllplI+A) ", < A+IAIDIT +A) .
e Upper bound: From
I=(I+AI+A) "' =T+ +AUT+4)7!

follows
L=l = 1T+ p —1AT+A) 7, = A=Al I + AT,
If |All, < 1/2,then 1/(1 —||A]l,) < 2. a0

Below is the corresponding result for inverses of general madttices.

Corollary 2.24 (Inverse of Perturbed Matrix). Let A € CF*" be nonsingular
and |A™1 E|l, < 1. Then A+ E is nonsingular and

_ IA=
A+E) 1, < — P
P=1—4AE]|,

Ifalso AT I Ellp < 1/2, then (A4 E)}SMp <21 A7 1]

Proof. Since A is nonsingular, we'can write A+ E = A(I + A~'E). From
|A~] E||, < 1 follows with Fact 2:23"that I + A~VE is nonsingular. Hence A + E
is nonsingular. Its inverse cambe written as (A + E)y '=U+ATE)"TA~!. Now
take norms and apply Fact 2.23.

The second assertion follows from [A7 E||, < [A7Y[,IIEll, <1/2. O

Corollary 2.24ymplies that if the perturbation E is sufficiently small, then
I(A+E)~! |, exeeeds [A~! |, by a factor of at most two.

We usg (the above bounds to derive normwise condition numbers for the
inverses of ‘\general nonsingular matrices. A perturbation of a nonsingular matrix
remains’nonsingular if the perturbation is small enough in the normwise relative
sense.

Fact 2.25. If A € C"*" is nonsingular and ||A_1E||p < 1, then

o _ IAT'E],
IA+E)y " —a=t, <A, ————L—.
! T1-ATE,
If also |[A, I Ell, < 1/2, then
A+E)l—a-! E
(A + )_1 ||p52Kp(A)|| lp.
A=Y, IAll,

where kp(A) = | A|l,| A=, > 1.
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Proof. Corollary 2.24 implies that A + E is nonsingular. Abbreviating F = A~ E,
we obtain for the absolute difference

A+E)'—A'=g+F)~ta 14!
= ((1 +F)~ - 1) A = (I F)"'FATY,

where the last equation follows from (I + F Yy lay+F)y=1. Taking norms and
applying the first bound in Fact 2.23 yields

-1 -1 -1 —1 1 | Fl|
HA+E) " — A7, < 1A+ E) I FlI AT, < 1A7 p ——m .
1—IF|,
If A1 I, IIEN, < 1/2, then the second bound in Fact 2.23 implies
IA+E)" — A7, <20FIL,1A7" ),
where
_ 1 IEN, IE,
IF, < IATHILIEN, = 1A, 1A =&p(A) :
r PP r PUAI NS AL
The lower bound for «,(A) follows from
L= |1l,=1AA"", < IAUSNMAT I, = «p(A). 0

Remark 2.26. We can conclude the following from Fact 2.25:

® The inverse of A is well-conditioned in the absolute sense if its norm is
“small.” In particular,the’perturbed matrix is nonsingular if the perturba-
tion has small enoughworm.

® The inverse of A is Well-conditioned in the relative sense if k,(A) is “close
to” 1. Note that¥,(A) > 1.

Definition 2.27) Let A € C"*" be nonsingular. The number,(A) =|Allp A1 l»
is a normwise relative condition number of A with respect to inversion.

According to Fact 2.25, a perturbed matrix A + E is nonsingular if
||A_1E||,, < 1. Is this bound pessimistic, or is it tight? Does it imply that if
||A_1E||p =1, then A + E can be singular? The answer is “yes.” We illustrate
this now for the two norm.

Example 2.28. Let A € C"*" be nonsingular. We show how to construct an outer
product E such that [A7'E|> = 1 and A + E is singular.

Set E = —yx*/||x||%, where x # 0 and y # 0 are vectors we still need to
choose. Since E is an outer product, Exercise 3 in Section 2.6 implies

1A Bl = ATz 1A Yzl _ 1A Yl
I ; x>

I3 llx] '
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Choosingx = A 'y gives [A™'E|l, =1and (A+ E)x = Ax+ Ex = Ax —y =0.
Since (A + E)x = 0 for x # 0, the matrix A 4+ E must be singular.

Therefore, if A is nonsingular, y # 0 is any vector, x = A™!y, and E =
yx*/|Ix||3, then |A='E|l, = 1 and A + E is singular. |

Exercise 3 in Section 2.6 implies that the two norm of the perturbation in
Example 2.28 is | E|l2 = [[v[l2/lIx]l2 = lyll2/l A~ y|l2. What is the smallest two
norm a matrix E can have that makes A + E singular? We show that the smallest
norm such an E can have is equal to /1A= 5.

Fact 2.29 (Absolute Distance to Singularity). Let A € C"*" be nonsingular,
Then

min{||E||> : A+ E is singular} =

A= 2

Proof. Let E € C"*" be any matrix such that A + E is singulat. ‘Fhen there is a
vector x # Osothat (A+ E)x =0. Hence ||x|| = |A" Ex|l, P E 2] 12
implies | E||2 > 1/||A~"||2. Since this is true for any E that ntakes A + E singular,
1/ A= |2 is a lower bound for the absolute distance of. A fo singularity.

Now we show that there is a matrix E¢ that achie¥es equality. Construct Eg
as in Example 2.28, and choose the vector y such that lA= 2 = 1A= y|l2 and
Iyllz=1. Then || Eqll2 = Iy l2llA~" yll2 = 1/HA 2. a

Corollary 2.30 (Relative Distance to Singularity). Let A € C"*" be nonsingular.
Then

IE2 o
in A+ E is singular } =

1
A[lgy K2(A)

where k2(A) = | All2l|A~ M.

Therefore, mattices that are ill-conditioned with respect to inversion are close
to singular, and*yice versa. In other words, matrices that are close to being singular
have sensitive‘inverses.

Theexample below illustrates that absolute and relative distance to singu-
larity afe’not the same.

Example. Just because a matrix is close to singularity in the absolute sense does
not imply that it is also close to singularity in the relative sense. To see this, let

11
A:<E 6), 0<e<l, A“:(e j)
0 € 0o 1

Exercise 2 in Section 2.6 implies for an n X n matrix B that || B|; < nmax;; |b;;|.
Hence € < || A2 < 2¢ and % <A7Y, < % Therefore,

€ 1 1 1

- < <e, < <1,
2 UA‘QR - 4 Kz%A)
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so that A is close to singularity in the absolute sense, but far from singularity in
the relative sense.

Exercises

(i) Let A € C"*" be unitary. Show: ky(A) = 1.
(ii) Let A, B € C"*" be nonsingular. Show: «,(AB) < k,(A)k,(B).

(ii1) Residuals for Matrix Inversion.
Let A,A+ E € C"™ " be nonsingular, and let Z = (A + E)~!. Show:

IAZ =Ll p = IEN I Z1lp, I1ZA—Lnllp < IENIIZ]lp-
1. For small enough perturbations, the identity matrix is well-conditioned with

respect to inversion, in the normwise absolute and relative sense.
Show: If A € C"*" and ||A]|, < 1, then

_ Al
I+ =1, < —=2K
P — 1AM

and if ||All, < 1/2, then
I +A) " = iy < 2]|All .

2. If the norm of A is small enoughi’then (1 + A a1 —A.
Let A e C"™" and ||A]l, < 1/2, Show:

ISR =+ )7, <201412.

3. One can also boudd the relative error with regard to (A + E)~!.
Let A and A  F’be nonsingular. Show:

I(A+E)~'—A7Y,
I(A+E)~1,

IE1lp
1Al

< kp(A)

4. Amatrix A € C"*" is called strictly column diagonally dominant if

n

> laijl <lajjl,  1<j<n.
i=Li#

Show: A strictly column diagonally dominant matrix is nonsingular.

5. Let A € C"*" be nonsingular. Show: «,(A) > ||All,/I|A — B]|, for any
singular matrix B € C"*".
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3. Linear Systems

We present algorithms for solving systems of linear equatiéns whose coefficient
matrix is nonsingular, and we discuss the accuracy of these algorithms.

3.1 The Meaning of Ax = b
First we examine when a linear system has7a Solution.
Fact 3.1 (Two Views of a Linear Systém). Let A € C"*" and b € C"*!.

1. The linear system Ax = b-has a solution if and only if there is a vector x that
solves the m equations

rx =b, e, rmX = by,
where
r by
A=| ], b=
I'm bm

2. Thelinear system Ax = b has a solution if and only if b is a linear combination
of the columns of A,
b=ayx;+---+apxy,

where
X1

Xn

When the matrix is nonsingular, the linear system has a solution for any

right-hand side, and the solution can be represented in terms of the inverse of A.
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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Corollary 3.2 (Existence and Uniqueness). If A € C"*" is nonsingular, then
Ax = b has the unique solution x = A~'b for every b € C".

Before we discuss algorithms for solving linear systems we need to take into
account, as discussed in Chapter 2, that the matrix and right-hand side may be
contaminated by uncertainties. This means, instead of solving Ax = b, we solve
a perturbed system (A + E)z = b+ f. We want to determine how sensitive the
solution is to the perturbations f and E.

Even if we don’t know the perturbations E and f, we can estimate them
from the approximate solution z. To this end, define the residual r = Az —b. We
can view z as the solution to a system with perturbed right-hand side, Az = b 3
If z # 0, then we can also view z as the solution to a system with perturbed matrix,

rz*

(A+E)z =0, where E:__z’
zll3

see Exercise 1 below.

Exercises

(i) Determine the solution to Ax = b when A is ufiitary (orthogonal).
(ii) Determine the solution to Ax = b when.A isinvolutory.

(iii) Let A consist of several columns of a ugitary matrix, and let » be such that
the linear system Ax = b has a solutipn. Determine a solution to Ax = b.

(iv) Let A be idempotent. When doesythe linear system Ax = b have a solution
for every b?

(v) Let A be a triangular matrix: When does the linear system Ax = b have a
solution for any right-hand side b?

(vi) Let A = uv™* be an\outer product, where u and v are column vectors. For
which b does thedinear system Ax = b have a solution?

X1

(vii) Determine a solution to the linear system (A B) x2> = 0 when A is non-

singular. Is"the solution unique?

1. Matsix/Perturbations from Residuals.
"Fhis problem shows how to construct a matrix perturbation from the residual.
Let A € C"*" be nonsingular, Ax = b, and z € C" a nonzero approximation
to x. Show that (A + Eg)z = b, where Eg = (b— Az)z" and 7 = (z*z)~!2%;
and that (A + E)z = b, where E = Eg+ G(I —zz") and G € C"*" is any
matrix.

2. InProblem 1 above show that, among all matrices F' that satisfy(A + F)z=b,
the matrix Ey is one with smallest two norm, i.e., | Eg|l2 < || F||2.

3.2 Conditioning of Linear Systems

We derive normwise bounds for the conditioning of linear systems. The following

two examples demonstrate that it is not obvious how to estimate the accuracy of
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an approximate solution z for a linear system Ax = b. In particular, they illustrate
that the residual r = Az — b may give misleading information about how close z
is to x.

Example 3.3. We illustrate that a totally wrong approximate solution can have a
small residual norm.
Consider the linear system Ax = b with

1 1 2 1
a( ) e=(2) omewt a=(l)

whose solution x is approximated by z = (2 O)T. The residual

r=Az—b=<O>
—€

has a small norm, ||r||, = €, because ¢ is small. This appeats.to suggest that z
does a good job of solving the linear system. However, comparing z to the exact

solution,
(-1
Z X = l )

shows that z is a bad approximation to x. Therefore, a small residual norm does
not imply that z is close to x. |

The same thing can happen evenfor triangular matrices, as the next example
shows.

Example 3.4. For the lineassystem Ax = b with

(14108 _(1+108 (1
=) = () +=0)

consider the approximate solution

0 0
Z=<1+10—8>’ r=AZ_b=(10—S)'

As in the previous example, the residual has small norm, i.e., ||r||, = 1078, but z

is totally inaccurate,
-1
= \08)

Again, the residual norm is deceptive. It is small even though z is a bad approxi-
mation to x.

The bound below explains why inaccurate approximations can have residuals

with small norm.
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Fact 3.5 (Residual Bound). Let A € C"*" be nonsingular, Ax = b, and b # 0. If
r = Az — b, then

llz—xllp

llxl

71l p

<kp(A) ——L .
P 1AN Ix

Proof. If b # 0 and A is nonsingular, then x # 0; see Fact 1.10. The desired bound
follows immediately from the perturbation bound for matrix multiplication: Apply
Fact222toU=U=A"! ", V=b,V=b+r,ey =0, and ey = lrll,/ 115l p to
obtain

_ -1
llz—xll, - AT bl 7l =[All,lA

71l 0
Ixll, = NA~TBI, Bl

—1
llp .
Al pllx 1l p

The quantity k,(A) is the normwise relative condition number 0f A with
respect to inversion; see Definition 2.27. The bound in Fact 3§ fmplies that the
linear system Ax = b is well-conditioned if «, (A) is small. In particular, if «,(A)

1]
HAII,;HI;HP
solution z has a small error (in the normwise relative sense). However, if «, (A) is
large, then the linear system is ill-conditioned. We retuta to Examples 3.3 and 3.4
to illustrate the bound in Fact 3.5.

is small and the relative residual norm is also small \then the approximate

Example. The linear system Ax = b in Example 3.3 is

1 1 2 1
A:(1 1+6), b:(2~|—e)’ 0D<exkl, x:<1>,

and has an approximate solution z = (2 O)T with residual

r:Az—b:(O).
—€

The relative.error’in the infinity norm is ||z — X ||eo/||X ||coc = 1, indicating that z has
no accuracy whatsoever. To see what the bound in Fact 3.5 predicts, we determine

the invesse
_ I (14 -1
Al =— :
()

_ 24€ 2+e¢)?
Ao =2+€,  |IA 1||OO=T, Koo(A) = =——,

the matrix norms

as well as the ingredients for the relative residual norm

710 €
7o =€, xlloo =1, =
Alloo

xlloo 246
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Since ko (A) & 4 /€, the system Ax = b is ill-conditioned. The bound in Fact 3.5
equals

12 =%l [LgES
————— <Keo(A) ————— =2+¢,
[l lloo T N Allsolx lloo

and so it correctly predicts the total inaccuracy of z. The small relative residual
norm of about € /2 here is deceptive because the linear systemisill-conditioned. Wl

Even triangular systems are not immune from ill-conditioning.

Example 3.6. The linear system Ax = b in Example 3.4 is

(1 108 _(1+108 (1
= ) =) =)

and has an approximate solution z = (O 1+ 10*8)T with residudl

0
r=Az—b= (10_8>.

The normwise relative error in the infinity norm is [|7%%||co/[|X|lco = 1 and indi-
cates that z has no accuracy. From

1 (1 =0t
A —<o 1

we determine the condition numberfor Ax = b as koo(A) = (1 4 10%)% ~ 10'°.
Note that conditioning of triangular'systems cannot be detected by merely looking
at the diagonal elements; thesdiagonal elements of A are equal to 1 and far from
zero, but nevertheless A is ill*eonditioned with respect to inversion.
The relative residuabnorm is
17 oo _ 10-8 ~ 10—16
[Allsollxlloo 14108 '

As a consequence, the bound in Fact 3.5 equals

llxloo [ Alloo llx oo

and it correctly predicts that z has no accuracy at all. |

The residual bound below does not require knowledge of the exact solution.
The bound is analogous to the one in Fact 3.5 but bounds the relative error with
regard to the perturbed solution.

Fact 3.7 (Computable Residual Bound). Let A € C"*" be nonsingular and
Ax=b.Ifz#0andr = Az — b, then

lz—xllp Il p
Izl p Al plizll p
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We will now derive bounds that separate the perturbations in the matrix from
those in the right-hand side. We first present a bound with regard to the relative
error in the perturbed solution because it is easier to derive.

Fact 3.8 (Matrix and Right-Hand Side Perturbation). Let A € C"*" be non-
singular and let Ax =b. If (A+ E)z = b+ f with z # 0, then

llz—xllp

NE i, <kp(A)(ea+ey),
where
IEI, IfNlp
= N sz—.
Al 1Al NIzl

Proof. In the bound in Fact 3.7, the residual r accounts for beth ‘perturba-
tions, because if (A4 E)z =b+ f, then r = Az —b = f — EZ Replacing
Il7llp < IElplzllp + | f 1 p in Fact 3.7 gives the desired bound, a

Below is an analogous bound for the error with regard to the exact solu-
tion. In contrast to Fact 3.8, the bound below requires the'perturbed matrix to be
nonsingular.

Fact 3.9 (Matrix and Right-Hand Side Perturbation). Let A € C"*" be non-
singular, andlet Ax =bwithb #0. If (A+ E)2=b+ f with ||A™ 1||p||E||p <1/2,

then
lz—xllp

= 2rp(A) (EA-I—Gf)
llx1lp
where
LEY Il p
s . Efz—.
Al ALl p

Proof. We could dexive the desired bound from the perturbation bound for matrix
multiplication in<Eact 2.22 and matrix inversion in Fact 2.25. However, the re-
sulting bound would not be tight, because it does not exploit any relation between
matrix and right-hand side. This is why we start from scratch.

Subtracting (A4 E)x = b+ Ex from (A4 E)z = b+ f gives (A+ E)
(z—x) = f — Ex. Corollary 2.24 implies that A + E is nonsingular. Hence we
can write 7z —x = (A + E) "' (—Ex + f). Taking norms and applying Corollary
2.24 yields

lz—xllp <20A N UEN Ixlp + 1 f1lp) = 26cp(A)(ea+e€p) X . a
We can simplify the bound in Fact 3.9 and obtain a weaker version.

Corollary 3.10. Let Ax = b with A € C"*" nonsingular and b #0. If (A+ E)
z=b+ f with |[A7Y[,IEll, < 1/2, then

lz=xllp ”E”p ”f”p

” ) <2k,(A) (ea+ep), where €4 = 1 |hu
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Proof. Tn Fact 3.9 bound [|b]|, < [|A]l,l|x]l - a

Effect of the Right-Hand Side. So far we have focused almost exclusively on
the effect that the matrix has on the conditioning of the linear system, and we have
ignored the right-hand side. The advantage of this approach is that the resulting
perturbation bounds hold for all right-hand sides. However, the bounds can be too
pessimistic for some right-hand sides, as the following example demonstrates.

