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Preface

This book was written for a first-semester graduate course in matrix theory at North
Carolina State University. The students come from applied and pure mathematics,
all areas of engineering, and operations research. The book is self-contained. The
main topics covered in detail are linear system solution, least squares problems,
and singular value decomposition.

My objective was to present matrix analysis in the context of numerical
computation, with numerical conditioning of problems, and numerical stability of
algorithms at the forefront. I tried to present the material at a basic level, but in a
mathematically rigorous fashion.

Main Features. This book differs in several regards from other numerical linear
algebra textbooks.

• Systematic development of numerical conditioning.
Perturbation theory is used to determine sensitivity of problems as well as
numerical stability of algorithms, and the perturbation results built on each
other.
For instance, a condition number for matrix multiplication is used to derive a
residual bound for linear system solution (Fact 3.5), as well as a least squares
bound for perturbations on the right-hand side (Fact 5.11).

• No floating point arithmetic.
There is hardly any mention of floating point arithmetic, for three main
reasons. First, sensitivity of numerical problems is, in general, not caused
by arithmetic in finite precision. Second, many special-purpose devices in
engineering applications perform fixed point arithmetic. Third, sensitivity
is an issue even in symbolic computation, when input data are not known
exactly.

• Numerical stability in exact arithmetic.
A simplified concept of numerical stability is introduced to give quantitative
intuition, while avoiding tedious roundoff error analyses. The message is
that unstable algorithms come about if one decomposes a problem into ill-
conditioned subproblems.
Two bounds for this simpler type of stability are presented for general di-
rect solvers (Facts 3.14 and 3.17). These bounds imply, in turn, stability
bounds for solvers based on the following factorizations: LU (Corollary
3.22), Cholesky (Corollary 3.31), and QR (Corollary 3.33).

ix
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x Preface

• Simple derivations.
The existence of a QR factorization for nonsingular matrices is deduced very
simply from the existence of a Cholesky factorization (Fact 3.32), without
any commitment to a particular algorithm such as Householder or Gram–
Schmidt.
A new intuitive proof is given for the optimality of the singular value de-
composition (Fact 4.13), based on the distance of a matrix from singularity.
I derive many relative perturbation bounds with regard to the perturbed so-
lution, rather than the exact solution. Such bounds have several advantages:
They are computable; they give rise to intermediate absolute bounds (which
are useful in the context of fixed point arithmetic); and they are easy to
derive.
Especially for full rank least squares problems (Fact 5.14), such a perturba-
tion bound can be derived fast, because it avoids the Moore–Penrose inverse
of the perturbed matrix.

• High-level view of algorithms.
Due to widely available high-quality mathematical software for small dense
matrices, I believe that it is not necessary anymore to present detailed im-
plementations of direct methods in an introductory graduate text. This frees
up time for analyzing the accuracy of the output.

• Complex arithmetic.
Results are presented for complex rather than real matrices, because engi-
neering problems can give rise to complex matrices. Moreover, limiting
one’s focus to real matrices makes it difficult to switch to complex matrices
later on. Many properties that are often taken for granted in the real case no
longer hold in the complex case.

• Exercises.
The exercises contain many useful facts. A separate category of easier exer-
cises, labeled with roman numerals, is appropriate for use in class.

Acknowledgments. I thank Nick Higham, Rizwana Rehman, Megan Sawyer,
and Teresa Selee for providing helpful suggestions and all MA523 students for
giving me the opportunity to develop the material in this book. It has been a
pleasure working with the SIAM publishing staff, in particular with Sara Murphy,
who made possible the publication of this book, and Lou Primus, who patiently
and competently dealt with all my typesetting requests.

Ilse Ipsen
Raleigh, NC, USA
December 2008
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Introduction

The goal of this book is to help you understand the sensitivity of matrix com-
putations to errors in the input data. There are two important reasons for such
errors.

(i) Input data may not be known exactly.
For instance, your weight on the scale tends to be 125 pounds, but may
change to 126 or 124 depending where you stand on the scale. So, you are
sure that the leading digits are 12, but you are not sure about the third digit.
Therefore the third digit is considered to be in error.

(ii) Arithmetic operations can produce errors.
Arithmetic operations may not give the exact result when they are carried
out in finite precision, e.g., in floating point arithmetic or in fixed point
arithmetic. This happens, for instance, when 1/3 is computed as .33333333.

There are matrix computations that are sensitive to errors in the input. Con-
sider the system of linear equations

1

3
x1 + 1

3
x2 = 1,

1

3
x1 + .3x2 = 0,

which has the solution x1 = −27 and x2 = 30. Suppose we make a small change
in the second equation and change the coefficient from .3 to 1

3 . The resulting linear
system

1

3
x1 + 1

3
x2 = 1,

1

3
x1 + 1

3
x2 = 0

has no solution. A small change in the input causes a drastic change in the output,
i.e., the total loss of the solution. Why did this happen? How can we predict that
something like this can happen? That is the topic of this book.

xiii
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1. Matrices

We review the basic matrix operations.

1.1 What Is a Matrix?
An array of numbers

A =

a11 . . . a1n

...
...

am1 . . . amn




with m rows and n columns is an m×n matrix. Element aij is located in position
(i,j). The elements aij are scalars, namely, real or complex numbers. The set of
real numbers is R, and the set of complex numbers is C.

We write A ∈ R
m×n if A is an m×n matrix whose elements are real numbers,

and A ∈ C
m×n if A is an m×n matrix whose elements are complex numbers. Of

course, R
m×n ⊂ C

m×n. If m = n, then we say that A is a square matrix of order n.
For instance,

A =
(

1 2 3 4
5 6 7 8

)

is a 2×4 matrix with elements a13 = 3 and a24 = 8.

Vectors. A row vector y = (
y1 . . . ym

)
is a 1 ×m matrix, i.e., y ∈ C

1×m. A
column vector

x =

x1

...
xn




1
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2 1. Matrices

is an n×1 matrix, i.e., x ∈ C
n×1 or shorter, x ∈ C

n. If the elements of x are real,
then x ∈ R

n.

Submatrices. Sometimes we need only those elements of a matrix that are situ-
ated in particular rows and columns.

Definition 1.1. Let A ∈ C
m×n have elements aij . If 1 ≤ i1 < i2 < · · · < ik ≤ m

and 1 ≤ j1 < j2 < · · · < jl ≤ n, then the k × l matrix


ai1,j1 ai1,j2 . . . ai1,jl

ai2,j1 ai2,j2 . . . ai2,jl

...
...

...
aik ,j1 aik ,j2 . . . aik ,jl




is called a submatrix of A. The submatrix is a principal submatrix if it is square
and its diagonal elements are diagonal elements of A, that is, k = l and i1 = j1,
i2 = j2, . . . , ik = jk .

Example. If

A =

1 2 3

4 5 6
7 8 9


 ,

then the following are submatrices of A:

(
a11 a13
a21 a23

)
=
(

1 3
4 6

)
,

(
a21 a23

)= (
4 6

)
,


a12 a13

a22 a23
a32 a33


=


2 3

5 6
8 9


 .

The submatrix (
a11 a13
a31 a33

)
=
(

1 3
7 9

)
is a principal matrix of A, as are the diagonal elements a11, a22, a33, and A it-
self.

Notation. Most of the time we will use the following notation:

• Matrices: uppercase Roman or Greek letters, e.g., A, �.
• Vectors: lowercase Roman letters, e.g., x, y.
• Scalars: lowercase Greek letters, e.g., α;

or lowercase Roman with subscripts, e.g., xi , aij .
• Running variables: i, j , k, l, m, and n.

The elements of the matrix A are called aij or Aij , and the elements of the vector
x are called xi .

Zero Matrices. The zero matrix 0m×n is the m×n matrix all of whose elements
are zero. When m and n are clear from the context, we also write 0. We say A = 0
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1.1. What Is a Matrix? 3

if all elements of the matrix A are equal to zero. The matrix A is nonzero, A �= 0,
if at least one element of A is nonzero.

Identity Matrices. The identity matrix of order n is the real square matrix

In =

1

. . .
1




with ones on the diagonal and zeros everywhere else (instead of writing many
zeros, we often write blanks). In particular, I1 = 1. When n is clear from the
context, we also write I .

The columns of the identity matrix are also called canonical vectors ei . That
is, In = (

e1 e2 . . . en

)
, where

e1 =




1
0
...
0


 , e2 =




0
1
...
0


 , . . . , en =




0
0
...
1


 .

Exercises

(i) Hilbert Matrix.
A square matrix of order n whose element in position (i,j) is 1

i+j−1 ,
1 ≤ i,j ≤ n, is called a Hilbert matrix.
Write down a Hilbert matrix for n = 5.

(ii) Toeplitz Matrix.
Given 2n − 1 scalars αk , −n + 1 ≤ k ≤ n − 1, a matrix of order n whose
element in position (i,j) is αj−i , 1 ≤ i,j ≤ n, is called a Toeplitz matrix.
Write down the Toeplitz matrix of order 3 when αi = i, −2 ≤ i ≤ 2.

(iii) Hankel Matrix.
Given 2n−1 scalars αk , 0 ≤ k ≤ 2n−2, a matrix of order n whose element
in position (i,j) is αi+j−2, 1 ≤ i,j ≤ n, is called a Hankel matrix.
Write down the Hankel matrix of order 4 for αi = i, 0 ≤ i ≤ 6.

(iv) Vandermonde Matrix.
Given n scalars αi , 1 ≤ i ≤ n, a matrix of order n whose element in position
(i,j) is α

j−1
i , 1 ≤ i,j ≤ n, is called a Vandermonde matrix. Here we inter-

pret α0
i = 1 even for αi = 0. The numbers αi are also called nodes of the

Vandermonde matrix.
Write down the Vandermonde matrix of order 4 when αi = i, 1 ≤ i ≤ 3, and
α4 = 0.

(v) Is a square zero matrix a Hilbert, Toeplitz, Hankel, or Vandermonde matrix?
(vi) Is the identity matrix a Hilbert, Toeplitz, Hankel, or Vandermonde matrix?

(vii) Is a Hilbert matrix a Hankel matrix or a Toeplitz matrix?
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4 1. Matrices

1.2 Scalar Matrix Multiplication
Each element of the matrix is multiplied by a scalar. If A ∈ C

m×n and λ a scalar,
then the elements of the scalar matrix product λA ∈ C

m×n are

(λA)ij ≡ λaij .

Multiplying the matrix A ∈ C
m×n by the scalar zero produces a zero matrix,

0A = 0m×n,

where the first zero is a scalar, while the second zero is a matrix with the same
number of rows and columns as A. Scalar matrix multiplication is associative,

(λµ)A = λ (µA).

Scalar matrix multiplication by −1 corresponds to negation,

−A ≡ (−1)A.

Exercise

(i) Let x ∈ C
n and α ∈ C. Prove: αx = 0 if and only if α = 0 or x = 0.

1.3 Matrix Addition
Corresponding elements of two matrices are added. The matrices must have the
same number of rows and the same number of columns. If A and B ∈ C

m×n, then
the elements of the sum A+B ∈ C

m×n are

(A+B)ij ≡ aij +bij .

Properties of Matrix Addition.

• Adding the zero matrix does not change anything. That is, for any m× n

matrix A,
0m×n +A = A+0m×n = A.

• Matrix addition is commutative,

A+B = B +A.

• Matrix addition is associative,

(A+B)+C = A+ (B +C).

• Matrix addition and scalar multiplication are distributive,

λ (A+B) = λA+λB, (λ+µ)A = λA+µA.

One can use the above properties to save computations. For instance, com-
puting λA + λB requires twice as many operations as computing λ(A + B). In
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1.4. Inner Product (Dot Product) 5

the special case B = −C, computing (A+B)+C requires two matrix additions,
while A+ (B +C) = A+0 = A requires no work.

A special type of addition is the sum of scalar vector products.

Definition 1.2. A linear combination of m column (or row) vectors v1, . . . ,vm,
m ≥ 1, is

α1v1 +·· ·+αmvm,

where the scalars α1, . . . ,αm are the coefficients.

Example. Any vector in R
n or C

n can be represented as a linear combination of
canonical vectors, 


x1
x2
...

xn


 = x1e1 +x2e2 +·· ·+xnen.

1.4 Inner Product (Dot Product)
The product of a row vector times an equally long column vector produces a single
number. If

x = (
x1 . . . xn

)
, y =


y1

...
yn


 ,

then the inner product of x and y is the scalar

xy = x1y1 +·· ·+xnyn.

Example. A sum of n scalars ai , 1 ≤ i ≤ n, can be represented as an inner product
of two vectors with n elements each,

n∑
j=1

aj = (
a1 a2 . . . an

)



1
1
...
1


 = (

1 1 . . . 1
)



a1
a2
...

an


 .

Example. A polynomial p(α) =∑n
j=0 λjα

j of degree n can be represented as an
inner product of two vectors with n+1 elements each,

p(α) = (
1 α . . . αn

)



λ0
λ1
...

λn


 = (

λ0 λ1 . . . λn

)



1
α
...

αn


 .
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6 1. Matrices

Exercise

(i) Let n ≥ 1 be an integer. Represent n(n+ 1)/2 as an inner product of two
vectors with n elements each.

1.5 Matrix Vector Multiplication
The product of a matrix and a vector is again a vector. There are two types of
matrix vector multiplications: matrix times column vector and row vector times
matrix.

Matrix Times Column Vector. The product of matrix times column vector is
again a column vector. We present two ways to describe the operations that are
involved in a matrix vector product. Let A ∈ C

m×n with rows rj and columns cj ,
and let x ∈ C

n with elements xj ,

A =

r1

...
rm


 = (

c1 . . . cn

)
, x =


x1

...
xn


 .

View 1: Ax is a column vector of inner products, so that element j of Ax is the
inner product of row rj with x,

Ax =

r1x

...
rmx


 .

View 2: Ax is a linear combination of columns

Ax = c1x1 +·· ·+ cnxn.

The vectors in the linear combination are the columns cj of A, and the
coefficients are the elements xj of x.

Example. Let

A =

0 0 0

0 0 0
1 2 3


 .

The first view shows that Ae2 is equal to column 2 of A. That is,

Ae2 = 0


0

0
1


+1 ·


0

0
2


+0 ·


0

0
3


 =


0

0
2


 .
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1.5. Matrix Vector Multiplication 7

The second view shows that the first and second elements of Ae2 are equal to zero.
That is,

Ax =


(
0 0 0

)
e2(

0 0 0
)
e2(

1 2 3
)
e2


 =


0

0
2


 .

Example. Let A be the Toeplitz matrix

A =



0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 , x =




x1
x2
x3
x4


 .

The first view shows that the last element of Ax is equal to zero. That is,

Ax =



(
0 1 0 0

)(
0 0 1 0

)(
0 0 0 1

)(
0 0 0 0

)


x =




x2
x3
x4
0


 .