Example 3.11. We illustrate that a favorable right-hand side can improve the con-
ditioning of a linear system. Let’s change the right-hand side in Example 3.6 and
consider the linear system Ax = b with

1 108 1 1—108
=G V) e=() =)

and the approximate solution

—-108 -9 a
¢ (1+1o—7>’ r=Ac=b= (10—7>'

Although k. (A) ~ 10" implies that A is ill-conditioned with respect to inversion,
the relative error in z is surprisingly small,

Jz—xlloe _ N1

= ~ 1077,
llx lloo 1—108

The bound in Fact 3.5 recognizes this, too. From

Il _ 107
[Allsoli¥lloe ~ (105 =DA0S+1)’

Koo(A) = (1+10%)%,

we obtain

) 8
= x||°°§/<oo(A) Irllo  10°+1

o =———107"~107".
llxlloo [AlloollX¥ oo 10°—1

So, what is happening here? Observe that the relative residual norm is extremely

s % ~ 10_23, and that the norms of the matrix and solution are large
o0 o0

compared to the norm of the right-hand side; i.e., || Al oo || % [loo 2 101> |15 o0 = 1.
We can represent this situation by writing the bound in Fact 3.5 as

small

llz—xllo _ 1A oo 1B lloo 117l
Ixlloc = NAT'Dlloe  lIbllo

Because ||A™! [lsollblloo/ A7 blloo & 1, the matrix multiplication of A~ with b

is well-conditioned with regard to changes in . Hence the linear system Ax = b

is well-conditioned for this very particular right-hand side b. |
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Exercises

(i) Absolute Residual Bounds.
Let A € C"™*" be nonsingular, Ax = b, and r = Az — b for some z € C".
Show:

7l p ~1
—==<llz—xllp < NIA™ lIplirllp.
1Al ! P
(i1) Lower Bounds for Normwise Relative Error.
Let A € C"*" be nonsingular, Ax = b, b #0, and r = Az — b for some
z € C". Show:

Iy _ llz=xllp U lirllp _ liz=xllp
J— 9 f—
Al 111l llxllp Kp(A) 11Dl 11l

(iii) Relation between Relative Residual Norms.
Let A € C"*" be nonsingular, Ax = b, b # 0, and r =4z — b for some
z € C". Show:

Ity _ lrllp el
IAlp Xl — 1151, A p Nl

(iv) If alinear system is well-conditioned, andhtherelative residual norm is small,
then the approximation has about the same norm as the solution.
Let A € C"*" be nonsingular and\p #£*0. Prove: If

<kp(A)

_ b= Azl

pr <1, where vk =k, (A),
61

)

then

Z
I_Kps w< 1+Kp
llxllp

(v) For this gpecial right-hand side, the linear system is well-conditioned with
regard t0-changes in the right-hand side.
LetA'e C"*" be nonsingular, Ax = b,and Az =b+ f. Show: If [A~!]|, =
[A~"b11, /1151l . then
iz —xllp < Ay
llxllp (11319

1. Let A € C"*" be the bidiagonal matrix
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(a) Show:
() — A el =1 f el # 1,
*© 2n if Joo] = 1.

Hint: See Exercise 4 in Section 1.13.

(b) Suppose we want to compute an approximation to the solution of
Ax = e, when o =2 and n = 100. How small, approximately, must
the residual norm be so that the normwise relative error bound is less
than .1?

2. Componentwise Condition Numbers.
Let A € C"*" be nonsingular, b # 0, and Ax = b. Prove: If x; # 0(then

12j — %)l <kK; 1> — Azllp where «; = Il
=Kj =
x| Ioll, |

p -1
2\ AT AL
x|

We can interpret « ; as the condition number for x ;. Which components of x
would you expect to be sensitive to perturbations?

3. Condition Estimation.
Let A be nonsingular. Show how to determiné»a fower bound for «, (A) with
one linear system solution involving A.

3.3 Solution of Triangular Systems

Linear systems with triangular matrices are easy to solve. In the algorithm below
we use the symbol “=" to represent an assignment of a value.

ALGORITHM 3.1. Upper Triangular System Solution.

Input: Nomnsingular, upper triangular matrix A € C"*", vector b € C"
Output:™v = A~ b

1. fnE1,then x =b/A.
2. Ifn > 1, partition

n—1 1
n—1 A a n—1{( x n—1(b
A= ( 0 a,m>’ x= <xn> b=} <b,,)'

(1) Setx, =b,/an,.
(i1) Repeat the process on the smaller system A% =b—xya.

The process of solving an upper triangular system is also called backsub-
stitution, and the process of solving a lower triangular system is called forward

elimination.
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html



Copyright ©2009 by the Society for Industrial and Applied Mathematics
This electronic version is for personal use and may not be duplicated or distributed.
52 3. Linear Systems

Exercises

(i) Describe an algorithm to solve a nonsingular lower triangular system.

(ii) Solution of Block Upper Triangular Systems.
Evenif A is not triangular, it may have a coarser triangular structure of which
one can take advantage. For instance, let

A An
A= < 0 Azz)’
where A1 and Aj; are nonsingular. Show how to solve Ax = b by solving
two smaller systems.
(iii) Conditioning of Triangular Systems.
This problem illustrates that a nonsingular triangular matrix is ill-conditioned
if a diagonal element is small in magnitude compared to the other nonzero

matrix elements.
Let A € C"*" be upper triangular and nonsingular. Shots

1Al

Koo(A) =2 ——————=,
ming <<y |a;

3.4 Stability of Direct Methods

We do not solve general nonsingular systéins Ax = b by first forming A~ and
then multiplying by b (likewise, you.would not compute 2/4 by first forming 1/4
and then multiplying by 2). It is too€xpensive and numerically less accurate; see
Exercise 4 below.

A more efficient approdeh-factors A into a product of simpler matrices and
then solves a sequence of sifpler linear systems. Examples of such factorizations
include:

e U factorizatigh: A = LU (if it exists), where L is lower triangular, and
U is upper4tiangular.

e Cholesky factorization: A = LL* (if it exists), where L is lower triangular.

® QR fdctorization: A = QR, where Q is unitary and R is upper triangular. If
A1s real, then Q is real orthogonal.

Methods that solve linear systems by first factoring a matrix are called direct
methods. In general, a direct method factors A = S1S52 (where “S” stands for
“simpler matrix”") and then computes the solution x = A~'b = Sy ! Sy 'p by solving
two linear systems.

ALGORITHM 3.2. Direct Method.

Input: Nonsingular matrix A € C"*", vector b € C"
QOutput: Solution of Ax =b

1. Factor A = §15>.
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2. Solve the system Sy = b.
3. Solve the system S>x = y.

Each step of the above algorithm is itself a computational problem that may
be sensitive to perturbations. We need to make sure that the algorithm does not in-
troduce additional sensitivity by containing unnecessary ill-conditioned steps. For
a direct method, this means that the factors S and S, should be well-conditioned
with respect to inversion. The example below illustrates that this cannot be taken
for granted. That is, even if A is well-conditioned with respect to inversion, S or
S can be ill-conditioned.

Example 3.12. The linear system Ax = b with

(e 1 _(1+e€
A_<l 0), b_< 1 ), 0<e<1/2,

has the solution x = (1 I)T. The linear system is well-coniditioned because

A—lz((l) 16>, Koo (A) = (140)% < 9/4.

We can factor A = 515, where

1 0 € 1
Sl=<1 ) 52=< 1)
¢ 1 0 —¢

and then solve the triangular systems S;y = b and Spx = y. Suppose that we
compute the factorization andithe first linear system solution exactly, i.e.,

1
A=8%,  Siy=b, y=<+€),

_1
€

and that we make-errors only in the solution of the second system, i.e.,

1 _
S2Z=)’+r2=(_l>, r2=<06>-
€

Then the computed solution satisfies

(0) lz=xlleo
= 1 N —_— = 1
[l oo

The relative error is large because the leading component of z is completely
wrong—although A is very well-conditioned. What happened? The triangular
matrices S and S contain elements that are much larger in magnitude than the
elements of A,

1+e 1
lAlloo =1+e¢, 1S1lloc = ) 182100 = —,
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and the same is true for the inverses,

_ _ _ 14+¢€
1A oo =146, 187 lloo = 1185 floo = ——
The condition numbers for S; and S, are
1+e\> 1 l+e 1
Koo(S1) = < ) %_2, Koo ($2) = ) ’Q”_z
€ € €

Asaconsequence, S and S, are ill-conditioned with respect to inversion. Although
the original linear system Ax = b is well-conditioned, the algorithm contains stéps
that are ill-conditioned, namely, the solution of the linear systems S;y = byand
Sox =y.

‘We want to avoid methods, like the one above, that factor a well*¢onditioned
matrix into two ill-conditioned matrices. Such methods are called numerically
unstable.

Definition 3.13. An algorithm is (very informally) numgrically stable in exact
arithmetic if each step in the algorithm is not much Worse conditioned than the
original problem.

If an algorithm contains steps that aresmuch worse conditioned than the
original problem, the algorithm is called numerically unstable.

The above definition talks about < $tability in exact arithmetic,” because in
this book we do not take into account gf¥ors caused by floating arithmetic operations
(analyses that estimate such errors ean be rather tedious). However, if a problem
is numerically unstable in exactarithmetic, then it is also numerically unstable in
finite precision arithmetic, s that a distinction is not necessary in this case.

Below we analyze hew the conditioning of the factors S; and $; affects the
stability of Algorithm-3'2. The bounds are expressed in terms of relative residual
norms from the linear systems.

Fact 3.14 (Stability in Exact Arithmetic of Direct Methods). Let A € C"*" be
nonsingulat; Ax = b, b # 0, and

NE] p
A+E=581%, €er=-,
Al
lr1llp
Sly:b+rl, €1 = s
ol
r
Sz=y+r, 2=” ZHP-
Iyllp

If AT I Ellp < 1/2, then

lz—xllp
Il
. condition
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where . '
€_||52 IS Mlp

= er(1+¢€yp).
A+ E)~1,
—

stability

Proof. Expanding the right-hand side gives
(A+E)z=818z=S1(y+r)=S1y+Sirn=b+r;+ Sir.

The obvious approach would be to apply Fact 3.9 to the perturbed linear system
(A+ E)z =b+r1+ S1r2. However, the resulting bound would be too pessimistic;
because we did not exploit the relation between the matrix and the right-hand side.
Instead, we can exploit this relation by subtracting (A + E)x = b+ Ex to.obtain

(A+E)(z—x)=—Ex+r;+Sir.
Corollary 2.24 implies that A 4 E is nonsingular, so that
2—x=(A+E) " (—Ex+r)+58; '
Taking norms gives
lz—xllp < HCA+E) I UEN Il i)+ 155 1 pllr2ll -
Substituting [|r1]l, = €1lbll, < €1llAllpllxll, ghves
lz—xllp < A+ E) M Ipll Al E+eDllxllp + 155 1 plr2ll -
It remains to bound ||72]|,. From ||7zfly = e2llyll, and y = Sl_l(b+r1) follows
Irallp = ey < IST 1, b1y + 71 l1)-
Bounding ||r||, as above yields
el < 17 1 Al llx ] pea(l +e€1).

We substitute this:bound for |||, into the above bound for ||z — x ||,
2=l WAl (1CA+ B pteaten + 185 157 el +en)).

Factoring out [[(A + E)~!|| p and applying Corollary 2.24 gives the desired
bound. a

Remark 3.15.

® The numerical stability in exact arithmetic of a direct method can be rep-
resented by the condition number for multiplying the two matrices S, Y and
Sfl, see Fact 2.22, since

-1 -1 -1 -1
1Sy " HpllSy Ml _ WS, WpllSy lp
A+ E)"l, ISy s,
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° If||52_1 ||p||51_1 I~ [I(A+ E)~! I p, then the matrix multiplication SZ_IS]_1
is well-conditioned. In this case the bound in Fact 3.14 is approximately
2kp(A)(ea + €1 +e2(1 +€1)), and Algorithm 3.2 is numerically stable in
exact arithmetic.

o IS L IST > 1A+ E)="l , then Algorithm 3.2 is unstable.

Example 3.16. Returning to Example 3.12 we see that

—1 —1
I1S) lloollS; oo 14€ Ir2llco o
1A= oo e’ Y llo

Hence the bound in Fact 3.14 equals 2(1 +€)?, and it correctly indicates the dirac-
curacy of z. |

Koo (A) = (14€)2,

The following bound is similar to the one in Fact 3.14, but*it bounds the
relative error with regard to the computed solution.

Fact 3.17 (A Second Stability Bound). Let A € C"*" be nonsingular, Ax = b, and

IE 5
A+E=55, €p =B
RV
i1 ”p
S1y=b+r, €=,
#Stllpliyllp
2l

Sz=y+r, 2=
I1S21lp 121l p

where y # 0 and z # 0. Then
e
Al < kp(A) (eate),
”Z”p ——

condition

where

S S
o = 151,121, (2+e1(1+62)).
1Al

stability
Proof. As in the proof of Fact 3.14 we start by expanding the right-hand side,
(A+E)z=5815z2=81(y+r)=S1y+Sirn=b+ri+Sir.

The residual isr = Az—b=—Ez+ S1y+ S1rp = b+r1 4+ S1rz. Take norms and
substitute the expressions for ||71||, and ||72]|, to obtain

Il < IENplzllp +erlStll pllyllp +exllStll i S21 plizl p-

To bound ||y||, write y = S>z —r2, take norms, and replace |72, = 2|21l p 1zl p
to get

Iyl < US2llpllyllp + lir2llp = 1821l p 1zl p (1 4 €2).
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Substituting this into the bound for ||7 ||, gives

Irllp <zl (NEN,+ ISl lIS20 per(1+e€2) + 1S, 11521 pe2)
= |Allplizllp(ea +€).

The relative error bound now follows from Fact 3.7. a0

In Fact 3.17, the numerical stability is represented by the factor
ISl pIS21p /AN p- IE ST p1IS21l > | All p, then Algorithm 3.2 is unstable.

Exercises

1. The following bound is slightly tighter than the one in Fact 3.14.
Under the conditions of Fact 3.14 show that

lz—xllp

< 2y (A) [en+ pp(A.b)e].
<l

where

111, I35 1,187 1l
pp(A,b) = ————, €= €(l+e)+er.
g 1Al %11 A+ E)=1lp
2. The following bound suggests that’Algorithm 3.2 is unstable if the first factor
is ill-conditioned with respect.to inversion.
Under the conditions of Faet 3.14 show that

llz — x|
Wlp <2kp(A)[ea+er+rp(S)e2(14€1)].
P

3. The following bound suggests that Algorithm 3.2 is unstable if the second
factor.isdll<conditioned with respect to inversion.
Let Ax>=b where A is nonsingular. Also let

A:SISZ’ S]yzb, Szz:y—{—rz’ Where € = ||r2||p
1521 p 1l p

and z # 0. Show that

llz—xllp
—— =kp(S) e
Izl p g

4. How Not to Solve Linear Systems.
One could solve a linear system Ax = b by forming A~!, and then multi-
plying A~ by b. The bound below suggests that this approach is likely to

be numerically less accurate than a direct solver.
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Let A € C"*" be nonsingular and Ax = b with b #0. Let A+ E € C*"
with [[A7YI,I1Ellp < 1/2. Compute Z = (A+E)~! and z = Z(b + f).

Show that
lz—xlp ”A_l”p”b”p
——— <kp(A) [ 2—————€a+€r ],
I, =7 IA=15]], /
where
E
eA=” ”p, ef = IfNlp ’
Al Al pllx]l

and compare this to the bound in Fact 3.9.
Hint: Use the perturbation bounds for matrix multiplication and matrix in-
version in Facts 2.22 and 2.25.

3.5 LU Factorization

The LU factorization of a matrix is the basis for Gaussian\eélimination.

Definition 3.18. Let A € C"*". A factorization A =/LU, where L is unit lower
triangular and U is upper triangular, is calledvan LU factorization of A.

The LU factorization of a nonsingular matrix, if it exists, is unique; see
Exercise 5 in Section 1.13. Unfortupately, there are matrices that do not have an
LU factorization, as the example below illustrates.

Example 3.19. The nonsingulafymatrix

(1)

cannot be factored into A = LU, where L is lower triangular and U is upper
triangular. Suppose to the contrary that it could. Then

(Fo)=(r (6 )

The first column of the equality implies that u1 =0, and /u; =1 so u; #0, a
contradiction.

Example 3.12 illustrates that a matrix A that is well-conditioned with re-
spect to inversion can have LU factors that are ill-conditioned with respect to
inversion. Algorithm 3.3 below shows how to permute the rows of a nonsingu-
lar matrix so that the permuted matrix has an LU factorization. Permuting the
rows of A is called partial pivoting—as opposed to complete pivoting where both
rows and columns are permuted. In order to prevent the factors from being too
ill-conditioned, Algorithm 3.3 chooses a permutation matrix so that the elements

of L are bounded.
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ALGORITHM 3.3. LU Factorization with Partial Pivoting.

Input: Nonsingular matrix A € C**"
Output: Permutation matrix P, unit lower triangular matrix L,
upper triangular matrix U such that PA = LU

1. fn=1,then P=1,L=1,and U = A.

2. If n > 1, then choose a permutation matrix P, such that

1 n-—1

1 o a
Pad=y 1 (d An_1>’

where o has the largest magnitude among all elements in the leading'e6lumn,
i.e., |a| > ||d||c0, and factor

1 0 oa a
ma=(i 405 5):

where | =da~'and S = A,_| —la.
3. Compute P,_1S = L,—1U,—1, where P,_ is apermutation matrix, L,_1 is
unit lower triangular, and U, _ is upper triangular.
o a
0 Un—l '

4. Then
1 0 1 0
P:<0 P11—1>Pn, L:(Pn—ll Ln—l>, v
Remark 3.20.
® Each iteration of step,2 in Algorithm 3.3 determines one column of L and
one row of U.
® Partial pivoting-ensures that the magnitude of the multipliers is bounded by
one; i.e., |lloo <1 in step 2 of Algorithm 3.3. Therefore, all elements of L
have magnitude less than or equal to one.

® The s¢alar o is called a pivot, and the matrix S = A,,—1 — da~'a is a Schur
complement. We already encountered Schur complements in Fact 1.14, as
part of the inverse of a partitioned matrix. In this particular Schur comple-
ment S the matrix da~'a is an outer product.

® The multipliers can be easily recovered from L, because they are elements
of L. Step 4 of Algorithm 3.3 shows that the first column of L contains
the multipliers P,_1l that zero out elements in the first column. Similarly,
column i of L contains the multipliers that zero out elements in column i.
However, the multipliers cannot be easily recovered from L™\

® Step 4 of Algorithm 3.3 follows from S = PnT_an,]Unfl, extracting the
permutation matrix,

1 0 1 0 o a
Fnd = (0 PT12 QPnll 1n1> <0 Lnlvnl)
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and separating lower and upper triangular parts

1 0 o a _ 1 0 o a
Pn—ll I, 0 Ly, 1Up—1 o Pn—ll L, 0 Un—1 '

® [n the vector P,_1l, the permutation P,_\ reorders the multipliers I, but
does not change their values. To combine all permutations into a single
permutation matrix P, we have to pull all permutation matrices in front of
the lower triangular matrix. This, in turn, requires reordering the multipliers
in earlier steps.

Fact 3.21 (LU Factorization with Partial Pivoting). Every nonsingular matrix
A has a factorization PA = LU, where P is a permutation matrix, L is unit lower
triangular, and U is nonsingular upper triangular.

Proof. Perform an induction proof based on Algorithm 3.3. a

A factorization PA = LU is, in general, not unique because there are many
choices for the permutation matrix.

With a factorization PA = LU, the rows of the linear system Ax = b are
rearranged, and the system to be solved is P Ax = Pb.Phe process of solving this
linear system is called Gaussian elimination with'\partial pivoting.

ALGORITHM 3.4. Gaussian Elimination with Partial Pivoting.

Input: Nonsingular matrix A.e%**", vector b € C"
Output: Solution of Ax =)

1. Factor PA = LU with Algorithm 3.3.

2. Solve the system Ly ='Pb.

3. Solve the system Ub»=y.

The next bound-implies that Gaussian elimination with partial pivoting is
stable in exact arithmetic if the elements of U are not much larger in magnitude
than those of 4.

Corollary-3.22 (Stability in Exact Arithmetic of Gaussian Elimination with
Partial Pivoting). If A € C"*" is nonsingular, Ax = b, and

E

P(A+E)=LU, eAzw,

[ Alloo

Iz lloc
Ly=Pb+ry, e =————,
I Lllooll ¥ ll oo

7 lloo
Uz=y+ry, e=——",
1Ullocllzlloo

where y # 0 and z # 0, then
- U
wSKOO(A)(EA +€), where e:n” ”OO(GU +eL(l+eU)).

4 A
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Proof. Apply Fact3.17to A+ E = §152, where S| = PTL and S, = U. Permu-
tation matrices do not change p-norms, see Exercise (iv) in Section 2.6, so that
IPTL|loo = ||L]loo. Because the multipliers are the elements of L, and lij] <1
with partial pivoting, we get || Lo < n.

Theratio |U |0/ || Alloo represents the element growth during Gaussian elim-
ination. In practice, ||U||s/||Allcc tends to be small, but there are n x n ma-
trices for which ||U|lso/|Alloc = 2"~!/n is possible; see Exercise 2 below. If
1U loo > | Allco, then Gaussian elimination is unstable.

Exercises

(i) Determine the LU factorization of a nonsingular lower triangular matrix A.
Express the elements of L and U in terms of the elements of A"

(i1) Determine a factorization A = LU when A is upper triangular.

(iii) For
0 0
A= (4 o)

with A nonsingular, determine a factofization PA = LU where L is unit
lower triangular and U is upper triangulat.

(iv) LDU Factorization.
One can make an LU factorization more symmetric by requiring that both
triangular matrices have onesonthe diagonal and factoring A = LD U, where
L is unit lower triangular,.2is diagonal, and U is unit upper triangular.
Given an LU factorization”A = LU, express the diagonal elements d;; of D
and the elements i, ‘in’terms of elements of U.

(v) Block LU Factorization.
Suppose we can-partition the invertible matrix A as

An A
A= ,
<A21 Ax

where A1 is invertible. Verify that A has the block factorization A = LU

where
_ 1 0 _(An A
L_(AglAl_ll 1>’ U‘(o A

and S = Ay — Apy Al_l1 A1 is a Schur complement. Note that L is unit lower
triangular. However, U is only block upper triangular, because A1y and S
are in general not triangular. Hence a block LU factorization is not the same
as an LU factorization.

Determine a block LDU factorization A = LDU, where L is unit lower

triangular, U is unit upper triangular, and D is block diagonal.
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(vi)

(vii)

The matrix

_——= O
oo =
W — W =

[\CRES ]

3

~

does not have an LU factorization. However, it does have a block LU
factorization A = LU with
0 1
a0 )
UL Factorization.

Analogous to Algorithm 3.3, present an algorithm that factors any square
matrix A into PA = UL, where P is a permutation matrix, U<is"unit upper
triangular, and L is lower triangular.

Determine L and U.

. Let A € C"*" be nonsingular and P a permutation matpix such that

A Ap
PA =
(AZI Ay
with Ay nonsingular. Show: If all elements of A» 1A1_11 are less than one in
magnitude, then

Koo <A22 - A21A]_11A12) < n%koo(A).

Compute the LU factorization of the n x n matrix

-1 ... ... -1 1
Show that pivoting is not necessary. Determine the one norms of A and U.

Let A € C"" and A 4 uv* be nonsingular, where u,v € C". Show how
to solve (A 4+ uv*)x = b using two linear system solves with A, two inner
products, one scalar vector multiplication, and one vector addition.

This problem shows that if Gaussian elimination with partial pivoting en-
counters a small pivot, then A must be ill-conditioned.

Let A € C**" be nonsingular and PA = LU, where P is a permutation
matrix, L is unit triangular with elements |/;;| < 1, and U is upper triangular
with elements u;;. Show that ko (A) > [|Alleo/min; |u ;.

The following matrices G are generalizations of the lower triangular matrices
in the LU factorization. The purpose of G is to transform all elements of a

column vector into zeros, except for the kth element.
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LetG=1,— gekT, where g € C" and 1 < k < n. Which conditions do the
elements of g have to satisfy so that G is invertible? Determine G~ when
it exists.

Given an index k and a vector x € C", which conditions do the elements of
x have to satisfy so that Gx = e;? Determine the vector g when it exists.

3.6 Cholesky Factorization

It would seem natural that a Hermitian matrix should have a factorization that
reflects the symmetry of the matrix. For an n x n Hermitian matrix, we need te
store only n(n + 1) /2 elements, and it would be efficient if the same were true*for
the factorization. Unfortunately, this is not possible in general. For instance, the

matrix
0 1
=1 o)

is nonsingular and Hermitian. But it cannot be factored, into a lower times upper
triangular matrix, as illustrated in Example 3.19, Fortunately, a certain class of
matrices, so-called Hermitian positive definite matrices, do admit a symmetric
factorization.

Definition 3.23. A Hermitian matrix A &C"*" is positive definite if x*Ax > 0 for
all x € C" with x # 0.

A Hermitian matrix A € C"’is positive semidefinite if x*Ax > 0 for all
xeCn.

A symmetric matrix A &R is positive definite ifx” Ax > 0 for all x € R"
with x # 0, and positive semidefinite if x” Ax > 0 for all x € R".

A positive semidefinite matrix A can have x*Ax = 0 for x # 0.

Example. The¢’2"x2 Hermitian matrix

G

is positive definite if | 8| < 1, and positive semidefinite if |8]> = 1. |
We derive several properties of Hermitian positive definite matrices. We
start by showing that all Hermitian positive definite matrices are nonsingular.

Fact 3.24. If A € C"*" is Hermitian positive definite, then A is nonsingular.

Proof. Suppose to the contrary that A were singular. Then Ax = 0 for some x # 0,

implying x* Ax = 0 for some x 7 0, which contradicts the positive definiteness of

A;ie., x*Ax > 0 for all x # 0. a0
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Hermitian positive definite matrices have positive diagonal elements.

Fact 3.25. If A € C"*" is Hermitian positive definite, then its diagonal elements
are positive.

Proof. Since A is positive definite, we have x*Ax > 0 for any x # 0, and in
particular0<e”j‘Aej=ajj, 1<j<n. a0

Below is a transformation that preserves Hermitian positive definiteness.

Fact 3.26. If A € C"*" is Hermitian positive definite and B € C"*" is nonsingular,
then B*A B is also Hermitian positive definite.

Proof. The matrix B*AB is Hermitian because A is Hermitian. Since B\is non-
singular, y = Bx # 0 if and only if x # 0. Hence

x*B*ABx = (Bx)*A(Bx) =y*Ay >0

for any vector y # 0, so that B* A B is positive definite. a

At last we show that principal submatrices and.Schur complements inherit
Hermitian positive definiteness.

Fact 3.27. If A € C"*" is Hermitian positivecdefinite, then its leading principal
submatrices and Schur complements are also,Hermitian positive definite.

Proof. Let B be a k x k principal submatrix of A, for some 1 <k <n—1. The
submatrix B is Hermitian because itis-a principal submatrix of a Hermitian matrix.
To keep the notation simple, we,permute the rows and columns of A so that the
submatrix B occupies the leadihg rows and columns. Thatis, let P be a permutation
matrix, and partition

2 B Ap
A=PTAP= :
(AT2 A22)

Fact 3.26 implies that A is also Hermitian positive definite. Thus x*Ax > 0 for
any vectorx # 0. In particular, let x = (g) for y € CK. Then for any y # 0 we

have

T B Ap\(y) _ .«
0<xAx—(y 0)<AT2 Axn )\ 0O =y By.

This means y* By > O for y # 0, so that B is positive definite. Since the submatrix B
is a principal submatrix of a Hermitian matrix, B is also Hermitian. Therefore,
any principal submatrix B of A is Hermitian positive definite.

Now we prove Hermitian positive definiteness for Schur complements.
Fact 3.24 implies that B is nonsingular. Hence we can set

I 0
L= (—A* B! Inkg’
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3.6. Cholesky Factorization 65

so that

A B 0 1
LAL*:(O S)’ where S =Axn—A},B  Ap.
Since L is unit lower triangular, it is nonsingular. From Fact 3.26 follows then that
LAL*is Hermitian positive definite. Earlier in this proof we showed that principal
submatrices of Hermitian positive definite matrices are Hermitian positive definite,
thus the Schur complement S must be Hermitian positive definite. a

Now we have all the tools we need to factor Hermitian positive definite
matrices. The following algorithm produces a symmetric factorization A = L'L¥
for a Hermitian positive definite matrix A. The algorithm exploits the factythat
the diagonal elements of A are positive and the Schur complements are Hetrnitian
positive definite.

Definition 3.28. Let A € C"*" be Hermitian positive definitéN A" factorization
A = LL* where L is (lower or upper) triangular with positive diagonal elements,
is called a Cholesky factorization of A.

Below we compute a lower-upper Cholesky factozization A = L L* where L
is a lower triangular matrix.

ALGORITHM 3.5. Cholesky Factorization.

Input: Hermitian positive definite'matrix A € C**"
Output: Lower triangular matrix L with positive diagonal elements
such that A= LL*

1. If n = 1, then L = /A
2. If n > 1, partition ahd’factor

1On—1

A 1 a a* al/? 0 1 0\ [al/? o V2g*
“n-=MVa A,_1)  \aa"l/? I, 0o S 0 I, ’

whefe S = A,_1 —aa~la*.
3. Compute S = L, L:_l, where L;_1 is lower triangular with positive di-
agonal elements.

4. Then 12
[ « 0
L= <aa_l/2 Ln1>'

A Cholesky factorization of a positive matrix is unique.

Fact 3.29 (Uniqueness of Cholesky factorization). Let A € C"*" be Hermitian
positive definite. If A = LL* where L is lower triangular with positive diagonal,
then L is unique. Similarly, if A = L L* where L is upper triangular with positive

diagonal elements, then L is unique.
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Proof. This can be shown in the same way as the uniqueness of the LU factoriza-
tion. g

The following result shows that one can use a Cholesky factorization to
determine whether a Hermitian matrix is positive definite.

Fact 3.30. Let A € C"*" be Hermitian. A is positive definite if and only if A =
LL* where L is triangular with positive diagonal elements.

Proof. Algorithm 3.5 shows that if A is positive definite, then A = LL*. Now
assume that A = LL*. Since L is triangular with positive diagonal elements, it i§
nonsingular. Therefore, Lx # 0 for x #£ 0, and x*Ax = || L*x ||§ > 0. |

The next bound shows that a Cholesky solver is numerically stable in exact
arithmetic.

Corollary 3.31 (Stability of Cholesky Solver). Let A € C"*™and let A+ E be
Hermitian positive definite matrices, Ax = b, b # 0, and

E

A+‘E—LL" A=|| ||2,
| Al

rill2

Ly=b+r, €& ,
6112

202
L'z=y+r,\ e= Iz .
yll2

IFIIAT 2N Ell2 < 1/2, then

llz—xll2
e < 2k2(A) (ea+ €1+ er(1+€7)).
>

Proof. Apply Fact3.14 to A+ E, where S} = L and S, = L*. The stability factor
is |L7*[l2IL 22 Al(A + E)~'l2 = 1 because Fact 2.19 implies

NA+E) o= IL* L7 = IL7M 3 = 1L (0L . g

Exercises

(i) The magnitude of an off-diagonal element of a Hermitian positive definite
matrix is bounded by the geometric mean of the corresponding diagonal
elements.

Let A € C"*" be Hermitian positive definite. Show: |a;;| < ,/@;;aj; for
i#j.
Hint: Use the positive definiteness of the Schur complement.

(i) The magnitude of an off-diagonal element of a Hermitian positive definite

matrix is bounded by the arithmetic mean of the corresponding diagonal

elements.
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Let A € C"*" be Hermitian positive definite. Show: |a;;| < (a;; +a;;)/2
fori # j.

Hint: Use the relation between arithmetic and geometric mean.

(iii) The largest element in magnitude of a Hermitian positive definite matrix is
on the diagonal.
Let A € C*"*" be Hermitian positive definite. Show: maxi<; j<u la;j| =
maxi<j<ndii-

(iv) Let A € C"*" be Hermitian positive definite. Show: A~! is also positive
definite.

(v) Modify Algorithm 3.5 so that it computes a factorization A = LDL* for a
Hermitian positive definite matrix A, where D is diagonal and L is unit lower
triangular.

(vi) Upper-Lower Cholesky Factorization.
Modify Algorithm 3.5 so that it computes a factorization A = L*D>for a Her-
mitian positive definite matrix A, where L is lower triangularwith positive
diagonal elements.

(vii) Block Cholesky Factorization.

Partition the Hermitian positive definite matrix Asas
A= (A A)
A2l A2y
Analogous to the block LU factorization in Exercise (v) of Section 3.5 de-
termine a factorization A = LL*,"'whére L is block lower triangular. That is,
L is of the form
Lt 0
L= ,
(Lzl Lo
where L1 and L»; ‘ar€ in general not lower triangular.
(viii) Let
An An
A =
(AZI A
be Hermitian positive definite. Show:
1422 — A21 A Arall2 < [1All2
and
(A — A2 A7 An) < 2 (A).
(ix) Prove: A = M M™ for some nonsingular matrix M if and only if A is Her-
mitian positive definite.
(x) Generalized Cholesky Factorization.

Let M € C"*" be Hermitian positive definite. Prove: If M = MM, =
M;‘ M, for square matrices M and M, then there exists a unitary matrix Q

such that M, = QM.
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(xi) Let M = A +1 B be Hermitian positive definite, where 12=—1,and A and B
are real square matrices. Show that the matrix

(3

is real symmetric positive definite.

3.7 QR Factorization

The QR factorization is a matrix factorization where one of the factors is unitasy
and the other one is triangular. We derive the existence of a QR factorizationdtom
the Cholesky factorization.

Fact 3.32. Every nonsingular matrix A € C"*" has a unique facterization A =
OR, where Q is unitary and R is upper triangular with positive diagonal elements.

Proof. Since A is nonsingular, Ax # 0 for x # 0, and x*4*Ax = ||Ax||% > 0,
which implies that M = A*A is Hermitian positive definite. Let M = LL* be a
Cholesky factorization of M, where L is lower triangular with positive diagonal
elements. Then M = A*A = LL*. Multiplying by, A< On the left gives A = OR,
where Q = A™*L, and where R = L* is upper triangular with positive diagonal
elements. Exercise (ix) in Section 3.6 shows that Q is unitary.

The uniqueness of the QR factorization follows from the uniqueness of the
Cholesky factorization, as well as fromsExercise 6 in Section 1.13. a0

The bound below shows that'a QR solver is numerically stable in exact
arithmetic.

Corollary 3.33 (Stability ‘of QR Solver). Let A € C"*" be nonsingular, Ax = b,
b #0, and

ALE—OR e IED
' Al>°
lrill2
Oy=b+r, €= ,
15112

14
Rz=y+nr, € = I 2”2.
lyll2

IFIIATY2IEl < 1/2, then

iz —xll2

llxl2

<2k2(A) (ea+e€1+e(l+¢€1)).

Proof. Apply Fact 3.14 to A+ E, where S| = Q and S, = R. The stability factor
is |[R™2]|Q*|l2/1I(A + E)~ 1|2 = 1, because Exercise (v) in Section 2.6 implies

1Q*l2=1and [(A+E) "2 =R |2 a
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There are many ways to compute a QR factorization. Here we present an
algorithm that is based on Givens rotations; see Definition 1.17. Givens rotations
are unitary, see Example 1.16, and they are often used to introduce zeros into
matrices. Let’s start by using a Givens rotation to introduce a single zero into a
vector.

Example. Let x,y € C.

(5 90)-() e oo

If x =y =0, then ¢ =1 and s = 0; otherwise ¢ = X/d and s = y/d. Thatisif
both components of the vector are zero, then there is nothing to do and the-unitary
matrix is the identity. Note that d > 0 and |c|? + |s|*> = 1. [ |

When introducing zeros into a longer vector, we embed each Giyens rotation
in an identity matrix.

Example. Suppose we want to zero out elements 2, 3, and 44wra 4 x 1 vector with
a unitary matrix. We can apply three Givens rotations ihthe following order.

1. Apply a Givens rotation to rows 3 and 4 to zetfeout element 4,

1 0 0 0 X1 X1
0 1 0 0] x| | x
0 0 cq4 w4 x|l I»n)l
0 0 —s»"cy X4 0

where y3 = +/|x3]2 +[%412> 0. If x4 =x3 =0, then ¢4 = 1 and 54 = 0;
otherwise ¢4 = X3 fyzcand s4 = X4/y3.

2. Apply a Givens rotation to rows 2 and 3 to zero out element 3,

1 0 0 0 X1 X1
0 ¢ s3 O x| _[»
0 —s3 ¢c3 O yvi] 10}
0O 0 0 1 0 0

where y; = +/|x2|2+ 131> > 0. If y3 =x; =0, then ¢3 = 1 and 53 = 0;
otherwise c3 =X2/y; and 53 = y3/y2.