Row Vector Times Matrix. The product of a row vector times a matrix is a row
vector. There are again two ways to think about this operation. Let A ∈ C

m×n

with rows rj and columns cj , and let y ∈ C
1×m with elements yj ,

A =

r1

...
rm


 = (

c1 . . . cn

)
, y = (

y1 . . . ym

)
.

View 1: yA is a row vector of inner products, where element j of yA is an inner
product of y with the column cj ,

yA = (
yc1 . . . ycn

)
.

View 2: yA is a linear combination of rows of A,

yA = y1r1 +·· ·+ymrm.

The vectors in the linear combination are the rows rj ofA, and the coefficients
are the elements yj of y.

Exercises

(i) Show that Aej is the j th column of the matrix A.
(ii) Let A be an m×n matrix and e the n×1 vector of all ones. What does Ae

do?
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8 1. Matrices

(iii) Let α1v1 + ·· · + αmvm = 0 be a linear combination of vectors v1, . . . ,vm.
Prove: If one of the coefficients αj is nonzero, then one of the vectors can
be represented as a linear combination of the other vectors.

1. Let A,B ∈ C
m×n. Prove: A = B if and only if Ax = Bx for all x ∈ C

n.

1.6 Outer Product
The product of a column vector times a row vector gives a matrix (this is not to be
confused with an inner product which produces a single number). If

x =

x1

...
xm


 , y = (

y1 . . . yn

)
,

then the outer product of x and y is the m×n matrix

xy =

x1y1 . . . x1yn

...
...

xmy1 . . . xmyn


 .

The vectors in an outer product are allowed to have different lengths. The columns
of xy are multiples of each other, and so are the rows. That is, each column of xy

is a multiple of x,

xy = (
xy1 . . . xyn

)
,

and each row of xy is a multiple of y,

xy =

x1y

...
xmy


 .

Example. A Vandermonde matrix of order n all of whose nodes are the same, e.g.,
equal to α, can be represented as the outer product

1
...
1


(

1 α . . . αn−1
)

.

Exercise

(i) Write the matrix below as an outer product:
 4 5

8 10
12 15


 .
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1.7. Matrix Multiplication 9

1.7 Matrix Multiplication
The product of two matrices A and B is defined if the number of columns in A is
equal to the number of rows in B. Specifically, if A ∈ C

m×n and B ∈ C
n×p, then

AB ∈ C
m×p. We can describe matrix multiplication in four different ways. Let

A ∈ C
m×n with rows aj , and let B ∈ C

n×p with columns bj :

A =

a1

...
am


 , B = (

b1 . . . bp

)
.

View 1: AB is a block row vector of matrix vector products. The columns of AB

are matrix vector products of A with columns of B,

AB = (
Ab1 . . . Abp

)
.

View 2: AB is a block column vector of matrix vector products, where the rows
of AB are matrix vector products of the rows of A with B,

AB =

a1B

...
amB


 .

View 3: The elements of AB are inner products, where element (i,j) of AB is
an inner product of row i of A with column j of B,

(AB)ij = aibj , 1 ≤ i ≤ m, 1 ≤ j ≤ p.

View 4: If we denote by ci the columns of A and ri the rows of B,

A = (
c1 . . . cn

)
, B =


r1

...
rn


 ,

then AB is a sum of outer products, AB = c1r1 +·· ·+ cnrn.

Properties of Matrix Multiplication.

• Multiplying by the identity matrix does not change anything. That is, for an
m×n matrix A,

Im A = AIn = A.

• Matrix multiplication is associative,

A(BC) = (AB)C.
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10 1. Matrices

• Matrix multiplication and addition are distributive,

A(B +C) = AB +AC, (A+B)C = AC +BC.

• Matrix multiplication is not commutative.
For instance, if

A =
(

0 1
0 0

)
, B =

(
1 0
0 2

)
,

then

AB =
(

0 2
0 0

)
�=
(

0 1
0 0

)
= BA.

Example. Associativity can save work. If

A =




1
2
3
4
5


 , B = (

1 2 3
)

, C =

3

2
1


 ,

then computing the product

(AB)C =




1 2 3
2 4 6
3 6 9
4 8 12
5 10 15




3

2
1




requires more operations than

A(BC) =




1
2
3
4
5


 ·10.

Warning. Don’t misuse associativity. For instance, if

A =




1 1
2 2
3 3
4 4
5 5


 , B = (

1 2 3
)

, C =

3

2
1


 ,

it looks as if we could compute

A(BC) =




1 1
2 2
3 3
4 4
5 5


 ·10.
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1.7. Matrix Multiplication 11

However, the product ABC is not defined because AB is not defined (here we
have to view BC as a 1×1 matrix rather than just a scalar). In a product ABC, all
adjacent products AB and BC have to be defined. Hence the above option A(BC)

is not defined either.

Matrix Powers. A special case of matrix multiplication is the repeated multi-
plication of a square matrix by itself. If A is a nonzero square matrix, we define
A0 ≡ I , and for any integer k > 0,

Ak =
k times︷ ︸︸ ︷
A.. .A = Ak−1 A = AAk−1.

Definition 1.3. A square matrix is

• involutory if A2 = I ,
• idempotent (or a projector) if A2 = A,
• nilpotent if Ak = 0 for some integer k > 0.

Example. For any scalar α,(
1 α

0 −1

)
is involutory,

(
1 α

0 0

)
is idempotent,

and (
0 α

0 0

)
is nilpotent.

Exercises

(i) Which is the only matrix that is both idempotent and involutory?
(ii) Which is the only matrix that is both idempotent and nilpotent?

(iii) Let x ∈ C
n×1, y ∈ C

1×n. When is xy idempotent? When is it nilpotent?
(iv) Prove: If A is idempotent, then I −A is also idempotent.
(v) Prove: If A and B are idempotent and AB = BA, then AB is also idempotent.

(vi) Prove: A is involutory if and only if (I −A)(I +A) = 0.
(vii) Prove: If A is involutory and B = 1

2 (I +A), then B is idempotent.

(viii) Let x ∈ C
n×1, y ∈ C

1×n. Compute (xy)3x using only inner products and
scalar multiplication.

1. Fast Matrix Multiplication.
One can multiply two complex numbers with only three real multiplications
instead of four. Let α = α1 + ıα2 and β = β1 + ıβ2 be two complex numbers,
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12 1. Matrices

where ı2 = −1 and α1,α2,β1,β2 ∈ R. Writing

αβ = α1β1 −α2β2 + ı [(α1 +α2)(β1 +β2)−α1β1 −α2β2]

shows that the complex product αβ can be computed with three real multi-
plications: α1β1, α2β2, and (α1 +β1)(α2 +β2).
Show that this approach can be extended to the multiplication AB of two
complex matrices A = A1 + ıA2 and B = B1 + ıB2, where A1,A2 ∈ R

m×n

and B1,B2 ∈ R
n×p. In particular, show that no commutativity laws are

violated.

1.8 Transpose and Conjugate Transpose
Transposing a matrix amounts to turning rows into columns and vice versa. If

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn


 ,

then its transpose AT ∈ C
n×m is obtained by converting rows to columns,

AT =




a11 a21 . . . am1
a12 a22 . . . am2

...
...

...
a1n a2n . . . amn


 .

There is a second type of transposition that requires more work when
the matrix elements are complex numbers. A complex number α is written
α = α1 + ıα2, where ı2 = −1 and α1,α2 ∈ R. The complex conjugate of the
scalar α is α = α1 − ıα2.