3. Apply a Givens rotation to rows 1 and 2 to zero out element 2,

o s2 0 0\ /x i
—52 ¢ 0 O b I

0 0 1 0 o] (o]

0 0 0 1 0 0

where y; = +/|x1|2+ 1|32/ > 0. If y =x; =0, then ¢c; = 1 and 5, = 0;

otherwise co =x1/y; and s =¥,/y1.-
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Therefore Qx = y1ey, where y; = || Qx||» and

¢ s, 00 1 0 0 0 1 0 O 0
0= —s2 ¢ 0 0 0 ¢z s3 0 o1 0 0 B
- 0 1 0 0 —53 ¢35 O 0 0 ¢4 sa)°
0 0 0 1 0o 0 0 1 0 0 —54 ¢4

There are many possible orders in which to apply Givens rotations, and
Givens rotations don’t have to operate on adjacent rows either. The example
below illustrates this.

Example. Here is another way to to zero out elements 2, 3, and 4 in a4 x 1 vegtor.
We can apply three Givens rotations that all involve the leading row.

1. Apply a Givens rotation to rows 1 and 4 to zero out element 4,

cs 0 0 s4\ /x1 |

0 1 0 O x| | x

0O 01 O x3 | T las”
—54 0 0 ¢4 X4 0

where y1 = +/|x1|2+|x4]2 > 0. If x4 = x0=0, then ¢4 = 1 and 54 = 0;
otherwise ¢4 =X1/y; and s4 = x4/ 1.

2. Apply a Givens rotation to rows 1 an@d-3 to zero out element 3,

Cc3 0 3 0 Vi <1
N0 0 x| | x

—s3 M ¢3 0 x3] 10
00 0 1 0 0

where 71 = /|p{}? +|x312>0. If x3=y; =0, then ¢c3 =1 and 53 = 0;
otherwise ¢3 =y, /z1 and s3 =X3/z1.

3. Apply a Giyens rotation to rows 1 and 2 to zero out element 2,

(6] 52 0 0 X1 ui
—sp ¢ 0 0 | _ |0

0 1 0 o)~ (o}

0 0 0 1 0 0

where u; = +/|z112+x2)2>0. If x, =z, =0, then co =1 and s, = 0;
otherwise ¢; =71 /u; and s, = X2 /uj.

Therefore Ox = uje;, where u; = || Qx| and

¢ s2 0 0 c3 0 s3 O cas 0 0 54

0= —52 ¢ 0 0 0O 1 0 O 0O 1 0 O B
-1 0 0 1 0 —53 0 ¢c3 O 0O 01 0
0 0 0 1 0O 0 0 1 —54 0 0 ¢4
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The preceding examples demonstrate that if a Givens rotation operates on
rows i and j, then the ¢ and s elements occupy positions (i,i), (i, j), (j,i), and
(o).

At last here is a sketch of how one can reduce a square matrix to upper
triangular form by means of Givens rotations.

Example. We introduce zeros one column at a time, from left to right, and within
a column from bottom to top. The Givens rotations operate on adjacent rows.
Elements that can be nonzero are represented by *. Elements that were affected
by the ith Givens rotation have the label i. We start by introducing zeros into
column 1,

._.
—_ % ¥

*
*
1

* K ¥ ¥
* K ¥ ¥
* K ¥ ¥
* K ¥ X
o
—_—— % %
h— K K
[\S)
S O ¥
— NN ¥
— NN ¥
[\S RN ST
w
SO O W
= 0 W W
— DN W
— DN WD

1
¢ introduce zeros into column 2, and then into column 3,

33 3 3 3 3 3 3

5
N

Now

w
3 3 3

3 3 3 A
2 2 2

I 1 1

& L

R AV VS
SO LW
O N W
AN O L W

3
0 03 3 3 0 5
0 0 4 4 4 00
0 0 0 4 4 0 0

[=N e}

Below is the general algorithm.
ALGORITHM 3.6. QR Factorization fersNonsingular Matrices.

Input: Nonsingular matrix”A € C**"
Output: Unitary matrix<® € C"*" and upper triangular matrix R €
C™" with positive'diagonal elements such that A = QR
1. If n =1, then Q = A/|A| and R = |A|.
2. If n > 1, zeroyout elements n,n — 1,...,2 in column 1 of A as follows.
(1) Set (bnl by ... b,m) = (anl anpy ... a,m).
@) Bovi =n,n—1,...,2
Zero out element (i, 1) by applying a rotation to rows i and i — 1,

¢ Si\{ai-11 Gi-12 ... Gi—1n
—Si Ci biy bi ... bin
_(bi-11 bic12 ... bi-ia
0 an ain )’
where b;_11 =+/|bi1 |2 +lai—1.1 |2. If b;) = ai—11 =0, then¢c; =1

and s; = 0; otherwise ¢; =a;_1,1/b;—1,1 and 5; = Eil/bifl,l‘
(iii) Multiply all n — 1 rotations,

c 8 0 I,_» 0 0
Or=|-52 & 0 |---1 O Cn Sn
O O Infz O _En E}’l
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(iv) Partition the transformed matrix,

A

a ... A

*
Q,’;A=<r(1)1 ;) where A= | : ],

A

a2 ... &nn
r*s(bu bln),andrl]zbl] > 0.

3. Compute A= 0n-1R,—1, where Q,,_1 is unitary and R,_1 is upper trian-
gular with positive diagonal elements.

4. Then .
1 0 1 r
= R= .
Q Qn <O Qn—l) ’ ( 0 Rn—l)

Exercises

(i) Determine the QR factorization of a real upper triangular anatrix.

(ii) QR Factorization of Outer Product.
Let x,y € C", and apply Algorithm 3.6 to xy*. How padny Givens rotations
do you have to apply at the most? What does the'upper triangular matrix R
look like?

(iii) Let A € C"*" be a tridiagonal matrix, that issonly elements a;;, a;+1,, and
a; i+1 can be nonzero; all other elements\are zero. We want to compute a
QR factorization A = Q R with n — 1.Givens rotations. In which order do
the elements have to be zeroed out, 6’ which rows do the rotations act, and
which elements of R can be nonzero?

(iv) QL Factorization.
Show: Every nonsingularZmatrix A € C"™*" has a unique factorization
A = QL, where Q is unitary and L is lower triangular with positive di-
agonal elements.

(v) Computation of QL Factorization.
Suppose we want to compute the QL factorization of a nonsingular matrix
A € C™" with Givens rotations. In which order do the elements have to be
zeroed outyand on which rows do the rotations act?

(vi) The ¢lements in a Givens rotation

(%)

are named to invoke an association with sine and cosine, because
lc|>+1]s|?> = 1. One can also express the elements in terms of tangents
or cotangents. Let

x\ _(d _ ) N
G<y>_(0>’ where d =./|x|*+|y|*.

Show the following: If |y| > |x|[, then

X y 1
T=—,

A —
y IVl /1+|7)?
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3.8. QR Factorization of Tall and Skinny Matrices 73

and if |x| > |y|, then
x 1

x| T+ 2

T==, c=

Yy
X
(vii) Householder Reflections.
Here is another way to introduce zeros into a vector without changing
its two norm. Let x € C" and x| # 0. Define Q = I —2vv*/v*v, where
v =x+«lx|2e; and o = x1/|x1]. Show that Q is unitary and that
Ox = —al||x|lze1. The matrix Q is called a Householder reflection.
(viii) Householder Reflections for Real Vectors.
Let x,y € R" with ||x|l2 = ||y|l2. Show how to choose a vector v inxthe
Householder reflection so that Qx = y.

3.8 QR Factorization of Tall and Skinny Matrices

We look at rectangular matrices A € C"*" with at least as many>rows as columns,
i.e.,m > n. If Aisinvolved in a linear system Ax = b, then Wwe must have b € C"
and x € C". Such linear systems do not always have asolution; and if they do
happen to have a solution, then the solution may not besunique.

Example. If

by
A= , b=\0b2],
1 b3
then the linear system Ax = b has &'solution only for those b all of whose elements
are the same, i.e., 8 = b1 = bp =yb3. In this case the solution is x = 8. [ |

Fortunately, there is one’right-hand side for which a linear system Ax = b
always has a solution, namely, b = 0. That is, Ax = 0 always has the solution
x = 0. However, x =Q'may not be the only solution.

Example. If

1 —1
A=1]-1 11,
1 —1
then Ax = 0 has infinitely many solutions x = (x1 xz)T with x| = x. [ |

We distinguish matrices A where x = 0 is the unique solution for Ax = 0.

Definition 3.34. Let A € C™"*". The columns of A are linearly independent if
Ax = 0 implies x = 0. If Ax = 0 has infinitely many solutions, then the columns
of A are linearly dependent.

Example.
* The columns of a nonsingular matrix A are linearly independent.

. . . (A . .
* If A is nonsingular, then the matnav( ) has linearly independent columns.
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e Let x € C". If x # 0, then x consists of a single, linearly independent
column. If x = 0, then x is linearly dependent.

o If A € C"*" with A*A = I,, then A has linearly independent columns. This
is because multiplying Ax = 0 on the left by A* implies x = 0.

« If the linear system Ax = b has a solution x, then the matrix B = (A b)

has linearly dependent columns. That is because B (_x1> =0. |

How can we tell whether a tall and skinny matrix has linearly independent
columns? We can use a QR factorization.

ALGORITHM 3.7. QR Factorization for Tall and Skinny Matrices.
Input: Matrix A € C"™*" withm > n

Output: Unitary matrix Q € C™*™ and upper triangulargnatrix R €

C™" with nonnegative diagonal elements such that A= Q (g)

1. If n =1, then Q is a unitary matrix that zeros outelements 2,...,m of A,
and R = ||A|l>.

2. If n > 1, then, as in Algorithm 3.6, determing¢’a unitary matrix Q,, € C™*™
to zero out elements 2,...,m in column_ L of A, so that

%
o2 (s )
where 711 > 0 and A € Cnzxm=1)
3. Compute A= Qm_1 (R%_1>, where Q,,_; € Cm=Dxm=1 is ynitary, and
R,_1 € C"~Dxt=isuppertriangular with nonnegative diagonal elements.

4. Then
1 0 ri r*
= s R= .
0=Cn (0 Qm_l) (0 Rn_1>

Fact 3.35. Let A € C"*" withm >n,and A = Q (g) where Q € C™*™ is uni-

tary, and R € C"*" is upper triangular. Then A has linearly independent columns
if and only if R has nonzero diagonal elements.

Proof. Since Q is nonsingular, Ax = Q<§)0 = x = 0 if and only if

Rx = 0= x =0. This is the case if and only if R is nonsingular and has nonzero
diagonal elements. a

One can make a QR factorization more economical by reducing the storage

and omitting part of the unitary matrix.
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Fact 3.36 (Thin QR Factorization). If A € C"*" with m > n, then there exists
a matrix Q) € C"™*" with Q7Q1 = I,,, and an upper triangular matrix R € C"*"
with nonnegative diagonal elements so that A = Q1 R.

Proof. let A= Q (g) be a QR factorization as in Fact 3.35. Partition
0= (Q] Qz), where Q1 has n columns. Then A = Q| R. a0

Definition 3.37. If A € C"*" and A* A = I,,, then the columns of A are orthonormal,

For a square matrix the thin QR decomposition is identical to the full)QR
decomposition.

Example 3.38. The columns of a unitary or an orthogonal matrix A" C"*" are
orthonormal because A*A = I,,, and so are the rows because<AA* = [,,. This
means, a square matrix with orthonormal columns must be a unitary matrix. A real
square matrix with orthonormal columns is an orthogonal matrix. |

Exercises

(i) Let A € C™*", m > n, with thin QR\factorization A = QR. Show:
All2 = [IR]l2.

(i) Uniqueness of Thin QR Factorization:
Let A € C"*" have linearly independent columns. Show: If A = QOR,
where Q € C"™*" satisfies QX @ = I, and R is upper triangular with positive
diagonal elements, then Q,and R are unique.

(iii) Generalization of Fact 3:35.

Let AcC™" m>n,and A =B (C , where B € C"™*" has linearly

0
independent ¢columns, and C € C"*". Show: A has linearly independent
columns ifdnd only if C is nonsingular.

(iv) Let A-ecC™*" where m > n. Show: There exists a matrix Z € C"x(m—n)
such that Z*A = 0.

(v) etyA € C™*", m > n, have a thin QR factorization A = Q R. Express the
kth column of A as a linear combination of columns of Q and elements of R.
How many columns of Q are involved?

(vi) Let A € C™*", m > n, have a thin QR factorization A = QR. Determine a
QR factorization of A — Qeje} R from the QR factorization of A.

(vii) Let A= (a1 ... ay) have linearly independent columns a;, 1 < j <n.
Let A = QR be a thin QR factorization where Q = (q1 qn) and R is
upper triangular with positive diagonal elements. Express the elements of R
in terms of the columns a; of A and the columns g; of Q.

(viii) Let A be a matrix with linearly independent columns. Show how to com-

pute the lower-upper Cholesky factorization of A*A without forming the

product A*A.
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(ix) Bessel’s Inequality.

Let V e C™*" with V = (v1 vn) have orthonormal columns, and let

x € C™. Show:
n
Z|v7x|2 <x*x.
Jj=1

. QR Factorization with Column Pivoting.

This problem presents a method to compute QR factorizations of arbitrary
matrices. Let A € C"™*" with rank(A) = r. Then there exists a permutation,

matrix P so that
. R R
AP=0Q ( 0 0 ) :

where Rj is an upper triangular nonsingular matrix.

(a) Show how to modify Algorithm 3.7 so that it computes such a factor-
ization. In the first step, choose a permutationmatrix P, that brings
the column with largest two norm to the fron; i=e-,

|APyerl2 = max [[ARe;ll2.
I1<j<n

(b) Show that the diagonal elements of*R| have decreasing magnitudes;
Le, (RO = (R =+ = (R
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4. Singular Value
Decomposition

In order to solve linear systems with a general rectangular ¢oefficient matrix, we
introduce the singular value decomposition. It is one ofithe most important tools
in numerical linear algebra, because it contains a lot of information about a matrix,
including rank, distance to singularity, column space;row space, and null spaces.

Definition 4.1 (SVD). Let A € C™*". Ifm > uthen a singular value decomposition
(SVD) of A is a decomposition

o
A:U(é:)v*, where 2 = , o1>-->0,>0,
On
and U € C"™*™ and V € C"*" are unitary.
If m < n, thenaw SVD of A is
ol
A=U(Z>0)V*,  where = , 0= =0, >0,
Om

and U € C"™*™ and V € C"*" are unitary.
The matrix U is called a left singular vector matrix, V is called a right
singular vector matrix, and the scalars o are called singular values.

Remark 4.2.

® An m x n matrix has min{m,n} singular values.
® The singular values are unique, but the singular vector matrices are not.
Although an SVD is not unique, one often says “the SVD” instead of “an
SVD.”
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78 4. Singular Value Decomposition

® Let AcC™" withm >n. If A= U(g) V* is an SVD of A, then

A*¥=V (E 0) U* is an SVD of A*. Therefore, A and A* have the same
singular values.

e A € C"" is nonsingular if and only if all singular values are nonzero, i.e.,
0;j>0,1<j<n.
IfFA=UXV*isan SVD of A, then A~ = VE~'U* is an SVD of A~

Example 4.3. The 2 x 2 matrix

1= %)

has a smallest singular value equal to

1/2
2
o) = .
<2+ lrf® + v/ 4+ |a|2)

As |a| — oo, the smallest singular value approaches\zero, oo — 0, so that the
absolute distance of A to singularity decreases. |

Exercises

(i) Let A € C"*". Show: All singulap-values of A are the same if and only if A
is a multiple of a unitary matrix.

(i) Show that the singular yalugs of a Hermitian idempotent matrix are O and 1.

(iii) Show: A € C"*" is Hefmitian positive definite if and only if it has an SVD
A = VX V* wheré*X is nonsingular.

(iv) Let A, B € C"*"\Show: A and B have the same singular values if and only
if there exist unitary matrices Q € C"*" and P € C"*™ suchthat B= PAQ.

(v) Let A @ €©@™", m > n, with QR decomposition A = Q(ﬁ), where

Q €™ is unitary and R € C"*". Determine an SVD of A from an
SVYD of R.

(vi) Determine an SVD of a column vector, and an SVD of a row vector.

(vii) Let A € C™*" with m > n. Show: The singular values of A*A are the
squares of the singular values of A.

1. Show: If A € C"*" is Hermitian positive definite and ¢ > —o,,, then A+« 1),
is also Hermitian positive definite with singular values o; +a.

2. Let A € C"™*" and « > 0. Express the singular values of (A*A 4+al)~!A*
in terms of o and the singular values of A. !
3. Let A € C"™*" with m > n. Show: The singular values of ( ") are equal to

A
/1+o},1§j§n.
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4.1. Extreme Singular Values 79

4.1 Extreme Singular Values

The smallest and largest singular values of a matrix provide information about the
two norm of the matrix, the distance to singularity, and the two norm of the inverse.

Fact 4.4 (Extreme Singular Values). If A € C™*" has singular values
o1 > --- > 0)p, where p = min{m,n}, then

Ax]2 . Ax|2
|A|l> = max =0y, min ——— = 0,,.
x#0 |lxll2 x#0 x|z
Proof. The two norm of A does not change when A is multiplied by unitaty
matrices; see Exercise (iv) in Section 2.6. Hence ||A|| = || X]|2. Since Xdis a
diagonal matrix, Exercise (i) in Section 2.6 implies || X||2 = max |0} | =6y-
To show the expression for o, assume that m > n, so p =@, Then A

0
miny|,=1 [|Ax|l2. With y = V*z we get

has an SVD A =U (2) V*. Let z be a vector so that ||z||o 5 10%nd ||Az|, =

n 1/2
min [ Ax]2 = Azl =2V 2lo = Zyll2 = (Zaﬁlwlz) = oullyll2 = on.
in

Ix i=1
Thus, 0, < minjy|,=1 [[Ax||2. As for the rev€tse inequality,

on=1Zenll2 = U AV ey = [A(Ven) 2 = H)Iclulinl lAx]l2.
2=

The proof for m < n is analogous; a

The extreme singularyvalues are useful because they provide information
about the two-norm coendition number with respect to inversion, and about the
distance to singularity:

The expressions below show that the largest singular value determines how
much a matrix ean stretch a unit-norm vector and the smallest singular value
determines how much a matrix can shrink a unit-norm vector.