If A ∈ C
m×n is a matrix, its conjugate transpose A∗ ∈ C

n×m is obtained by
converting rows to columns and, in addition, taking the complex conjugates of the
elements,

A∗ =




a11 a21 . . . am1
a12 a22 . . . am2

...
...

...
a1n a2n . . . amn


 .

Example. If

A =
(

1+2ı 5
3− ı 6

)
,

then

AT =
(

1+2ı 3− ı

5 6

)
, A∗ =

(
1−2ı 3+ ı

5 6

)
.
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1.8. Transpose and Conjugate Transpose 13

Example. We can express the rows of the identity matrix in terms of canonical
vectors,

In =

eT

1
...

eT
n


 =


e∗

1
...
e∗
n


 .

Fact 1.4 (Properties of Transposition).

• For real matrices, the conjugate transpose and the transpose are identical.
That is, if A ∈ R

m×n, then A∗ = AT .
• Transposing a matrix twice gives back the original,

(AT )T = A, (A∗)∗ = A.

• Transposition does not affect a scalar, while conjugate transposition conju-
gates the scalar,

(λA)T = λAT , (λA)∗ = λA∗.

• The transpose of a sum is the sum of the transposes,

(A+B)T = AT +BT , (A+B)∗ = A∗ +B∗.

• The transpose of a product is the product of the transposes with the factors
in reverse order,

(AB)T = BT AT , (AB)∗ = B∗A∗.

Example. Why do we have to reverse the order of the factors when the transpose
is pulled inside the product AB? Why isn’t (AB)T = AT BT ? One of the reasons
is that one of the products may not be defined. If

A =
(

1 1
1 1

)
, B =

(
1
1

)
,

then
(AB)T = (

2 2
)

,

while the product AT BT is not be defined.

Exercise

(i) Let A be an n × n matrix, and let Z be the matrix with zj ,j+1 = 1,
1 ≤ j ≤ n−1, and all other elements zero. What does ZAZT do?

Soc
iet

y fo
r I

ndustr
ial

 an
d A

pplie
d M

at
hem

at
ics

Copyright ©2009 by the Society for Industrial and Applied Mathematics 
This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html



“book”
2009/5/27
page 14

�

�

�

�

�

�

�

�

14 1. Matrices

1.9 Inner and Outer Products, Again
Transposition comes in handy for the representation of inner and outer products. If

x =

x1

...
xn


 , y =


y1

...
yn


 ,

then

x∗y = x1y1 +·· ·+xnyn, y∗x = y1x1 +·· ·+ynxn.

Example. Let α = α1 + ıα2 be a complex number, where ı2 = −1 and α1, α2 ∈ R.
With

x =
(

α1
α2

)

the absolute value of α can be represented as the inner product, |α| = √
x∗x.

Fact 1.5 (Properties of Inner Products). Let x,y ∈ C
n.

1. y∗x is the complex conjugate of x∗y, i.e., y∗x = (x∗y).
2. yT x = xT y.
3. x∗x = 0 if and only if x = 0.
4. If x is real, then xT x = 0 if and only if x = 0.

Proof. Let x = (
x1 . . . xn

)T and y = (
y1 . . . yn

)T . For the first equality
write y∗x = ∑n

j=1 yjxj = ∑n
j=1 xjyj . Since complex conjugating twice gives

back the original, we get
∑n

j=1 xjyj =∑n
j=1 xjyj =∑n

j=1 xjyj =∑n
j=1 xjyj =

x∗y, where the long overbar denotes complex conjugation over the whole sum.
As for the third statement, 0 = x∗x = ∑n

j=1 xjxj = ∑n
j=1 |xj |2 if and only

if xj = 0, 1 ≤ j ≤ n, if and only if x = 0.

Example. The identity matrix can be represented as the outer product

In = e1e
T
1 + e2e

T
2 +·· ·+ ene

T
n .

Exercises

(i) Let x be a column vector. Give an example to show that xT x = 0 can happen
for x �= 0.

(ii) Let x ∈ C
n and x∗x = 1. Show that In −2xx∗ is involutory.

(iii) Let A be a square matrix with aj ,j+1 = 1 and all other elements zero. Rep-
resent A as a sum of outer products.
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1.10. Symmetric and Hermitian Matrices 15

1.10 Symmetric and Hermitian Matrices
We look at matrices that remain unchanged by transposition.

Definition 1.6. A matrix A ∈ C
n×n is

• symmetric if AT = A,
• Hermitian if A∗ = A,
• skew-symmetric if AT = −A,
• skew-Hermitian if A∗ = −A.

The identity matrix In is symmetric and Hermitian. The square zero matrix
0n×n is symmetric, skew-symmetric, Hermitian, and skew-Hermitian.

Example. Let ı2 = −1.(
1ı 2ı

2ı 4

)
is symmetric,

(
1 2ı

−2ı 4

)
is Hermitian,

(
0 2ı

−2ı 0

)
is skew-symmetric,

(
1ı 2ı

2ı 4ı

)
is skew-Hermitian.

Example. Let ı2 = −1. (
0 ı

ı 0

)
is symmetric and skew-Hermitian, while(

0 −ı

ı 0

)

is Hermitian and skew-symmetric.

Fact 1.7. If A ∈ C
m×n, then AAT and AT A are symmetric, while AA∗ and A∗A

are Hermitian.
If A ∈ C

n×n, then A+AT is symmetric, and A+A∗ is Hermitian.

Exercises

(i) Is a Hankel matrix symmetric, Hermitian, skew-symmetric, or skew-
Hermitian?

(ii) Which matrix is both symmetric and skew-symmetric?
(iii) Prove: If A is a square matrix, then A−AT is skew-symmetric and A−A∗

is skew-Hermitian.
(iv) Which elements of a Hermitian matrix cannot be complex?
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16 1. Matrices

(v) What can you say about the diagonal elements of a skew-symmetric matrix?
(vi) What can you say about the diagonal elements of a skew-Hermitian matrix?

(vii) If A is symmetric and λ is a scalar, does this imply that λA is symmetric? If
yes, give a proof. If no, give an example.

(viii) If A is Hermitian and λ is a scalar, does this imply that λA is Hermitian? If
yes, give a proof. If no, give an example.

(ix) Prove: If A is skew-symmetric and λ is a scalar, then λA is skew-symmetric.
(x) Prove: If A is skew-Hermitian and λ is a scalar, then λA is, in general, not

skew-Hermitian.
(xi) Prove: If A is Hermitian, then ıA is skew-Hermitian, where ı2 = −1.

(xii) Prove: If A is skew-Hermitian, then ıA is Hermitian, where ı2 = −1.
(xiii) Prove: If A is a square matrix, then ı(A−A∗) is Hermitian, where ı2 = −1.

1. Prove: Every square matrix A can be written A = A1 + A2, where A1 is
Hermitian and A2 is skew-Hermitian.

2. Prove: Every square matrix A can be written A = A1 + ıA2, where A1 and
A2 are Hermitian and ı2 = −1.

1.11 Inverse
We want to determine an inverse with respect to matrix multiplication. Inversion
of matrices is more complicated than inversion of scalars. There is only one scalar
that does not have an inverse: 0. But there are many matrices without inverses.

Definition 1.8. A matrix A ∈ C
n×n is nonsingular (or invertible) if A has an

inverse, that is, if there is a matrix A−1 so that AA−1 = I = A−1A. If A does not
have an inverse, it is singular.

Example.

• A 1×1 matrix is invertible if it is nonzero.
• An involutory matrix is its own inverse: A2 = I .

Fact 1.9. The inverse is unique.

Proof. Let A ∈ C
n×n, and let AB = BA = In and AC = CA = In for matrices

B,C ∈ C
n×n. Then

B = BIn = B(AC) = (BA)C = InC = C.

It is often easier to determine that a matrix is singular than it is to determine
that a matrix is nonsingular. The fact below illustrates this.
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1.11. Inverse 17

Fact 1.10. Let A ∈ C
n×n and x,b ∈ C

n.

• If x �= 0 and Ax = 0, then A is singular.
• If x �= 0 and A is nonsingular, then Ax �= 0.
• If Ax = b, where A is nonsingular and b �= 0, then x �= 0.

Proof. To prove the first statement, assume to the contrary that A is nonsingular
and has an inverse A−1. Then 0 = Ax implies 0 = A−1Ax = Inx = x, hence x = 0,
which contradicts the assumption x �= 0. Therefore A must be singular.

The proofs for the other two statements are similar.

Fact 1.11. An idempotent matrix is either the identity or else is singular.

Proof. If A is idempotent, then A2 = A. Hence 0 = A2 −A = A(A− I ). Either
I −A = 0, in which case A is the identity, or else I −A �= 0, in which case it has
a nonzero column and Fact 1.10 implies that A is singular.

Now we show that inversion and transposition can be exchanged.

Fact 1.12. If A is invertible, then AT and A∗ are also invertible, and

(A∗)−1 = (A−1)∗, (AT )−1 = (A−1)T .

Proof. Show that (A−1)∗ fulfills the conditions for an inverse of A∗:

A∗(A−1)∗ = (A−1A)∗ = I ∗ = I

and
(A−1)∗A∗ = (AA−1)∗ = I ∗ = I .

The proof for AT is similar.

Because inverse and transpose can be exchanged, we can simply write A−∗
and A−T .

The expression below is useful because it can break apart the inverse of a
sum.

Fact 1.13 (Sherman–Morrison Formula). If A ∈ C
n×n is nonsingular, and

V ∈ C
m×n, U ∈ C

n×m are such that I +V A−1U is nonsingular, then

(A+UV )−1 = A−1 −A−1U
(
I +V A−1U

)−1
V A−1.

Here is an explicit expression for the inverse of a partitioned matrix.

Fact 1.14. Let A ∈ C
n×n and

A =
(

A11 A12
A21 A22

)
.
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18 1. Matrices

If A11 and A22 are nonsingular, then

A−1 =
(

S−1
1 −A−1

11 A12S
−1
2

−A−1
22 A21S

−1
1 S−1

2

)
,

where S1 = A11 −A12A
−1
22 A21 and S2 = A22 −A21A

−1
11 A12.

Matrices of the form S1 and S2 are called Schur complements.

Exercises

(i) Prove: If A and B are invertible, then (AB)−1 = B−1A−1.
(ii) Prove: If A,B ∈ C

n×n are nonsingular, then B−1 = A−1 −B−1(B −A)A−1.
(iii) Let A ∈ C

m×n, B ∈ C
n×m be such that I + BA is invertible. Show that

(I +BA)−1 = I −B(I +AB)−1A.
(iv) Let A ∈ C

n×n be nonsingular, u ∈ C
n×1, v ∈ C

1×n, and vA−1u �= −1. Show
that

(A+uv)−1 = A−1 − A−1uvA−1

1+vA−1u
.

(v) The following expression for the partitioned inverse requires only A11 to be
nonsingular but not A22.
Let A ∈ C

n×n and

A =
(

A11 A12
A21 A22

)
.

Show: If A11 is nonsingular and S = A22 −A21A
−1
11 A12, then

A−1 =
(

A−1
11 +A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

)
.

(vi) Let x ∈ C
1×n and A ∈ C

n×n. Prove: If x �= 0 and xA = 0, then A is singular.
(vii) Prove: The inverse, if it exists, of a Hermitian (symmetric) matrix is also

Hermitian (symmetric).
(viii) Prove: If A is involutory, then I −A or I +A must be singular.

(ix) Let A be a square matrix so that A+A2 = I . Prove: A is invertible.
(x) Prove: A nilpotent matrix is always singular.

1. Let S ∈ R
n×n. Show: If S is skew-symmetric, then I −S is nonsingular.

Give an example to illustrate that I −S can be singular if S ∈ C
n×n.

2. Let x be a nonzero column vector. Determine a row vector y so that yx = 1.
3. Let A be a square matrix and let αj be scalars, at least two of which are

nonzero, such that
∑k

j=0 αjA
j = 0. Prove: If α0 �= 0, then A is nonsingular.

4. Prove: If (I −A)−1 =∑k
j=0 Aj for some integer k ≥ 0, then A is nilpotent.

5. Let A,B ∈ C
n×n. Prove: If I + BA is invertible, then I + AB is also

invertible.
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1.12. Unitary and Orthogonal Matrices 19

1.12 Unitary and Orthogonal Matrices
These are matrices whose inverse is a transpose.

Definition 1.15. A matrix A ∈ C
n×n is

• unitary if AA∗ = A∗A = I ,

• orthogonal if AAT = AT A = I .

The identity matrix is orthogonal as well as unitary.

Example 1.16. Let c and s be scalars with |c|2 +|s|2 = 1. The matrices(
c s

−s c

)
,

(
c s

s −c

)
are unitary.

The first matrix above gets its own name.

Definition 1.17. If c,s ∈ C so that |c|2 +|s|2 = 1, then the unitary 2×2 matrix(
c s

−s c

)
is called a Givens rotation. If c and s are also real, then the Givens rotation(

c s

−s c

)
is orthogonal.

When a Givens rotation is real, then both diagonal elements are the same.
When a Givens rotation is complex, then the diagonal elements are complex con-
jugates of each other. A unitary matrix of the form(−c s

s c

)
,

where the real parts of the diagonal elements have different signs, is a reflection;
it is not a Givens rotation.

An orthogonal matrix that can reorder the rows or columns of a matrix is
called a permutation matrix. It is an identity matrix whose rows have been re-
ordered (permuted). One can also think of a permutation matrix as an identity
matrix whose columns have been reordered. Here is the official definition.

Definition 1.18 (Permutation Matrix). A square matrix is a permutation matrix
if it contains a single one in each column and in each row, and zeros everywhere
else.

Example. The following are permutation matrices.

• The identity matrix I .
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20 1. Matrices

• The exchange matrix

J =

 1

. .
.

1


 , J




x1
x2
...

xn


 =




xn

...
x2
x1


 .

• The upper circular shift matrix

Z =




0 1
0 1

. . .
. . .
. . . 1

1 0


 , Z




x1
...

xn−1
xn


 =




xn

x1
...

xn−1


 .

Fact 1.19 (Properties of Permutation Matrices).

1. Permutation matrices are orthogonal and unitary.
That is, if P is a permutation matrix, then PP T = P T P = PP ∗ = P ∗P = I .

2. The product of permutation matrices is again a permutation matrix.

Exercises

(i) Prove: If A is unitary, then A∗, AT , and A are unitary.
(ii) What can you say about an involutory matrix that is also unitary (orthogonal)?

(iii) Which idempotent matrix is unitary and orthogonal?
(iv) Prove: If A is unitary, so is ıA, where ı2 = −1.
(v) Prove: The product of unitary matrices is unitary.

(vi) Partitioned Unitary Matrices.
Let A ∈ C

n×n be unitary and partition A = (
A1 A2

)
, where A1 has k

columns, and A2 has n− k columns. Show that A∗
1A1 = Ik , A∗

2A2 = In−k ,
and A∗

1A2 = 0.
(vii) Let x ∈ C

n and x∗x = 1. Prove: In − 2xx∗ is Hermitian and unitary. Con-
clude that In −2xx∗ is involutory.