Fact 4.5¢ If A € C"*" is nonsingular with singular values o1 > --- > 0, > 0, then

_ 1 lop|
1A=, = —  eA)=—

n n

The absolute distance of A to singularity is
op, =min{||E|j2 : A+ E is singular}

and the relative distance is

On . { IEl2
— =min

o1 1 All2
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html
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Proof. Remark 4.2 implies that 1/0; are the singular values of A~!, so that

A7 > = max j1/loj| = 1/0,. The expressions for the distance to singularity
follow from Fact 2.29 and Corollary 2.30. a

Fact 4.5 implies that a nonsingular matrix is almost singular in the absolute
sense if its smallest singular value is close to zero. If the smallest and largest
singular values are far apart, i.e., if o1 > o0y, then the matrix is ill-conditioned with
respect to inversion in the normwise relative sense, and it is almost singular in the
relative sense.

The singular values themselves are well-conditioned in the normwise abso-
lute sense. We show this below for the extreme singular values.

Fact4.6. Let A, A+ E € C"*", p = min{m,n}, and let o7 > --- > o,be the
singular values of A and 61 > --- > G, the singular values of A + E, Then

lor —o1l = I Ell2, lop —opl = IE]l2.

Proof. The inequality for o follows from o1 = ||A||2 and Fact 2.13, which states
that norms are well-conditioned.

Regarding the bound for o, let y be a vectoryo that o, = [|Ay||, and
[l¥]l2 = 1. Then the triangle inequality implies

op = |min A+ E)xll2 < A8y l2 < [[Ayll2+ I Eyll2

lell2=1
=0p+IEYl2 <0p+IEls.

Hence 6, — o), < || E||2. To show that — | E||> < 6, — o), let y be a vector so that
6p = (A4 E)yll2 and ||yll2. =4, Then the triangle inequality yields

op= ||§I\|1in1 [Axll2 =<fd¥ll2 = [(A+E)y = Eyll2 < [(A+ E)yll2+IEyl2
2=

=6p+Eyllg €0, + 1 Ell2. O

Exercises

1. Extreme Singular Values of a Product.
Lét A e C*" B e C™*", g = min{k,n}, and p = min{m,n}. Show:

01(AB) = 01(A)o1(B),  04(AB) < 01(A)o,(B).

2. Appending a column to a tall and skinny matrix does not increase the smallest
singular value but can decrease it, because the new column may depend
linearly on the old ones. The largest singular value does not decrease but it
can increase, because more “mass” is added to the matrix.

Let A € C"™" with m >n, z€C" and B= (A z). Show:
ont1(B) = 0,(A) and 01(B) = 01(A).
3. Appending a row to a tall and skinny matrix does not decrease the smallest

singular value but can increase it. Intuitively, this is because the columns
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become longer which gives them an opportunity to become more linearly
independent. The largest singular value does not decrease but can increase,
because more “mass” is added to the matrix.

Let A e C"*" withm >n,z€ C",and B = ( *> Show that

Z
0u(B) = 0,(A),  01(A) <01(B) </o1(A)2 +||z|I3.

4.2 Rank

For a nonsingular matrix, all singular values are nonzero. For a general matrix, the
number of nonzero singular values measures how much “information” is containéd
in a matrix, while the number of zero singular values indicates the amoumnt of
“redundancy.”

Definition 4.7 (Rank). The number of nonzero singular values™of a matrix
A € C"™*" js called the rank of A. An m x n zero matrix has rank0.

Example 4.8.
e If A e C"*", thenrank(A) < min{m,n}.
This follows from Remark 4.2.
e If A € C"*" is nonsingular, then rank (A\=7 = rank (A~ ").
A nonsingular matrix A contains the miaximum amount of information, be-
cause it can reproduce any vectonp &C" by means of b = Ax.

® For any m x n zero matrix 0, rank¢0) = 0.
The zero matrix contains ne information. It can only reproduce the zero
vector, because Ox = 0 forany vector x. -

e If A e C"™*" has rank(4) = n, then A has an SVD A =U 0

¥ is nonsingular. This means, all singular values of A are nonzero.

e If A e C"*" hagvank(A) =m,then AhasanSVD A=U (£ 0) V*, where
¥ is nonsingular. This means, all singular values of A are nonzero. |

V*, where

A nonzero outer product uv* contains little information: because
uv*x = (v*a)u, the outer product uv* can produce only multiples of the vector u.

Remark 4.9 (Outer Product). Ifu € C" and v € C* with u # 0 and v # 0, then
rank (uv*) = 1.

To see this, determine an SVD of uv*. Let U € C"™*™ be a unitary matrix so
that U*u = |\u||2ey, and let V € C**" be a unitary matrix so that V*v = ||v||2e;.
Substituting these expressions into uv* shows that uv* = U X V* is an SVD, where
2 e R™" and ¥ = ||lullzllvll2ere}. Therefore, the singular values of uv* are
lull2llvll2, and (min{m,n} — 1) zeros. In particular, |luv* |2 = [lull2|[v]2.

The above example demonstrates that a nonzero outer product has rank one.
Now we show that a matrix of rank r can be represented as a sum of r outer
products. To this end we distinguish the columns of the left and right singular

vector matrices.
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Definition 4.10 (Singular Vectors). Let A € C"™*", with SVD A =U (2): V*if

m>n,and SVD A=U (E 0) V*ifm <n. Set p = min{m,n} and partition

o
U:(u1 um), V:(v1 v,,), Y= ,
Op
where 61 > --- >0, > 0.

We call o the jth singular value, u j the jth left singular vector, and v; the
Jjth right singular vector.

Corresponding left and right singular vectors are related to each other.

Remark 4.11. Let A have an SVD as in Definition 4.10. Then
Av; = oju;, A*uizo,-vi, 1<i<p.

This follows from the fact that U and V are unitary, and X is Hermitian.

Now we are ready to derive an economical representation for a matrix, where
the size of the representation is proportional to the rank of the matrix. Fact 4.12
below shows that a matrix of rank r can be expressed in terms of r outer products.
These outer products involve the singular vestors associated with the nonzero
singular values.

Fact 4.12 (Reduced SVD). Let A € C™" have an SVD as in Definition 4.10. If

rank(A) =r, then
y
A= Zajujv;‘f.
j=1

Proof. Fromrank(A) =r follows o1 > --- > o, > 0. Confine the nonzero singular
values to the matrixx2,/, so that

01

) ) _ Y 0) .«
D= . , and A—U<O O)V

Or

is an SVD of A. Partitioning the singular vectors conformally with the nonzero
singular values,

r m—r r n—r
U= (U Unr), V= (Vi Vay),

yields A = U, %, V*. Using U, = (u1 ur) and V, = (v1 vr), and
viewing matrix multiplication as an outer product, as in View 4 of Section 1.7,

shows
vy

,
A=Ur2,Vr*=(01u1 orur) =Zojujv;f. O
* j=1

v =
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For a nonsingular matrix, the reduced SVD is equal to the ordinary SVD.

Based on the above outer product representation of a matrix, we will now
show that the singular vectors associated with the k largest singular values of A
determine the rank k matrix that is closest to A in the two norm. Moreover, the
(k+ 1)st singular value of A is the absolute distance of A, in the two norm, to the
set of rank k matrices.

Fact 4.13 (Optimality of the SVD). Let A € C™*" have an SVD as in Defini-
tion 4.9. If k < rank(A), then the absolute distance of A to the set of rank k
matrices is
Ok+1 = min A= Bll2=[A—Akll2,
BeCmxn rank (B)=k

where Ay = Zl;zl ojujv.

Proof. Write the SVD as

o1
A=U <21 ) V*, where X =
3
Ok+1

and o1 > -+ > op41 > 0, so that X is nonsingular” The idea is to show that the
distance of ¥ to the set of singular matrices, which is oy 1, is a lower bound for
the distance of A to the set of all rank k matrices.

Let C € C™*" be a matrix with rank (C) = k, and partition

Cu Cn
LI>}< C V = s
(CZI C 22)
where C11 is (k+ 1) x (k4 1) From rank (C) = k follows rank(C11) < k (although
it is intuitively clear, it is proved rigorously in Fact 6.19), so that Cy; is singular.
Since the two norm gsd@nvariant under multiplication by unitary matrices, we obtain

21 *
ASCl, = -uUrCcv
Il lI2 H( Ez) )
_[(Z1—=Cn —Cr12
—Cy X —Cnx»

Since X; is nonsingular and Cyp; is singular, Facts 2.29 and 4.5 imply that
|21 — C11]2 is bounded below by the distance of ¥ from singularity, and

> [121—Crill.
2

21 —Ciill2 = min{|| 2y — Byyll2 : By is singular} = oy41.
A matrix C for which ||A — C||2 = ok+1 is C = Ag. This is because
o1

Cn= - . Cn=0, Cu=0, Cpnp=0.
ok

0
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html



Copyright ©2009 by the Society for Industrial and Applied Mathematics
This electronic version is for personal use and may not be duplicated or distributed.
84 4. Singular Value Decomposition

Since the ¥ — C1 has k diagonal elements equal to zero, and the diagonal elements
of X, are less than or equal to oy 1, we obtain
= Ok+1- a

>1—-Cip O Ok+1
A—C = =
= (M5 gL s,

The singular values also help us to relate the rank of A to the rank of A*A
and A A*. This will be important later on for the solution of least squares problems.

Fact 4.14. For any matrix A € C"™*",

1. rank(A) =rank(A*),

2. rank(A) =rank(A*A) =rank(AA¥),

3. rank(A) = n if and only if A*A is nonsingular,
4. rank(A) = m if and only if AA* is nonsingular.

Proof.

1. This follows from Remark 4.2, because A and A* haye the same singular
values. .

2. If m > n, then A has an SVD A =U 0 V* and A*A = VX2V* is an

SVD of A*A. Since ¥ and %2 have the same‘nurnber of nonzero diagonal

2
elements, rank(A) = rank(A*A). Also, AA* =U (2()) 8) U* is an SVD

of AA*. As before, rank(A) = rank (AA™*) because X and 32 have the same
number of nonzero diagonal elements.
A similar argument applies whenrm < n.

3. Since A*A is n x n, A*A_is nonsingular if and only if n = rank(A*A) =
rank (A), where the second equality follows from item 2.

4. The proof is similag to, that of item 3. a

In item 3 aboye the matrix A has linearly independent columns, and in item
4 it has linearly indeépéndent rows. Below we give another name to such matrices.

Definition 4,15 (Full Rank). A matrix A € C™*" has full column rank if
rank (A) =n, and full row rank if rank(A) = m.

Asmatrix A € C™*" has full rank if A has full column rank or full row rank.
A matrix that does not have full rank is rank deficient.

Example.
* A nonsingular matrix has full row rank and full column rank.

¢ A nonzero column vector has full column rank, and a nonzero row vector
has full row rank.

o If A € C"*" is nonsingular, then (A B) has full row rank for any matrix

B e C"™™ and ( has full column rank, for any matrix C € C"*".

C
* A singular square matrix is rank deficient. |
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Below we show that matrices with orthonormal columns also have full col-
umn rank. Recall from Definition 3.37 that A has orthonormal columnsif A*A = 1.

Fact 4.16. A matrix A € C"™*" with orthonormal columns has rank(A) = n, and
all singular values are equal to one.

Proof. Fact 4.14 implies rank(A) = rank(A*A) = rank(/,) = n. Thus A

has full column rank, and we can write its SVD as A = U <(2))> V*. Then
I, = A*A = VZ2V* implies ¥ = I,,, so that all singular values of A are equal
to one. [d

Exercises

(i) Let A € C™*". Show: If Q € C"™*™ and P € C"*" aresunitary, then

rank(A) =rank(QAP).

(i) What can you say about the rank of a nilpotent matrix, and the rank of an
idempotent matrix?

(iii) Let A € C"™*". Show: If rank(A) = n, then ||(A™A)Y "' A*||, = 1/0,, and if
rank(A) = m, then [|(AA*) "' All» = 1/0,,.

(iv) Let A € C™*" with rank(A) = n. Show that A(A*A)~ ! A* is idempotent
and Hermitian, and ||A(A*A) 1 A*|, =&

(v) Let A € C"™*" with rank(A) = m. Show that A*(AA*)~!A is idempotent
and Hermitian, and ||A*(AA*) A, = 1.

(vi) Nilpotent Matrices.
Let A € C"™" be nilpotent §o that A/ =0 and A/~ # 0 for some j > 1.
Let b € C" with A/~1b£0r Show that K = (b Ab ... A/~'b) hasfull
column rank.

(vii) In Fact4.13 let B beéya multiple of A, i.e., B = o Ag. Determine ||A — B]|>.

1. Let A € C"" Show that there exists a unitary matrix Q such that
A* = QAQ:

2. Polar Deeomposition.
Show:If A € C"™*" has rank(A) = n, then there is a factorization A = PH,
where P € C"™*" has orthonormal columns, and H € C"*" is Hermitian
positive definite.

3. The polar factor P is the closest matrix with orthonormal columns in the two
norm.
Let A € C"" have a polar decomposition A = PH. Show that
|JA— Pll2 <||A— Q|2 for any unitary matrix Q.

4. The distance of a matrix A from its polar factor P is determined by how
close the columns A are to being orthonormal.
Let A € C"™*", with rank(A) = n, have a polar decomposition A = PH.
Show that

k *
IIfi A|A1n||2 <lA—Pla < A z‘iLGInllz.
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5. Let Ae C"" and o > 0. Show: o is a singular value of A if and only if
the matrix
A —ol
—ol A*
is singular.

6. Rank Revealing QR Factorization.
With an appropriate permutation of the columns, a QR factorization can
almost reveal the smallest singular value of a full column rank matrix.
Let A € C"™*" with rank (A) = n and smallest singular value o,,. Let the cors

responding singular vectors be Av = o,u, where ||v]|2 = ||u|l2 = 1. Choese
a permutation P so that w = P*v and |w, | = ||w||s0, and let AP =@ g)

be a QR decomposition of AP. Show: |ry,| < /noy,.

4.3 Singular Vectors

The singular vectors of a matrix A give information about’the column spaces and
null spaces of A and A*.

The column space of a matrix A is the set of\all right-hand sides b for which
the system Ax = b has a solution, and the null space of A determines whether these
solutions are unique.

Definition 4.17 (Column Space and.Null Space). If A € C"*", then the set
R(A)={be?: b= Ax for some x € C""}
is the column space or rang€of A, and the set
Ker(A) ={x e C": Ax =0}
is the kernel or,ntll space of A.

Example,

* The column space of an m x n zero matrix is the zero vector, and the null
space is C", i.e., R(Omxn) = {Omx1} and Ker(0p, x,,) = C".

¢ The column space of an n X n nonsingular complex matrix is C", and the
null space consists of the single vector 0y, x.

* Ker(A) = {0} if and only if the columns of the matrix A are linearly inde-
pendent.

e If A cC™ " thenforall k > 1

R(A Ousi) = R(A), Ker(OA >=Ker<A).
kxn
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o If A € C"*" is nonsingular, then for any B € C"*? and C € CP*"
A
R(A B) ZR(A)s Ker (C) = {Onxl}- .

The column and null spaces of A* are also important, and we give them
names that relate to the matrix A.

Definition 4.18 (Row Space and Left Null Space). Let A € C"*". The set
RAM ={deC": d= A"y for some y € C"}
is the row space of A. The set
Ker(A ) ={yeC": A*y =0}

is the left null space of A.

Note that all spaces of a matrix are defined by column, vectors.
Example 4.19. If Ais Hermitian, then R(A*) = R(A) and Ker(A*) =Ker(A). 1

The singular vectors reproduce the four spaces associated with a matrix. Let
A € C"™*" with rank(A) = r and SVD

_ Y 0.
A=U ( 0 O) Ve,
where X, is nonsingular, and
ro o n—r
r m-—r r n—r

’ (20, 8), U= (U Unsy), V= (Vi Vay)

m—r

Fact 4.20 (Spaces of‘a’Matrix and Singular Vectors). Let A € C™*".

1. The leading 7 left singular vectors represent the column space of A:
If A £AQ5then R(U,) = R(A); otherwise R(A) = {0;,x1}-
2. Thetrailing n — r right singular vectors represent the null space of A:
Ifrank(A) =r < n, then R(V,,—,) = Ker(A); otherwise Ker(A) = {0,,x1}.
3. The leading r right singular vectors represent the row space of A:
If A #£0, then R(A*) = R(V,); otherwise R(A*) = {0, x1}.
4. The trailing m — r left singular vectors represent the left null space of A:
If r < m, then R(U,,_,) = Ker(A*); otherwise Ker(A*) = {0,,%x1}.

Proof. Although the statements may be intuitively obvious, they are proved rigor-
ously in Section 6.1.

The singular vectors help us to relate the spaces of A*A and AA* to those
of the matrix A. Since A*A and AA* are Hermitian, we need to specify only two

spaces; see Example 4.19.
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Fact 4.21 (Spaces of A*A and AA*). Let A € C"*",

1. Ker(A*A) = Ker(A) and R(A*A) = R(A¥).
2. R(AA*) = R(A) and Ker(AA*) = Ker(A*).

Proof. Fact 4.14 implies that A*A and AA* have the same rank as A. Since A*A
has the same right singular vectors as A, Fact 4.20 implies Ker(A*A) = Ker(A)
and R(A*A) = R(A*). Since AA* has the same left singular vectors as A, Fact
4.20 implies R(AA*) = R(A) and Ker(AA*) = Ker(A™). a

In the special case when the rank of a matrix is equal to the number of rows,
then the number of elements in the column space is as large as possible. When the
rank of the matrix is equal to the number of columns, then the number of el€éments
in the null space is as small as possible.

Fact 4.22 (Spaces of Full Rank Matrices). Let A € C"*". Thent

1. rank(A) = m if and only if R(A) =C™;
2. rank(A) = n if and only if Ker(A) = {0}.

S 0

Proof. LetA=U<0 0

> V* be an SVD of A, where X, is nonsingular.
1. From Fact 4.20 follows R(A) = R(U»)* Hence r =m ifand only if U, = U,
because U is nonsingular so that R(U) = C™.

2. Fact 4.20 also implies r = n ifgand only if V,,_, is empty, which means that
Ker(A) = {0}. g

If the matrix in a linear system has full rank, then existence or uniqueness of
a solution is guaranteed.

Fact 4.23 (Solutions ‘ef Full Rank Linear Systems). Let A € C™*",

1. If rank(A)= m, then Ax = b has a solution x = A*(AA*)~!b for every
b e G

2. Ifrank(A) = n and if b € R(A), then Ax = b has the unique solution
X = (A*A) "L A*D.

Proof.

1. Fact 4.22 implies that Ax = b has a solution for every b € C", and
Fact 4.14 implies that AA* is nonsingular. Clearly, x = A*(AA*)~!b satis-
fies Ax =b.

2. Since b € R(A), Ax = b has a solution. Multiplying on the left by A*
gives A*Ax = A*b. According to Fact 4.14, A*A is nonsingular, so that
x = (A*A)"1A*b.