(viii) Show: If P is a permutation matrix, then P T and P ∗ are also permutation
matrices.

(ix) Show: If
(
P1 P2

)
is a permutation matrix, then

(
P2 P1

)
is also a permu-

tation matrix.

1.13 Triangular Matrices
Triangular matrices occur frequently during the solution of systems of linear equa-
tions, because linear systems with triangular matrices are easy to solve.
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1.13. Triangular Matrices 21

Definition 1.20. A matrix A ∈ C
n×n is upper triangular if aij = 0 for i > j . That is,

A =

a11 . . . a1n

. . .
...

ann


 .

A matrix A ∈ C
n×n is lower triangular if AT is upper triangular.

Fact 1.21. Let A and B be upper triangular, with diagonal elements ajj and bjj ,
respectively.

• A+B and AB are upper triangular.
• The diagonal elements of AB are aiibii .
• If ajj �= 0 for all j , then A is invertible, and the diagonal elements of A−1

are 1/ajj .

Definition 1.22. A triangular matrix A is unit triangular if it has ones on the
diagonal, and strictly triangular if it has zeros on the diagonal.

Example. The identity matrix is unit upper triangular and unit lower triangular.
The square zero matrix is strictly lower triangular and strictly upper triangular.

Exercises

(i) What does an idempotent triangular matrix look like? What does an involu-
tory triangular matrix look like?

1. Prove: If A is unit triangular, then A is invertible, and A−1 is unit triangular.
If A and B are unit triangular, then so is the product AB.

2. Show that a strictly triangular matrix is nilpotent.
3. Explain why the matrix I −αeie

T
j is triangular. When does it have an in-

verse? Determine the inverse in those cases where it exists.
4. Prove: 



1 α α2 . . . αn

1 α
. . .

...
. . .

. . . α2

1 α

1




−1

=




1 −α

1 −α

. . .
. . .
1 −α

1


 .

5. Uniqueness of LU Factorization.
Let L1,L2 be unit lower triangular, and U1,U2 nonsingular upper triangular.
Prove: If L1U1 = L2U2, then L1 = L2 and U1 = U2.
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22 1. Matrices

6. Uniqueness of QR Factorization.
Let Q1,Q2 be unitary (or orthogonal), and R1,R2 upper triangular with
positive diagonal elements. Prove: If Q1R1 = Q2R2, then Q1 = Q2 and
R1 = R2.

1.14 Diagonal Matrices
Diagonal matrices are special cases of triangular matrices; they are upper and lower
triangular at the same time.

Definition 1.23. A matrix A ∈ C
n×n is diagonal if aij = 0 for i �= j . That is,

A =

a11

. . .
ann


 .

The identity matrix and the square zero matrix are diagonal.

Exercises

(i) Prove: Diagonal matrices are symmetric. Are they also Hermitian?
(ii) Diagonal matrices commute.

Prove: If A and B are diagonal, then AB is diagonal, and AB = BA.
(iii) Represent a diagonal matrix as a sum of outer products.
(iv) Which diagonal matrices are involutory, idempotent, or nilpotent?
(v) Prove: If a matrix is unitary and triangular, it must be diagonal. What are its

diagonal elements?

1. Let D be a diagonal matrix. Prove: If D = (I +A)−1A, then A is diagonal.
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2. Sensitivity, Errors, and
Norms

Two difficulties arise when we solve systems of linear equations or perform other
matrix computations.

(i) Errors in matrix elements.
Matrix elements may be contaminated with errors from measurements or
previous computations, or they may simply not be known exactly. Merely
inputting numbers into a computer or calculator can cause errors (e.g., when
1/3 is stored as .33333333). To account for all these situations, we say that
the matrix elements are afflicted with uncertainties or are perturbed . In
general, perturbations of the inputs cause difficulties when the outputs are
“sensitive” to changes in the inputs.

(ii) Errors in algorithms.
Algorithms may not compute an exact solution, because computing the exact
solution may not be necessary, may take too long, may require too much
storage, or may not be practical. Furthermore, arithmetic operations in finite
precision may not be performed exactly.

In this book, we focus on perturbations of inputs, and how these perturbations
affect the outputs.

2.1 Sensitivity and Conditioning

In real life, sensitive means1 “acutely affected by external stimuli,” “easily offended
or emotionally hurt,” or “responsive to slight changes.” A sensitive person can be
easily upset by small events, such as having to wait in line for a few minutes.
Hardware can be sensitive: A very slight turn of a faucet may change the water
from freezing cold to scalding hot. The slightest turn of the steering wheel when
driving on an icy surface can send the car careening into a spin. Organs can be

1The Concise Oxford English Dictionary

23

Soc
iet

y fo
r I

ndustr
ial

 an
d A

pplie
d M

at
hem

at
ics

Copyright ©2009 by the Society for Industrial and Applied Mathematics 
This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html



“book”
2009/5/27
page 24

�

�

�

�

�

�

�

�

24 2. Sensitivity, Errors, and Norms

sensitive: Healthy skin may not even feel the prick of a needle, while it may cause
extreme pain on burnt skin.

It is no different in mathematics. Steep functions, for instance, can be sen-
sitive to small perturbations in the input.

Example. Let f (x) = 9x and consider the effect of a small perturbation to the
input of f (50) = 950, such as

f (50.5) = √
9 950 = 3f (50).

Here a 1 percent change in the input causes a 300 percent change of the output.

Systems of linear equations are sensitive when a small modification in the
matrix or the right-hand side causes a large change in the solution.

Example 2.1. The linear system Ax = b with

A =
(

1/3 1/3
1/3 .3

)
, b =

(
1
0

)
has the solution

x =
(−27

30

)
.

However, a small change of the (2,2) element from .3 to 1/3 results in the total
loss of the solution, because the system Ãx = b with

Ã =
(

1/3 1/3
1/3 1/3

)

has no solution.

A linear system like the one above whose solution is sensitive to small per-
turbations in the matrix is called ill-conditioned . Here is another example of
ill-conditioning.

Example. The linear system Ax = b with

A =
(

1 1
1 1+ ε

)
, b =

(−1
1

)
, 0 < ε � 1,

has the solution

x = 1

ε

(−2− ε

2

)
.

But changing the (2,2) element of A from 1 + ε to 1 results in the loss of the
solution, because the linear system Ãx = b with

Ã =
(

1 1
1 1

)

has no solution. This happens regardless of how small ε is.
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2.2. Absolute and Relative Errors 25

An ill-conditioned linear system can also be sensitive to small perturbations
in the right-hand side, as the next example shows.

Example 2.2. The linear system Ax = b with

A =
(

1 1
1 1+ ε

)
, b =

(
2
2

)
, 0 < ε � 1,

has the solution x = (
2 0

)T . Changing the leading element in the right-hand side
from 2 to 2+ ε alters the solution radically. That is, the system Ax̃ = b̃ with

b̃ =
(

2
2+ ε

)

has the solution x̃ = (
1 1

)T , which is completely different from x.

Important. Ill-conditioning of a linear system has nothing to do with how we
compute the solution. Ill-conditioning is a property of the linear system. Hence
there is, in general, nothing you can do about ill-conditioning.

In an ill-conditioned linear system, errors in the matrix or in the right-hand
side can be amplified so that the errors in the solution are much larger. Our aim is to
determine which properties of a linear system are responsible for ill-conditioning,
and how one can quantify ill-conditioning.

2.2 Absolute and Relative Errors
To quantify ill-conditioning, we need to assess the size of errors.

Example. Suppose you have y = 10 dollars in your bank account. But the bank
makes a mistake and subtracts 20 dollars from your account, so that your account
now has a negative balance of ỹ = −10 dollars. The account is overdrawn, and all
kinds of bad consequences ensue.

Now imagine this happens to Bill Gatez. He has g = 1011 dollars in his
account, and if the bank subtracts by mistake 20 dollars from his balance, he still
has g̃ = 1011 −20 dollars.

In both cases, the bank makes the same error,

y − ỹ = g − g̃ = 20.

But you are much worse off than Bill Gatez. You are now in debt, while Bill Gatez
has so much money, he may not even notice the error. In your case, the error is
larger than your credit; while in Bill Gatez’s case, the error is only a tiny part of
his fortune.

How can we express mathematically that the bank’s error is much worse for
you than for Bill Gatez? We can compare the error to the balance in your account:
y−ỹ

y
= 2. This shows that the error is twice as large as your original balance.
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26 2. Sensitivity, Errors, and Norms

For Bill Gatez we obtain g−g̃
g

= 2 · 10−10, so that the error is only a tiny fraction
of his balance. Now it’s clear that the bank’s error is much more serious for you
than it is for Bill Gatez.

A difference like y − ỹ measures an absolute error, while y−ỹ
y

and y−ỹ
ỹ

measure relative errors. We use relative errors if we want to know how large the
error is when compared to the original quantity. Often we are not interested in the
signs of the errors, so we consider the absolute values |y−ỹ|

|y| and |y−ỹ|
|ỹ| .

Definition 2.3. If the scalar x̃ is an approximation to the scalar x, then we call
|x − x̃| an absolute error. If x �= 0, then we call |x−x̃|

|x| a relative error. If x̃ �= 0,

then |x−x̃|
|x̃| is also a relative error.

A relative error close to or larger than 1 means that an approximation is
totally inaccurate. To see this, suppose that |x−x̃|

|x| ≥ 1. Then |x − x̃| ≥ |x|, which
means that the absolute error is larger than the quantity we are trying to compute.
If we approximate x = 0 by x̃ �= 0, however small, then the relative error is always
|0−x̃|
|x̃| = 1. Thus, the only approximation to 0 that has a small relative error is 0

itself.
In contrast to an absolute error, a relative error can give information about

how many digits two numbers have in common. As a rule of thumb, if

|x − x̃|
|x| ≤ 5 ·10−d ,

then we say that the numbers x and x̃ agree to d decimal digits.

Example. If x = 1 and x̃ = 1.003, then |x−x̃|
|x| = 3 ·10−3 ≤ 5 ·10−3, so that x and

x̃ agree to three decimal digits.
According to the above definition, the numbers x = 1 and x̂ = .997 also agree

to three decimal digits because |x−x̂|
|x| = 3 ·10−3 ≤ 5 ·10−3.

2.3 Floating Point Arithmetic
Many computations in science and engineering are carried out in floating point
arithmetic, where all real numbers are represented by a finite set of floating point
numbers. All floating point numbers are stored in the same, fixed number of bits
regardless of how small or how large they are. Many computers are based on IEEE
double precision arithmetic where a floating point number is stored in 64 bits.

The floating point representation x̂ of a real number x differs from x by a
factor close to one, and satisfies2

x̂ = x(1+ εx), where |εx | ≤ u.

2 We assume that x lies in the range of normalized floating point numbers, so that no underflow
or overflow occurs.
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2.4. Conditioning of Subtraction 27

Here u is the “unit roundoff” that specifies the accuracy of floating point arithmetic.
In IEEE double precision arithmetic u = 2−53 ≈ 10−16. If x �= 0, then

|x − x̂|
|x| ≤ |εx |.

This means that conversion to floating point representation causes relative errors.
We say that a floating point number x̂ is a relative perturbation of the exact num-
ber x.

Since floating point arithmetic causes relative perturbations in the inputs, it
makes sense to determine relative—rather than absolute—errors in the output. As
a consequence, we will pay more attention to relative errors than to absolute errors.

The question now is how elementary arithmetic operations are affected when
they are performed on numbers contaminated with small relative perturbations,
such as floating point numbers. We start with subtraction.

2.4 Conditioning of Subtraction
Subtraction is the only elementary operation that is sensitive to relative perturba-
tions. The analogy below of the captain and the battleship can help us understand
why.

Example. To find out how much he weighs, the captain first weighs the battleship
with himself on it, and then he steps off the battleship and weighs it without himself
on it. At the end he subtracts the two weights. Intuitively we have a vague feeling
for why this should not give an accurate estimate for the captain’s weight. Below
we explain why.

Let x̃ represent the weight of the battleship plus captain, and ỹ the weight of
the battleship without the captain, where

x̃ = 1122339, ỹ = 1122337.

Due to the limited precision of the scale, the underlined digits are uncertain and
may be in error. The captain computes as his weight x̃ − ỹ = 2. This difference
is totally inaccurate because it is derived from uncertainties, while all the accurate
digits have cancelled out. This is an example of “catastrophic cancellation.”

Catastrophic cancellation occurs when we subtract two numbers that are
uncertain, and when the difference between these two numbers is as small as
the uncertainties. We will now show that catastrophic cancellation occurs when
subtraction is ill-conditioned with regard to relative errors.

Let x̃ be a perturbation of the scalar x and ỹ a perturbation of the scalar y.
We bound the error in x̃ − ỹ in terms of the errors in x̃ and ỹ.

Absolute Error. From

|(x̃ − ỹ)− (x −y)| ≤ |x̃ −x|+ |ỹ −y|,
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28 2. Sensitivity, Errors, and Norms

we see that the absolute error in the difference is bounded by the absolute errors in
the inputs. Therefore we say that subtraction is well-conditioned in the absolute
sense. In the above example, the last digit of x̃ and ỹ is uncertain, so that |x̃−x| ≤ 9
and |ỹ −y| ≤ 9, and the absolute error is bounded by |(x̃ − ỹ)− (x −y)| ≤ 18.

Relative Error. However, the relative error in the difference can be much larger
than the relative error in the inputs. In the above example we can estimate the
relative error from

|(x̃ − ỹ)− (x −y)|
|x̃ − ỹ| ≤ 18

2
= 9,

which suggests that the computed difference x̃ − ỹ is completely inaccurate.
In general, this severe loss of accuracy can occur when we subtract two

nearly equal numbers that are in error. The bound in Fact 2.4 below shows that
subtraction can be ill-conditioned in the relative sense if the difference is much
smaller in magnitude than the inputs.

Fact 2.4 (Relative Conditioning of Subtraction). Let x, y, x̃, and ỹ be scalars.
If x �= 0, y �= 0, and x �= y, then

|(x̃ − ỹ)− (x −y)|
|x −y|︸ ︷︷ ︸

relative error in output

≤ κ max

{ |x̃ −x|
|x| ,

|ỹ −y|
|y|

}
︸ ︷︷ ︸

relative error in input

,

where

κ = |x|+ |y|
|x −y| .

The positive number κ is a relative condition number for subtraction, because
it quantifies how relative errors in the input can be amplified, and how sensitive
subtraction can be to relative errors in the input. When κ � 1, subtraction is
ill-conditioned in the relative sense and is called catastrophic cancellation.