Suppose Ax = b and Ay = b; then A(x —y) = 0. Fact 4.22 implies that

Ker(A) = {0}, so x = y, which proves uniqueness. a
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Exercises

(i) Fredholm’s Alternatives.

(a) The first alternative implies that R (A) and Ker(A*) have only the zero
vector in common. Assume b # 0 and show:
If Ax = b has a solution, then b*A # 0.
In other words, if b € R(A), then b & Ker(A™).

(b) The second alternative implies that Ker(A) and R(A*) have only the
zero vector in common. Assume x 7% 0 and show:
If Ax =0, then there is no y such that x = A*y.
In other words, if x € Ker(A), then x € R(A*),

(i1) Normal Matrices.
If A € C" is Hermitian, then R(A*) = R(A) and Ker(A*) = Ker(A). These
equalities remain true for a larger class of matrices, the¢so<called normal
matrices. Amatrix A € C" is normal if A*A = AA*.
Show: If A € C"*" is normal, then R(A*) = R(A) andKer(A*) = Ker(A).
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5. Least Squares Problems

Here we solve linear systems Ax = b that do not have a sélution. If b is not in
the column space of A, there is no x such that Ax = bN\TFhe best we can do is to
find a vector y that brings left- and right-hand sides ofithe linear system as close
as possible; in other words y is chosen to make the.distance between Ay and b as
small as possible. That is, we want to minimizéthe distance || Ax — b|| over all x,
and distance will again be measured in the twenorm.

Definition 5.1 (Least Squares Problem). Let A € C"*" and b € C™. The least
squares problem consists of finding d yector y € C" so that

mit\dx —bll> = [ Ay —bll2.
The vector Ay — b is called the least squares residual.

The name comés about as follows:

min | Ax — b||3 = min Y |(Ax — b);|*.
X X —_———

~— 1 squares
least

5.1 Solutions of Least Squares Problems

We express the solutions of least squares problems in terms of the SVD.
Let A € C™*" have rank(A) = r and an SVD

5 0 r m-—r r n-—r
A:U(O’ 0>v*, U= (U Unr), V= (Ve Vazr),

where U € C"™*™ and V € C"*" are unitary, and X, is a diagonal matrix with

diagonal elements o1 > --- > o, > 0, i.e., X, is nonsingular.
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Fact 5.2 (All Least Squares Solutions). Let A € C"*" and b € C". The solu-
tions of min, ||Ax — b||, are of the form y =V, E,‘l Urb+V,_,zforanyz e C"7".

Proof. Let y be a solution of the least squares problem, partition

*yy — Vr*y _(w
V y - (Vn*ry - z ’

and substitute the SVD of A into the residual,

_ 2 0) .« _ Sw—=Urb
Ay—b-U(O O)Vy—b-U( “ur_ b )

Two norms are invariant under multiplication by unitary matrices, so that
2 2 2
Ay =bll; = 12, w — USbll5 + Uy, _, bl

Since the second summand is constant and independent of w andZ, the residual
is minimized if the first summand is zero, that is, if w = E;] UXb. Therefore, the
solution of the least squares problem equals

y=V (’;) = Vw4V, 2=V, S UMb+ V, 2.

Fact 4.20 implies that V,,_,z € Ker(A) for anyyyector z. Hence V,,_,z does not
have any effect on the least squares residual; e that z can assume any value. [

Fact 5.1 shows that if A has rank}r'< n, then the least squares problem has
infinitely many solutions. The firstterm in a least squares solution contains the
matrix

-1
Vi UF =V <E6 8) ur

which is obtained by inverting only the nonsingular parts of an SVD. This matrix
is almost an inverse, but not quite.

Definition 5.3 (Moore-Penrose Inverse). If A € C"*" and rank(A) =r > 1, let

A=U (Eor 8) V* be an SVD where X, is nonsingular. The n x m matrix
-1
- 70 0), 4
A=V < 0 O) U

is called Moore—Penrose inverse of A. If A = 0,,,xn,, then AT =0y5m.

The Moore—Penrose inverse of a full rank matrix can be expressed in terms
of the matrix itself.

Remark 5.4 (Moore-Penrose Inverses of Full Rank Matrices). Ler A € C"*",

e If A is nonsingular, then AT = A~ 1.
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o I[f A c C"™ " andrank(A) = n, then AT = (A*A)~1 A*.
This means AT A = I,,, so that AT is a left inverse of A.

o I[f A c C"™ " and rank(A) = m, then AT = A*(AA*)~ L.
This means AAT = I,,, so that AT is a right inverse of A.

Now we can express the least squares solutions in terms of the Moore—
Penrose inverse, without reference to the SVD.

Corollary 5.5 (All Least Squares Solutions). Let A € C"*" and b € C"*". The
solutions of min, || Ax — b||> are of the form y = ATh+gq, where q € Ker(A).

Proof. This follows from setting g = V,,_,z € Ker(A) in Fact 4.20. a

Although a least squares problem can have infinitely many,solutions, all
solutions have the part A¥b in common, and they differ only in the pdrt that belongs
to Ker(A). As a result, all least squares solutions have not just fesiduals of the
same norm, but they have the same residual.

Fact 5.6 (Uniqueness of the Least Squares Residual)."et A € C™*" and
b € C™. All solutions y of min, |Ax — b||2 have.thé\same residual b — Ay =
(I —AA")D.

Proof. Let y; and y; be solutions to migy{[Ax —b|,. Corollary 5.5 implies
yi =A"b+qi and y, = ATb + ¢, whete g1, q> € Ker(A). Hence Ay = AATh =
Ayy, and both solutions have the &ame residual, b — Ay = b — Ay, =
(I —AA")D.

Besides being unique, theleast squares residual has another important prop-

erty: It is orthogonal to the eolumn space of the matrix.

Fact 5.7 (Residualis@rthogonal to Column Space). Let A € C"*" b e C",
and y a solution of min, || Ax — b||, with residual r = b — Ay. Then A*r = 0.

Proof. Fact.5)6 implies that the unique residual is r = (I — AAT)b. Let A have

an SVD
_ 2 0) . .
A_U<0 O)V’

where U and V are unitary, and ¥, is a diagonal matrix with positive diagonal
elements. From Definition 5.3 of the Moore—Penrose inverse we obtain

- 1 0 ¥ 0 0
AAT=U (] U*, T—AA"=U("X" U*.
(O O(m—r)x(m—r)) ( 0 Im—r)

Hence A*(I — AA") = 0,,» and A*r = 0. O

The part of the least squares problem solution y = A'b 4 g that is responsible

for lack of uniqueness is the term g € Ker(A). We can force the least squares
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problem to have a unique solution if we add the constraint ¢ = 0. It turns out that
the resulting solution A'h has minimal norm among all least squares solutions.

Fact 5.8 (Minimal Norm Least Squares Solution). Let A € C"*" and b € C™.
Among all solutions of min, || Ax — b||» the one with minimal two normis y = A¥h.

Proof. From the proof of Fact 5.2 follows that any least squares solution has the

form
o (=urp
y= V( ; >

Iyl3 = 1= UFbI5+ 12115 = 157 UFbI3 = 1V 2 U b5 =ATD13.

Hence

Thus, any least squares solution y satisfies || y||> > ||ATb||>. Thisufreans y = ATb
is the least squares solution with minimal two norm. a

The most pleasant least squares problems are those, where the matrix A has
full column rank because then Ker(A) = {0} and the leastsquares solution is unique.

Fact 5.9 (Full Column Rank Least Squares)»Let A € C"*" and b € C". If
rank (A) = n, then min, || Ax — b||5 has the ufiique solution y = (A*A) " A*b.

Proof. From Fact 4.22 we know that rank(A) = n implies Ker(A) = {0}. Hence
g = 0in Corollary 5.5. The expression for A" follows from Remark 5.4. a

In particular, when A 1s,nonsingular, then the Moore—Penrose inverse re-
duces to the ordinary inyerSe. This means, if we solve a least squares problem
min, | Ax — b||» with a nonsingular matrix A, we obtain the solution y = A~!b of
the linear system Ag S b.

Exercises

(i) Whatis the Moore—Penrose inverse of a nonzero column vector? of anonzero
row vector?

(ii) Letu € C"™*" and v € C" with v # 0. Show that [luv'||y = [|ull2/[v]|2.
(iii) Let A € C™*". Show that the following matrices are idempotent:

AAT, ATA, I, — AAT, I,— ATA.

(iv) Let A € C™*". Show: If A # 0, then ||[AAT|» = |ATA|, = 1.
(v) Let A € C"™*", Show:

(In —AADA =0pxn, Al — ATA) = 0.

(vi) Let A € C"*"_ Show: R(AT) = R(A*) and Ker(AT) = Ker(A*).
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(vii) Let A € C"™*" have rank(A) = r. Show: |AT|> = 1/o,.
(viii) Let A € C"*" have rank(A) = n. Show: [[(A*A)~!|> = | A5
(ix) Let A= BC where B € C"*" hasrank(B) =n and C € C"*" is nonsingular.
Show: AT = C~1BT.
(x) Let A € C™*" with rank(A) = n and thin QR factorization A = QR, where
Q*Q = I, and R is upper triangular. Show: A" = R~1Q*.
(xi) Show: If A has orthonormal columns, then AT = A*.

(xii) Partial Isometry.
A matrix A € C"™*" is called a partial isometry if AT = A*. Show: A is a
partial isometry if and only if all its singular values are O or 1.

(xiii) What is the minimal norm solution to miny ||Ax — b||» when A = 0?

(xiv) If y is the minimal norm solution to miny, || Ax — b|| and A*b = 0, théw’'what
can you say about y?

(xv) Given an approximate solution z to a linear system Ax = b, ‘this problem
shows how to construct a linear system (A + E)x = b forawhich z is the exact
solution.

Let Ae C™*" and b € C". Let z € C" with z # O-aud'residual r = b — Az.
Show: If E = rz', then (A+ E)z = b.

1. What is the minimal norm solution to min, [Mx b||» when A = uv*, where
u and v are column vectors?

s

2. Let A € C"*". Show: The singular values of ({Z) areequalto1/./1 —l—af,
I<j=<n

3. Let A € C"™*" have rank(A)2n. Show: ||[I — AAT|, = min{1,m —n}.

4. Let A € C"*". Show: Ali§s'the Moore—Penrose inverse of A if and only if
AT satisfies

MP1: AATA = ANATAAT = AT,
MP2: AAT and\AT A are Hermitian.

5. PartitionedMoore—Penrose Inverse.
Let A € €™*? haverank(A) = n and be partitioned as A = (A1 Az). Show:

(a)

§

B .

At = ( ‘T) . where Bi=(I—AADA, By=(I—-A1AD)A,.

B,

(b) IB1ll2 =mingz [|[A1 — A2Z||2 and || B2|]2 = minz [|A2 — A1 Z]|2.

(c) Let1 <k <n, and let V1 be the leading k X k principal submatrix of V.
Show: If Vj; is nonsingular, then ||A;||2 < ||V1_11 l2/0%.

5.2 Conditioning of Least Squares Problems

Least squares problems are much more sensitive to perturbations than linear sys-

tems. A least squares problem whose matrix is deficient in column rank is so
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sensitive that we cannot even define a condition number. The example below
illustrates this.

Example 5.10 (Rank Deficient Least Squares Problems are Ill-Posed). Con-
sider the least squares problem min, || Ax — bl with

(1 0\ _ (1 1
A_<0 0>_A, b_(1>, y_Ab_(O).

The matrix A is rank deficient and y is the minimal norm solution. Let us perturb
the matrix so that

1

A+E:<O

S), where 0<exl.

The matrix A + E has full column rank and min, || (A + E)x — b||>-has the unique
solution z where

i=(A+E)'b=(A+E) b= (l}e)

Comparing the two minimal norm solutions shoWs, that the second element of z
grows as the (2,2) element of A + E decreasesyi.e.; zo = 1/e — coas € — 0. But
at € = 0 we have zo = 0. Therefore, the least squares solution does not depend
continuously on the (2,2) element of the matrix. This is an ill-posed problem.

In an ill-posed problem the solution is not a continuous function of the inputs.
The ill-posedness of a rank deficientdeast squares problem comes about because a
small perturbation can increase the rank of the matrix. |

To avoid ill-posedness'we restrict ourselves to least squares problems where
the exact and perturbed matrices have full column rank. Below we determine the
sensitivity of the leastsquares solution to changes in the right-hand side.

Fact 5.11 (Right-Hand Side Perturbation). Let A € C™*" have rank(A) = n,
let y be the“solution to miny ||Ax —b|2, and let z be the solution to
miny || Ax<~b+ f)l|l2. If y #0, then

lz—yll2 -

SR Vi
E

A2y 12

and if z # 0, then

llz—yll2 -

< ey
Izl

IAl211zl2°

where k2(A) = || Al]2|AT|».

Proof. Fact 5.9 implies that y = A™h and z = AT (b + f) are the unique solutions

to the respective least squares problems. From y = ATh = (A*A)~'A*b, see
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Remark 5.4, and the assumption A*b # 0 follows y # 0. Applying the bound for
matrix multiplication in Fact 2.22 yields

lz=yll2 _ IAT20B02 11 £1l2 — 1A, I fll2
Ivle = 1ATBl2 1Bl Iyll2
Now multiply and divide by || A||; on the right. a

In Fact 5.11 we have extended the two-norm condition number with respect
to inversion from nonsingular matrices to matrices with full column rank.

Definition 5.12. Let A € C"™*" with rank(A) = n. Then k3(A) = ||A|l2|| AT |js ts
the two-norm condition number of A with regard to left inversion.

Fact 5.11 implies that x2(A) is the normwise relative condition ' number of
the least squares solution to changes in the right-hand side. If thexcolumns of A
are close to being linearly dependent, then A is close to beingsank deficient and
the least squares solution is sensitive to changes in the right-hand side.

With regard to changes in the matrix, though, the situation is much bleaker.
It turns out that least squares problems are much more sensitive to changes in the
matrix than linear systems.

Example 5.13 (Large Residual Norm). Let

1 0 Bi
A=10 «al, b=| 0], where O<a <1, 0<py,Bs.
0 0 B3

The element 3 represents the partof b outside R (A). The matrix A has full column
rank, and the least squares problem min, ||Ax — b||> has the unique solution y

where
Al =(A%AY A _(0 1/ 0), y=A b_<0 .

The residual norm is miny || Ax — bl = || Ay — b|l» = B3.
Let u§ perturb the matrix and change its column space so that

1 0
A+E=|0 «a], where 0 <e 1.
0 €

Note that R(A+ E) # R(A). The matrix A + E has full column rank and Moore—
Penrose inverse

+p =[a+prasn] wrer=(p o £ ).

_€
a?4e?  a4e?
The perturbed problem min, || (A + E)x — b||> has the unique solution z, where

Bi

1=(A+E) b= .

- =AFDD={ g 024 2)
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Since || y||> = B1, the normwise relative error is

lz—yll2 _ B3e - B3 .
Iyl Bi(@?+€?) ~ a? B

If B3 > B, then B3/(?B1) > 1/a*. This means if more of b is outside R (A) than
inside R(A), then the perturbation is amplified by at least 1/a>.

In other words, since || E|| =€, [|AT||l2 = 1/e, and B3/B1 = Ay —bl12/ly 2.
we can write

2 1Ay —bll2

Iz —yll2 R I7ll IEll2
=22 < 1AT|3 IEll2 = [12(A)]

lyll2 l[yll2 IAl20lyl2 IAll2°

where r = Ay — b is the residual. This means, if the right-hand side is.fat away
from the column space, then the condition number with respect to changes in the
matrix is [/<2(A)]2, rather than just k2 (A).

We can give a geometric interpretation for the relative residual norm. If we
bound

712 < 712 ’
[Al2llyll2 — 1Ayl

then we can exploit the relation between | 7|2 anhd |Ay||> from Exercise (iii) below.
There, it is shown that [|b]|5 = || |13 + [| Ay || 3 hence

I <||r||2)2+ <||Ay||2)2
1642 5112
It follows that ||r||2/]|2]l2 andMY |2 /|16 |2 behave like sine and cosine. Thus there
is 6 so that

A
1 =sin6? {ices 7, where sinf = Irll2 cosf = 1Ay

5112 &2

and 6 can be interpreted as the angle between b and R (A). This allows us to bound
the relative'residual norm by

Irll2 Irlla sin®
< — —

=< = =tan6.
IAll2ll¥ll2 ~ I[Ayll2  cos®

This means if the angle between right-hand side and column space is large enough,
then the least squares solution is sensitive to perturbations in the matrix, and this
sensitivity is represented by [«2(A)]%. |

The matrix in Example 5.13 is representative of the situation in general.
Least squares solutions are more sensitive to changes in the matrix when the right-
hand side is too far from the column space. Below we present a bound for the
relative error with regard to the perturbed solution z, because it is much easier to

derive than a bound for the relative error with regard to the exact solution y.
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Fact 5.14 (Matrix and Right-Hand Side Perturbation). Let A,A + E € C"™*"
with rank(A) = rank(A 4+ E) = n, let y be the solution to min, ||[Ax — b||, and let
7 # 0 be the solution to miny ||(A+ E)x — (b+ f)||2. Then

12—yl o sl
le= W2 o cay (ente) + T —22__ ¢,
EE (ea+er) 1Al 02112
where
IEl 1£12
—(A+E)z— b+ /), 1= -z
S L VP Al VYR ETS

Proof. From Fact 5.9 follows that y = ATh and z = (A+ E)T(b + f) aréythe
unique solutions to the respective least squares problems. Applying Facty3.7 to
the perturbed least squares problem gives (A + E)*s = 0, hence Afs's —E*s.
Multiplying by (A*A)~! and using AT = (A*A)~! A* from Remark‘54 gives

—(A*A)E*s=ATs=AT(A+E)z—(b+ ) =z=y FAT(Ez— f).

Solving for z — y yields z —y = —AT(Ez — f) — (A*A)3E*s. Now take norms,
and use the fact that ||(A*A) !, = ||AT||%, see Exereise (viii) in Section 5.1, to
obtain

lz—yll2 < 1AT2 A El2lizllz+ LA + AT E 1215 ]2

At last divide both sides of the inequality by ||z||2, and multiply and divide the
right side by [ All3. |

Remark 5.15.

o J[f E =0, then the bound in Fact 5.14 is identical to that in Fact 5.11.
Therefore, the legstysquares solution is more sensitive to changes in the
matrix than to changes in the right-hand side.

® The first term k2(A)(ea +€) in the above bound is the same as the per-
turbation’bound for linear systems in Fact 3.8. It is because of the second
term iNFact 5.14 that least squares problems are more sensitive than linear
systewis to perturbations in the matrix.

o We'can interpret ||s|2/(||All2llz]l2) as an approximation to the distance be-
tween perturbed right-hand side and perturbed matrix. From Exercise (ii)
and Example 5.13 follows

Islla _ lIsl2
[Al2llzll2 = 1A+ Ell2llzll2

(1+€a) <tanfd (14€,),

where 0 is the angle between b+ f and R(A + E).

® [f most of the right-hand side lies in the column space, then the condition
number of the least squares problem is k3 (A).

In particular, if HAH& R €4, then the second term in the bound in Fact 5.14

li211zll2
is about [KQ(A)]ZE%, and negligible for small enough € 4.
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® [fthe right-hand side is far away from the column space, then the condition
number of the least squares problem is [k> (A)]2.

® Therefore, the solution of the least squares is ill-conditioned in the normwise
relative sense, if A is close to being rank deficient, i.e., k2(A) > 1, or if the
relative residual normis large, i.e., |(A+ E)z— b+ )2/ All211zll2) > 0.

o [f the perturbation does not change the column space so that R(A+ E) =
R(A), then the least squares problem is no more sensitive than a linear
system; see Exercise 1 below.

Exercises

(i) Let A € C"™*" have orthonormal columns. Show that «k»(A) = 1.
(i) Under the assumptions of Fact 5.14 show that
lIsll2 sl _ lIsll2

—————(l—€4) = <
A+ El2lzll2 IAll20zll2 = 1A+ E21z]2

(14+€4).
(iii) Let A € C™*", and let y be a solution to the\least squares problem
miny | Ay — b||2. Show:
IB15 = Ay = b5 +IFAY 5.

(iv) Let A € C™*" have rank(A) = n. Show that the solution y of the least
squares problem min, || Ax — b||2“and‘the residual r = b — Ay can be viewed
as solutions to the linear system

(e 9)()-0)

I A" (I-AAT (A
A* 0 - AT —(A*A) )
(v) In addition to the assumptions of Exercise (ii), let A+ E € C™*" have

rank(A + E) = n, and let z be the solution of the least squares problem
miny ||[(A+ E)x — (b+ f)|» with residual s =b+ f — (A + E)z. Show:

s—r\ _ [(I—AAT (AT)* f—Ez
z=y) AT~ )\ —E%s )
(vi) Let A,A+ E € C™" and rank(A) = n. Show: If ||[E|l» |AT|l» < 1, then
rank(A+ E) = n.

and that

1. Matrices with the Same Column Space.
When the perturbed matrix has the same column space as the original matrix,
then the least squares solution is less sensitive, and the error bound is the

same as the one for linear systems in Fact 3.9.
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Let A,A+ E € C™*" have rank(A) = rank(A + E) = n. Let y be the
solution to miny ||Ax —bl|l2, and let z # O be the solution to
miny [|(A+ E)x — (b+ f)ll2. Show: If R(A) = R(A + E), then

llz—yl2 _ el S
lIzll2 1Al T ARzl

2. Conditioning of the Least Squares Residual.
This bound shows that the least squares residual is insensitive to changes in
the right-hand side.
Let A € C"™*" have rank(A) = n. Let y be the solution to miny ||Ax — b||;
with residual » = Ay — b, and let z be the solution to miny || Az — (b + f)lg
with residual s = Az — (b+ f). Show:

s =rll2 < 11 fll2-

<k2(A) (ea+ey), where €4

3. Conditioning of the Least Squares Residual Norm.
The following bound gives an indication of how sensitive‘the norm of the
least squares residual may be to changes in the matrix*and right-hand side.
Let A,A+ E € C™*" 5o that rank(A) = rank(A-<E) = n. Let y be the
solution to miny ||Ax — b||» withresidual » = Ay ~b;and let z be the solution
tominy ||(A+ E)x — (b+ f)]l» withresidual s« (A+ E)z— (b+ f). Show:

If b # 0, then
sll2 ]2 IEll2 /1l
< +x2(A)€ap +€p, Wwhere €4 = , €p= .
bll2 ~ 11D]12 1All2 512

4. This bound suggests that the error in the least squares solution depends on
the error in the least squares’residual.
Under the conditions of Eaet 5.14 show that

Iz il lr —sll2
2112 Al21lzll2

5. Given an approximate least squares solution z, this problem shows how to
construct adeast squares problem for which z is the exact solution.
Let z.#0 be an approximate solution of the least squares problem
min, ([Ax — bl|,. Let r. = b — Az be the computable residual, 4 an arbi-
trary-vector, and F = —hhtA+ I — hh")r.z". Show that z is a least squares
solution of miny || (A + F)x — b||>.

< K2(A) [ +ea +ef]-

5.3 Computation of Full Rank Least Squares
Problems
We present two algorithms for computing the solution to a least squares problem

with full column rank.
Let A € C"™*" have rank(A) = n and an SVD

5 n m-—n
A=U§)O V5, U= (Uy Un-n),
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where U € C™*™ and V € C"*" are unitary, and X € C"*" is a diagonal matrix
with diagonal elements oy > --- > ¢, > 0.

Fact 5.16 (Least Squares via SVD). Let A € C"*" with rank(A) =n, let b €
C™, and let y be the solution to miny, || Ax — b||;. Then

y=VETUsb,  min|Ax bl = Uy bl

Proof. The expression for y follows from Fact 5.9. With regard to the residual,

Ay—b=U (ﬁ) vveTlutb—b

o[ (%)~ ()]
-Y (—Ug_nb)'

Therefore, min, || Ax — by = || Ay — b|l» = |U_, b|l2. a

ALGORITHM 5.1. Least Squares Solution via SVDx

Input: Matrix A € C"™*" with rank(A)\= n, vector b € C"

Qutput: Solution y of min, ||Ax — b||gyresidual norm p = || Ay —b||»

1. Compute an SVD A =U x W where U € C"™*™ and V € C"*" are

unitary, and ¥ is diagonal.
2. Partition U = (U, Up—n),"Where U, has n columns.
3. Multiply y = VE UM
4. Set p=||U;_,bllx

The least squaces solution can also be computed from a QR factorization,
which may be cheaper than an SVD. Let A € C"*" have rank(A) = n and a QR

factorization
n m-—n

R
AZQ(O)’ Q= (Qn Qm—n)’
where Q € C"™*"™ is unitary and R € C"*" is upper triangular with positive diagonal
elements.

Fact 5.17 (Least Squares Solution via QR). Let A € C"™*" with rank(A) = n,
let b € C™, and let y be the solution to min, ||Ax — b||2. Then

y=R"'Q;b,  min|Ax—bl2=Q;,_,bll2.
Proof. Fact 5.9 and Remark 5.4 imply for the solution
*
y=ATb=A*A)T'A*b=(R™" 0)0*b=(R"" 0) ( %’bb> =R Qb

m—n
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With regard to the residual,

eseaff) =l (%) (£4)]-o( )

Therefore, min, |Ax — bl = |[Ay — b2 = | Q},_,bll2. a

ALGORITHM 5.2. Least Squares via QR.

Input: Matrix A € C™*" with rank(A) = n, vector b € C"
Output: Solution y of miny ||Ax — b||2, residual norm p = || Ay —b||2

1. Factor A= Q <§) where Q € C"™> is unitary and R € C"*™is\{riangular.

2. Partition 0 = (Qn  Qm-n), where Q, has n columns.
. Solve the triangular system Ry = Q}b.
4. Set p=||0%_,bll2.

W

Exercises

1. Normal Equations.
Let A€ C™*" and b € C™. Show: ysis*a solution of miny || Ax — b||, if and
only if y is a solution of A*Ax = A*b.

2. Numerical Instability of NormabEquations.
Show that the normal equations can be a numerically unstable method for
solving the least squares problem.
Let A € C"*" with rank(A) = n, and let A*Ay = A*b with A*b #0. Let 7
be a perturbed solutien with A*Az = A*b+ f. Show:

I/ 1l2
[A*All2[lyll2

lz— vyl

=2 < [k (A)?
Iyl

That i3, the numerical stability of the normal equations is always determined
by.[xn (A)]2, even if the least squares residual is small.
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6. Subspaces

We present properties of column, row, and null spaces; defige operations on them;
show how they are related to each other; and illustrate hdwnthey can be represented
computationally.

Remark 6.1. Column and null spaces of a matrix’A are more than just ordinary
sets.

If x,y € Ker(A), then Ax =0 and(Ay = 0. Hence A(x +y) =0, and
A(ax) =0 for a € C. Therefore, x + y&’Ker(A) and ax € Ker(A).

Also, if b,c € R(A), then b = Ax and c = Ay for some x and y. Hence
b4+c=Ax+y) and ab = A(@@x) for a« € C. Therefore b+ c € R(A) and
ab e R(A).

The above remark.illustrates that we cannot “fall out of”’ the sets Ker(A) and
R(A) by adding vectors from the set or by multiplying a vector from the set by a
scalar. Sets with this’property are called subspaces.

Definition 6:2°(Subspace). A ser S C C" is a subspace of C" if S is closed under
addition and scalar multiplication. That is, ifv,w € S, thenv+w € Sandav € S
Sfora €C.

A set S C R" is a subspace of R” ifv,w € S impliesv+w € S andav € S
fora e R.

A subspace is never empty. At the very least it contains the zero vector.

Example.

e Extreme cases: {0,x1} and C" are subspaces of C"; and {0, x1} and R”" are
subspaces of R".
e If A e C™ ", then R(A) is a subspace of C", and Ker(A) is a subspace
of C".
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e If A e R™*", then R(A) is a subspace of R”, and Ker(A) is a subspace
of R". |

For simplicity, we will state subsequent results and definitions only for com-
plex subspaces, but they hold also for real subspaces.

Exercises

(i) LetS c C? be the set of all vectors with first and third components equal to
zero. Show that S is a subspace of C3.
(ii) Let S C €3 be the set of all vectors with first component equal to 17. Show
that S is not a subspace of C3.
(iii) Let u € C". Show that the set {x € C" : x*u = 0} is a subspace of C¥:
(iv) Letu € C" and u # 0. Show that the set {x € C" : x*u = 1} is not'a subspace
of C".
(v) Let A € C"™*", For which b € C™ is the set of all soltitions to Ax =b a
subspace of C"?
(vi) Let A € C"™*" and B € C"™*P, Show that the set {(x) Ax = By} is a
subspace of C"*7. Y
(vii) Let A € C"™*" and B € C"*P. Show that the_set

{b: b= Ax+ By for semé& x € C",y € C"}

is a subspace of C™.

6.1 Spaces of Matrix‘Products

We give a rigorous proof, of Fact 4.20, which shows that the four subspaces of a
matrix are generated by.singular vectors. In order to do so, we first relate column
and null spaces of aproduct to those of the factors.

Fact 6.3 (Column Space and Null Space of a Product). Let A € C"*" and
B € C"™P, Fhien

1. REAB) C R(A). If B has linearly independent rows, then R(AB) = R(A).
2. Ker(B) C Ker(AB). If A has linearly independent columns, then
Ker(B) = Ker(AB).

Proof.

1. If b € R(AB), then b = ABx for some vector x. Setting y = Bx implies
b = Ay, which means that b is a linear combination of columns of A and
b e R(A). Thus R(AB) C R(A).
If B has linearly independent rows, then B has full row rank, and Fact 4.22
implies R(B) = C". Let b € R(A) so that b = Ax for some x € C". Since
B has full row rank, there exists a y € C? so that x = By. Hence b = ABYy

and b € R(AB). Thus R(A) C R(AB).
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2. If x € Ker(B), then Bx = 0. Hence ABx = 0 so that x € Ker(AB). Thus
Ker(B) C Ker(AB).
If A has linearly independent columns, then A has full column rank, and Fact
4.22 implies that Ker(A) = {0, «1}. Hence ABx = 0 implies that Bx = 0.
Thus Ker(AB) C Ker(B). a

Fact 6.3 implies in particular that rank(A B) = rank(A) if B is nonsingular,
and that Ker(AB) = Ker(B) if A is nonsingular.

If we partition a nonsingular matrix and its inverse appropriately, then we
can relate null spaces in the inverse to column spaces in the matrix proper.

Fact 6.4 (Partitioned Inverse). If A € C"*" is nonsingular and

k n—k ok B
A= (A M), A =n—k(B]§‘)’

then Ker(B}) = R(A2) and Ker(B}) = R(A}).

Proof. We will use the relations BfA; = I; and B A3z= 0, which follow from
A7TA=1,.

If b € R(Ay), then b = Arx for some xand B;‘b = B;‘Azx =0, so
b € Ker(BY). Thus R(A2) C Ker(By).

If b € Ker(B}), then Bfb = 0. Writg''= AA~'b = A x| + Azx,, where
x1 = Bfb and x = Bjb. But b € Kéx(B}) implies x; =0, so b = Ayx; and
b € R(A2). Thus Ker(B}) C R(A2).

The equality Ker(Bik) = R(A;) is shown in an analogous fashion. a

Example 6.5.
® Applying Fact 6¢to the 3 x 3 identity matrix gives, for instance,
1

00 01 0
Kep(1° 0 0)=r|[1 0], Ker =r|(0
0 1 0 0 1 0

e If A e C"" is unitary and A = (A1 Az), then
Ker(A}) = R(A2), Ker(A%) = R(A1). [ |

Now we are ready to relate subspaces of a matrix to column spaces of singular
vectors. Let A € C"™*" have rank(A) = r and an SVD

r m-—r r n—r

where U € C"™*™ and V € C"*" are unitary, and X, is a diagonal matrix with

positive diagonal elements o1 > --- > o, > 0.
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Fact 6.6 (Column Space). If A € C"*" and A # 0, then R(A) = R(U,).

Proof. In the reduced SVD A = U, X, V¥, the matrices V* and %, have linearly
independent rows. Fact 6.3 implies R(A) = R(U,). a

Fact 6.7 (Null Space). If A € C"*" andrank(A) =r < n,then R(V,—_,) = Ker(A).

Proof. In the reduced SVD A = U, %, V¥, the matrices U, and X, have linearly
independent columns. Fact 6.3 implies Ker(A) = Ker(V,*). From Example 6.5
follows Ker (V") = R(Va—r). N

The analogous statements for row space and left null space in Fact 4:20 can
be proved by applying Facts 6.6 and 6.7 to A*.

Exercises
(i) Let
_(An Ay
A —< 0 An)’
where A1 and Aj; are nonsingular. Show:

Al —1 A —1 -1 —1
R( 0 >=Ker(0 Azz)’ R<A22) =Ker(A], —A7'ARAL).

(i) Let A € C™*" be idempotent. Show: R(I — A) = Ker(A).

(iii) Let A,B € C"*", and B idempotent. Show: AB = A if and only if
Ker(B) C Ket ().

(iv) Let A € C2X" be idempotent. Show: R(A — AB) and R(AB — B) have
only the zero'vector in common.

1. QR Factorization.
Let A € C"™*" with m > n have a QR decomposition

R n m—n
A=Q<O>, Q: (Qn Qm—n)’
where Q € C™*™ is unitary and R € C"*" is upper triangular. Show:
R(A) CR(Qn),  Ker(A)=Ker(R),  R(Q@m-n) C Ker(A™).

If, in addition, rank (A) = n, show: R(A) =R(Q,) andKer(A*) =R(Qn—m).
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6.2 Dimension

All subspaces of C", except for {0}, have infinitely many elements. But some
subspaces have more infinitely many elements than others. To quantify the “size”
of a subspace we introduce the concept of dimension.

Definition 6.8 (Dimension). Let S be a subspace of C™, and let A € C"™*" be a
matrix so that S = R(A). The dimension of S is dim(S) = rank(A).

Example.
¢ dim(C") = dim(R") = n.
* dim({0,x1}) =0. L

We show that the dimension of a subspace is unique and therefore well
defined.

Fact 6.9 (Uniqueness of Dimension). Let S be a subspace™of C", and let
A e C"™" and B € C™*P be matrices so that S = R(A) = R(B). Then
rank (A) = rank(B).

Proof. 1f & = {0x1}, then A = 0%, and B =< 0, x, so that rank(A) =
rank(B) = 0.

If S # {0}, set « = rank(A) and B =-rank(B). Fact 6.6 implies that
R(A) =R(U4), where Uy is an m x o mdtrix of left singular vectors associated
with the « nonzero singular values of A% Similarly, R(B) = R(Up) where Up
is an m x B matrix of left singular vectors associated with the B nonzero singular
values of B.

Now suppose to the contrary that « > 8. Since S = R(U4) = R(Up), each
of the o columns of Uy can'be expressed as a linear combination of Up. This
means Uy = UpY, where'¥is a B x o matrix. Using the fact that U4 and Up have
orthonormal columpns gives

I, =U Uy =Y "UzUpY =Y*Y.
Fact 4.14 and Example 4.8 imply
a =rank(l,) = rank(Y*Y) = rank(Y) < min{a, 8} = B.
Thus o < B, which contradicts the assumption @ > 8. Therefore, we must have

a = B, so that the dimension of S is unique. a0

The so-called dimension formula below is sometimes called the first part of
the “fundamental theorem of linear algebra.” The formula relates the dimensions
of column and null spaces to the number of rows and columns.

Fact 6.10 (Dimension Formula). If A € C"*" then
rank(A) = dim(R(A)) = dim(R(A™))
and

n =rank(A) +dim(Ker(A)), m =rank(A) +dim(Ker(A*)).
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Proof. The first set of equalities follows from rank (A) = rank (A*); see Fact 4.14.
The remaining equalities follow from Fact 4.20, and from Fact 4.16 which implies
that a matrix with k orthonormal columns has rank equal to k. a

Fact 6.10 implies that the column space and the row space of a matrix have the
same dimension. Furthermore, for an m x n matrix, the null space has dimension
n —rank(A), and the left null space has dimension m —rank(A).

Example 6.11.

e If A € C"" is nonsingular, then rank(A) = n, and dim(Ker(A)) = 0.
® rank(0,,x,) = 0 and dim(Ker(0,,x,)) = n.
e IfueC” veC" u#0andv #0, then

rank(uv*) =1, dim(Ker(uv*))=n—1, dim(Ker(vu*)=m—-1. N

The following bound confirms that the dimension gives-information about
the “size” of a subspace: If a subspace V is contained in a sibspace W, then the
dimension of V cannot exceed the dimension of V' butit«Can be smaller.

Fact 6.12. If V and W are subspaces of C", and ¥ GWWythen dim(V) < dim(WV).

Proof. Let A and B be matrices so that V = R(A) and W = R(B). Since each
element of V is also an element of WV, then,in particular each column of A must
be in W. Thus there is a matrix X soythat A = BX. Fact 6.13 implies that
rank(A) < rank(B). But from Fact*6:9 we know that rank(A) = dim(}’) and
rank(B) = dim(W).

The rank of a product.cannot exceed the rank of any factor.
Fact 6.13 (Rank of a Product). If A € C"*" and B € C"*P, then
rank(A B) < min{rank(A),rank(B)}.

Proof. Thegdnequality rank (A B) < rank(A) follows from R(AB) C R(A) in Fact
6.3, Fact'6)12, and rank(A) = dim(R(A)). To derive rank(AB) < rank(B), we
use the fact that a matrix and its transpose have the same rank, see Fact 4.14, so
that rank (A B) = rank(B*A*). Now apply the first inequality. a

Exercises

(i) Let A be a 17 x 4 matrix with linearly independent columns. Determine the
dimensions of the four spaces of A.
(i) What can you say about the dimension of the left null space of a 25 x 7
matrix?
(iii) Let A € C"™*", Show: If P € C"™*™ and Q € C"*" are nonsingular, then

rank(P A Q) =rank(A).
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(iv) Let A € C"*". Show: rank(A% — I,) < min {rank(A + I,,), rank(A — I,,)}.

(v) Let A and B be matrices with n columns, and let C and D be matrices with
n rows. Show:

AC AD . A
rank(BC BD)fmm{rank<B>,(C D)}

(vi) Let A € C"™*" and B € C"*P, Show: rank(AA* + BB*) <rank (A B).

(vii) Let A, B € C"™*", Show: rank(A + B) <rank (A B).
Hint: Write A + B as product.

(viii) Let A € C"™*" and B € C"*P, Show: If AB = 0, then rank(A)“
rank(B) < n.

6.3 Intersection and Sum of Subspaces

We define operations on subspaces, so that we can relate column, row, and null
spaces to those of submatrices.

Definition 6.14 (Intersection and Sum of Subspaces): Let V and W be subspaces
of C". The intersection of two subspaces is defined as.

VAW ={x:x eV andx € W},
and the sum is defined as

V4+W={z: z=v+w, veVand w e W}

Example.
e Extreme cases: Ify) is a subspace of C”, then
Vﬂ{onxl}:{onxl}, VﬂC”zV

and
V+{0ux1} =V, V+C"'=C".

1 0 0 0 0
R0 o]lnr|[1 o]=%r|0O
0 1 0 1 1
[ ]
1 0 0 0
R0 1]+®r[1 o) =C3
0 0 0 1

e If A € C"*" is nonsingular, and A = (A1 Az), then

R(ADNR(A2) ={0nx1},  R(AD+R(A) =C". L
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Intersections and sums of subspaces produce again subspaces.

Fact 6.15 (Intersection and Sum of Subspaces). If V and W are subspaces of
C", then VNW and V 4+ W are also subspaces of C".

Proof. Let x,y e VNW. Then x,y € V and x,y € W. Since V and W are
subspaces, this implies x +y €V and x+y € W. Hence x +y €e VNW.

Let x,y € V+W. Then x = vi +w; and y = vy + wy for some vy,vp € V
and wi,wy € W. Since V and W are subspaces, vi + vy € V and w1 +wy € W.
Hence x + y = (vi +v2) + (w1 + wy) where vi + vy € V and w; +wy € W.

The proofs for «x where o € C are analogous. u

With the sum of subspaces, we can express the column space of a matrix in
terms of column spaces of subsets of columns.
Fact 6.16 (Sum of Column Spaces). If A € C"*" and B € C™*P sthen
R(A B)=R(A)+R(B).

Proof. From Definition 4.17 of a column space, and second vView of matrix times
column vector in Section 1.5 we obtain the following equivalences:

beR(A B)<:>b=(A B)X:Ax1+Bx2forsomex=<x1>e(C”+”
X2

&= b=v+w where v = Ax; € R(A) andbw = Bx, € R(B). O

Example.
o Jet AcC™*" and B € C"R’If R(B) C R(A), then
R(ADB) =R(A)+R(B) =R(A).
o If A c C"*" then
R(AY In) = R(A) + R(Iy) = R(A) +C" =C". |

With the help of sums of subspaces, we can now show that the row space
and null space>0f an m x n matrix together make up all of C", while the column
space and leftnull space make up C™.

Fact 6:17 (Subspaces of a Matrix are Sums). If A € C"*", then
C" =R(A®) +Ker(A), C" = R(A) +Ker(A™).

Proof. Facts 4.20 and 6.16 imply
R(A*) +Ker(A) =R(V,)) +R(Vi—r) =R (Vr anr) =R(V)= c"
and

R(A) +Ker(A") =R(U;) + RUp—r) =R(Ur  Un—)=RWU)=C". O

Fact 6.18 (Intersection of Null Spaces). If A € C"*" and B € CP*", then

A
Ker <B> = Ker(A) NKer(B).
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Proof. From Definition 4.17 of a null space, and first view of matrix times column
vector in Section 1.5 we obtain the following equivalences:

A A Ax
xeKer(B) <:>0:<B>x:<3x) <= Ax=0and Bx =0
<= x € Ker(A) and x € Ker(B) <= x € Ker(A) NKer(B). O

Example.
o If A e C"™*" then

Ker (O];A ) =Ker(A)NKer(0xx,) = Ker(A) NC" = Ker(A).
xXn
e If A e C"*" and B € C"*" is nonsingular, then
Ker (2) = Ker(4) NKer(B) = Ker(4) N{0nx1} ={0ax1}. ]

The rank of a submatrix cannot exceed the rank of a mattix. We already used
this for proving the optimality of the SVD in Fact 4.13¢

Fact 6.19 (Rank of Submatrix). If B is a submatrix of A € C™*", then
rank(B) < rank(A).

Proof. Let P € C"™*™ and Q € C"*" be ‘pérmutation matrices that move the
elements of B into the top left corner of\the matrix,

B Ap
PAQ= .
2 <A21 Azz)
Since the permutation matrices” P and Q can only affect singular vectors but not
singular values, rank(A)"s rank(P A Q); see also Exercise (i) in Section 4.2.

We relate rank (B, to rank (P A Q) by gradually isolating B with the help of
Fact 6.18. Partition

PAQ:(E), where C=(B Ap), D= (A An).

Fact 618%implies
Ker(PAQ) = Ker <1C)> = Ker(C)NKer(D) C Ker(C).

Hence Ker(PAQ) C Ker(C). From Fact 6.12 follows dim(Ker(PAQ)) <
dim(Ker(C)). We use the dimension formula in Fact 6.10 to relate the dimen-
sion of Ker(C) to rank(C),

rank(A) =rank(PAQ) = n —dim(Ker(PAQ)) > n —dim(Ker(C)) = rank(C).

Thus rank(C) < rank(A).
In order to show that rank(B) < rank(C), we repeat the above argument
for C* and use the fact that a matrix has the same rank as its transpose; see

Fact 4.14.
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Exercises

(i) Solution of Linear Systems.
Let A e C™" and b € C™. Show: Ax = b has a solution if and only if
R(A b)=R(A).
(ii) Let A e C"™*" and B € C"*P, Show:
C" =R(A)+R(B)+Ker(A*) NKer(B").
(iii) Let A € C™*" and B € C"*P, Show that R(A) NR(B) and Ker (A B)
have the same number of elements.

(iv) Rank of Block Diagonal Matrix.
Let Ae C™" and B € CP*4, Show:

rank <13 1(;) =rank(A) +rank(B).

(v) Rank of Block Triangular Matrix.
Let A € C"™*" and
(A App
A= < 0 Azz) ’

where A1 is nonsingular. Show: rank(A) <rank{(A1;) +rank(A).
Give an example to illustrate that this inequalityxnay not hold anymore when
A1 is singular or not square.

(vi) Rank of Schur Complement.
Let A € C"™*" be partitioned so that

A A
&F (A; AZ)’
where A1 is nonsingulas,“For § = Az — A Al_l1 A1 show that
rank(S) <rank(A) <rank(Aj;)+rank(S).
(vii) Let A, B € C*™ Show:
rank(AB) > rank(A) 4 rank(B) —n.

(viii) Properties of Intersections and Sums.
Intersections of subspaces can produce “smaller” subspaces, while sums can
produce “larger” subspaces.
Let V and W be subspaces of C". Show:

@ vnwcV,andVNWcWw.
(b) VNW =Vifandonlyif V C W.
© VCV+W,and W CV+W.
(d) V+W=Vifandonly if W C V.

1. Let A, B € C""" be idempotent and AB = BA. Show:
(@) R(AB) =R(A)NR(B).
(b) Ker(AB) = Ker(A) + Ker(B).
(c) Ifalso AB =0, then A + B is idempotent.
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6.4 Direct Sums and Orthogonal Subspaces

It turns out that the column and null space pairs in Fact 6.17 have only the minimal
number of elements in common. Sums of subspaces that have minimal overlap
are called direct sums.

Definition 6.20 (Direct Sum). Let V and W be subspaces in C" with S =V +W.
IFVNW = {0}, then S is a direct sum of V and W, and we write S =V ®W.
Subspaces V and YV are also called complementary subspaces.

Example.
1 0 0
rRl0O|o|l]|@®|O|=C°
0 0 1
[ ]
1 2 1 2 4.5
R(_l _2>@R<_3 _6 _12)—(C. |

The example above illustrates that the columps-of the identity matrix 7, form
a direct sum of C". In general, linearly independent columns form direct sums.
That is, in a full column rank matrix, the columms form a direct sum of the column
space.

Fact 6.21 (Full Column Rank Mattices). Let A € C"*" with A = (A1 Az).
If rank(A) = n, then R(A) = R(A1) ® R(A»).

Proof. Fact 6.16 impliesCR(A) = R(A1) + R(A2). To show that R(A;) N
R(A3) = {0}, suppose thatb € R(A1) NR(A2). Then b = A1x1 = Azxp, and

0=Ax;—Ayxp = (A1 Az) (—x)lCz> .

Since A hasfull columnrank, Fact4.22 implies x; =0andx; = 0,henceb=0. [

We are ready to show that the row space and null space of a matrix have
only minimal overlap, and so do the column space and left null space. In other
words, for an m x n matrix, row space and null space form a direct sum of C",
while column space and left null space form a direct sum of C™.

Fact 6.22 (Subspaces of a Matrix are Direct Sums). If A € C™*", then
C"=R(A*) ®Ker(A), C" = R(A) ®Ker(A™).
Proof. The proof of Fact 6.17 shows that

R(A")+Ker(A) =R(V,) +R(Va—r), R(A)+Ker(A*) =R(U) +R(Upn—).
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Since the unitary matrices V = (Vr V,,_r) and U = (Ur Um_r) have full col-
umn rank, Fact 6.21 implies R(A*) NKer(A) = {0,x1} and R(A) NKer(A*) =
{Omxl}- I:l

It is tempting to think that for a given subspace V # {0, x1} of C", there
is only one way to complement V and fill up all of C*. However, that is not
true—there are infinitely many complementary subspaces. Below is a very simple
example.

Remark 6.23 (Complementary Subspaces Are Not Unique). Let

=a(l). ()

Then for any B #0, VW = C>.
This is because for B # 0 the matrix

1l o
=0 5)
is nonsingular, hence C* = R(A) =V +W. Since A'hus full column rank, Fact
6.21 implies V N VW = {0}.

There is a particular type of direct sum{'where the two subspaces are as “far
apart” as possible.

Definition 6.24 (Orthogonal Subspaces). Let V and VW be subspaces in C" with
V+W=C" Ifv*w =0 for allve V and w € W, then the spaces V and YV are
orthogonal subspaces. We write’V = W, or equivalently, W = V*.

In particular, (CMHE £ {0, %1} and {0, %1 }J‘ =C".

Below is an ekample of a matrix that produces orthogonal subspaces; it is a
generalization of a unitary matrix.

Fact 6.25. L¢toA € C™*" be nonsingular and A = (A] Az). If ATAQ =0, then
R(A2)E =R(AY).

Proof. Since A has full column rank, Fact 6.16 implies R (A1) + R(A2) =R(A) =
C". From ATA; = 0 follows 0 = x*ATA2y = (A1x)*(A2y). With v = Ayx and
w = Ay we conclude that v*w = 0 for all v € R(A}) and w € R(A>). a

Now we come to what is sometimes referred to as the second part of the
“fundamental theorem of linear algebra.” It says that any matrix has two pairs of
orthogonal subspaces: column space and left null space are orthogonal subspaces,
and row space and null space are orthogonal subspaces.

Fact 6.26 (Orthogonal Subspaces of a Matrix). If A € C"*", then

Ker(A) = R(A")",  Ker(A*) =R(A)".
Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html



Copyright ©2009 by the Society for Industrial and Applied Mathematics
This electronic version is for personal use and may not be duplicated or distributed.
6.4. Direct Sums and Orthogonal Subspaces 117

Proof. Facts 6.17 and 4.20 imply
C"=R(A")+Ker(4), RAD=RV,), Ker(A)=R(Va)
and
C" =R(A)+Ker(4*),  R(A)=RU,)., Ker(A")=RUn).

Now apply Fact 6.25 to the unitary matrices V = (V, V,_,) and
U=(Ur Un).

Exercises

(1) Show: If A € C"*" is Hermitian, then C" = R (A) ® Ker(A).
(i) Show: If A € C"*" is idempotent, then

RA T =R, —A%),  RAH" =R, - A)
(iii) Show: If A € C"*" is idempotent, then C" = R(A) DR (L, — A).
(iv) Let A € C"™*" have rank(A) = n and a QR factorization A = Q <§> , Where

Q=(0n Qm-n) is unitary. Show: R(A)T DR(Qm—n)-
(v) Let A € C"™*" haverank(A) = n, and let4 bethe solution of the least squares
problem miny || Ax — b||. Show:

R(A b) =2RA) ®R(Ay —b).
(vi) Let A € C"*" be a matrix<all of whose rows sum to zero. Show:
R(e) C R(A*)L, where e isthe n x 1 vector of all ones.
(vii) Orthogonal Subspaces Form Direct Sums.
Let V and W be subspaces of C" so that W = V*+. Show: V@ W = C".

(viii) Direct sums of subspaces produce unique representations in the following
sense.
Let S be a subspace of C” and S =V + W. Show: S =V @ W if and only
if for every b € S there exist unique vectors v € ¥V and w € W such that
b = y-w.
(ix) Normial Matrices.
Show: If A € C" is normal, i.e., A*A = AA*, then Ker(A) = R(A)".

1 (A1 O
X AX = ( 0 Ay
where A1 and A; are square. Show: If A1 is nonsingular and A3 is nilpotent,

then for k large enough we have C"* = R(AF) @ Ker(A%).

2. Properties of Orthogonal Subspaces.
Let V and W be subspaces of C". Show:

(@ VH=V.

(b) IfV C W, then Wt C V1.
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) V+W)Lt=vinwi
d) YWyt =vtewt

6.5 Bases

A basis makes it possible to represent the infinitely many vectors of a subspace by
just a finite number. The elements of a basis are much like members of parliament,
with a few representatives standing for large constituency. A basis contains just
enough vectors to capture the whole space, but sufficiently few to avoid redundancy.

Definition 6.27 (Basis). The columns of a matrix W € C"*" represent a basis for
a subspace S of C™ if

B1: Ker(W) ={0}, ie, rank(W) =n,
B2: R(W)=S.

If, in addition, W has orthonormal columns, then the columus of W represent an
orthonormal basis for S.

Example.

® The columns of a nonsingular matrix A€ C"*”" represent a basis for C". If
A is unitary, then the columns of A repsesént an orthonormal basis for C".

e Let A € C"*" be nonsingular, and

k  n=k - B
A= (A Ay ), A~ = s <B%).

Then the columns6f"A’] represent a basis for Ker(Bi*), and the columns of
Aj represent a bagis for Ker(BY).
This follows from Fact 6.4.

e Let U € CX be unitary and U = (U] Uz). Then the columns of U;
represent an orthonormal basis for Ker (U5, and the columns of U represent
an orthonormal basis for Ker(U f‘ ).

Remark 6.28. Let V be a subspace of C™. If V # {0y, x1}, then there are infinitely
many different bases for V. But all bases have the same number of vectors; this
follows from Fact 6.9.

The singular vectors furnish orthonormal bases for all four subspaces of a
matrix. Let A € C"™*" have rank(A) = r and an SVD

s 0 r o m-—r r o n—r
A=U<0r 0) V*, U= (Ur Umfr), V= (Vr anr),
where U € C"™*™ and V € C"*" are unitary, and X, is a diagonal matrix with

positive diagonal elements o1 > --- > o, > 0.
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Fact 6.29 (Orthonormal Bases for Spaces of a Matrix). Let A € C"*",

e If A # 0, then the columns of U, represent an orthonormal basis for R(A),
and the columns of V, represent an orthonormal basis for R(A™*).

® [fr < n, then the columns of V,,_, represent an orthonormal basis for Ker(A).

e If r < m, then the columns of U, _, represent an orthonormal basis for
Ker(A™*).

Proof. This follows from applying Facts 6.6 and 6.7 to A and to A*. a

Why Orthonormal Bases? Orthonormal bases are attractive because they'are
easy to work with, and they do not amplify errors. For instance, if x is the'solution
of the linear system Ax = b where A has orthonormal columns, then = A*b can
be determined with only a matrix vector multiplication. The bound-bélow justifies
that orthonormal bases do not amplify errors.

Fact 6.30. Let A € C"™*" withrank(A) =n, and b € C" with Ax =b and b # 0.
Let z be an approximate solution with residual r = Az <"0” Then

—X r
l ”2§K2(A) (1742, ’
llx1l2 [ A2 llx 2

where i2(A) = | AT2[| All2.
If A has orthonormal columns; then x> (A) = 1.

Proof. This follows from Fact &:[1. If A has orthonormal columns, then all
singular values are equal to one,see Fact 4.16, so that k3 (A) =01 /0, = 1. a0

Exercises

(1) Let u € @™ and v € C" with u # 0 and v # 0. Determine an orthonormal
basis for R (uv™*).
(i) LetA € C™*" be nonsingular and B € C"*”. Prove: The columns of

~A7'B .
I represent a basis for Ker (A B).
p

(iii) Let A € C"™*" with rank(A) = n have a QR decomposition

n m-—n

A=Q<§), 0= (Qn Qm—n),

where Q € C"™*™ is unitary and R € C"*" is upper triangular. Show: The
columns of @, represent an orthonormal basis for R(A), and the columns
of Q,,—, represent an orthonormal basis for Ker(A*).
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