If we do not know x, y, or x − y, but want an estimate of the condition
number, we can use instead the bound

|(x̃ − ỹ)− (x −y)|
|x̃ − ỹ| ≤ κ̃ max

{ |x̃ −x|
|x̃| ,

|ỹ −y|
|ỹ|

}
, κ̃ = |x̃|+ |ỹ|

|x̃ − ỹ| ,

provided x̃ �= 0, ỹ �= 0, and x̃ �= ỹ,

Remark 2.5. Catastrophic cancellation does not occur when we subtract two
numbers that are exact.

Catastrophic cancellation can only occur when we subtract two numbers
that have relative errors. It is the amplification of these relative errors that leads
to catastrophe.
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Exercises

1. Relative Conditioning of Multiplication.
Let x, y, x̃, ỹ be nonzero scalars. Show:∣∣∣∣xy − x̃ỹ

xy

∣∣∣∣ ≤ (2+ ε)ε, where ε = max

{∣∣∣∣x − x̃

x

∣∣∣∣ ,

∣∣∣∣y − ỹ

y

∣∣∣∣
}

,

and if ε ≤ 1, then ∣∣∣∣xy − x̃ỹ

xy

∣∣∣∣ ≤ 3ε.

Therefore, if the relative error in the inputs is not too large, then the condition
number of multiplication is at most 3. We can conclude that multiplication is
well-conditioned in the relative sense, provided the inputs have small relative
perturbations.

2. Relative Conditioning of Division.
Let x, y, x̃, ỹ be nonzero scalars, and let

ε = max

{∣∣∣∣x − x̃

x

∣∣∣∣ ,

∣∣∣∣y − ỹ

y

∣∣∣∣
}

.

Show: If ε < 1, then ∣∣∣∣x/y − x̃/ỹ

x/y

∣∣∣∣ ≤ 2ε

1− ε
,

and if ε < 1/2, then ∣∣∣∣x/y − x̃/ỹ

x/y

∣∣∣∣ ≤ 4ε.

Therefore, if the relative error in the operands is not too large, then the
condition number of division is at most 4. We can conclude that division is
well-conditioned in the relative sense, provided the inputs have small relative
perturbations.

2.5 Vector Norms
In the context of linear system solution, the error in the solution constitutes a
vector. If we do not want to pay attention to individual components of the error,
perhaps because there are too many components, then we can combine all errors
into a single number. This is akin to a grade point average which combines all
grades into a single number. Mathematically, this “combining” is accomplished
by norms. We start with vector norms, which measure the length of a vector.

Definition 2.6. A vector norm ‖·‖ is a function from C
n to R with three properties:

N1: ‖x‖ ≥ 0 for all x ∈ C
n, and ‖x‖ = 0 if and only if x = 0.
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30 2. Sensitivity, Errors, and Norms

N2: ‖x +y‖ ≤ ‖x‖+‖y‖ for all x, y ∈ C
n (triangle inequality).

N3: ‖α x‖ = |α| ‖x‖ for all α ∈ C, x ∈ C
n.

The vector p-norms below are useful for computational purposes, as well as
analysis.

Fact 2.7 (Vector p-Norms). Let x ∈ C
n with elements x = (

x1 . . . xn

)T . The
p-norm

‖x‖p =

 n∑

j=1

|xj |p

1/p

, p ≥ 1,

is a vector norm.

Example.

• If ej is a canonical vector, then ‖ej‖p = 1 for p ≥ 1.

• If e = (
1 1 · · · 1

)T ∈ R
n, then

‖e‖1 = n, ‖e‖∞ = 1, ‖e‖p = n1/p, 1 < p < ∞.

The three p-norms below are the most popular, because they are easy to
compute.

• One norm: ‖x‖1 = ∑n
j=1 |xj |.

• Two (or Euclidean) norm: ‖x‖2 =
√∑n

j=1 |xj |2 = √
x∗x.

• Infinity (or maximum) norm: ‖x‖∞ = max1≤j≤n |xj |.

Example. If x = (
1 2 · · · n

)T ∈ R
n, then

‖x‖1 = 1

2
n(n+1), ‖x‖2 =

√
1

6
n(n+1)(2n+1), ‖x‖∞ = n.

The inequalities below bound inner products in terms of norms.

Fact 2.8. Let x,y ∈ C
n. Then

Hölder inequality: |x∗y| ≤ ‖x‖1 ‖y‖∞
Cauchy–Schwarz inequality: |x∗y| ≤ ‖x‖2 ‖y‖2.

Moreover, |x∗y| = ‖x‖2‖y‖2 if and only if x and y are multiples of each other.

Example. Let x ∈ C
n with elements x = (

x1 · · · xn

)T . The Hölder inequality
and Cauchy–Schwarz inequality imply, respectively,∣∣∣∣∣

n∑
i=1

xi

∣∣∣∣∣ ≤ n max
1≤i≤n

|xi |,
∣∣∣∣∣

n∑
i=1

xi

∣∣∣∣∣ ≤ √
n‖x‖2.
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2.5. Vector Norms 31

Definition 2.9. A nonzero vector x ∈ C
n is called unit-norm vector in the ‖·‖ norm

if ‖x‖ = 1. The vector x/‖x‖ has unit norm.

Example. Let e be the n×1 vector of all ones. Then

1 = ‖e‖∞ =
∥∥∥∥1

n
e

∥∥∥∥
1
=
∥∥∥∥ 1√

n
e

∥∥∥∥
2

.

The canonical vectors ei have unit norm in any p-norm.

Normwise Errors. We determine how much information the norm of an error
gives about individual, componentwise errors.

Definition 2.10. If x̃ is an approximation to a vector x ∈ C
n, then ‖x − x̃‖ is a

normwise absolute error. If x �= 0 or x̃ �= 0, then ‖x−x̃‖
‖x‖ and ‖x−x̃‖

‖x̃‖ are normwise
relative errors.

How much do we lose when we replace componentwise errors by normwise
errors? For vectors x, x̃ ∈ C

n, the infinity norm is equal to the largest absolute
error,

‖x − x̃‖∞ = max
1≤j≤n

|xj − x̃j |.

For the one and two norms we have

max
1≤j≤n

|xj − x̃j | ≤ ‖x − x̃‖1 ≤ n max
1≤j≤n

|xj − x̃j |

and

max
1≤j≤n

|xj − x̃j | ≤ ‖x − x̃‖2 ≤ √
n max

1≤j≤n
|xj − x̃j |.

Hence absolute errors in the one and two norms can overestimate the worst com-
ponentwise error by a factor that depends on the vector length n.

Unfortunately, normwise relative errors give much less information about
componentwise relative errors.

Example. Let x̃ be an approximation to a vector x where

x =
(

1
ε

)
, 0 < ε � 1, x̃ =

(
1
0

)
.

The normwise relative error ‖x−x̃‖∞‖x‖∞ = ε is small. However, the componentwise

relative error in the second component, |x2−x̃2||x2| = 1, shows that x̃2 is a totally
inaccurate approximation to x2 in the relative sense.

The preceding example illustrates that a normwise relative error can be
small, even if individual vector elements have a large relative error. In the in-
finity norm, for example, the normwise relative error only bounds the relative
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32 2. Sensitivity, Errors, and Norms

error corresponding to a component of x with the largest magnitude. To see this,
let |xk| = ‖x‖∞. Then

‖x − x̃‖∞
‖x‖∞

= max1≤j≤n |xj − x̃j |
|xk| ≥ |xk − x̃k|

|xk| .

For the normwise relative errors in the one and two norms we incur additional
factors that depend on the vector length n,

‖x − x̃‖1

‖x‖1
≥ 1

n

|xk − x̃k|
|xk| ,

‖x − x̃‖2

‖x‖2
≥ 1√

n

|xk − x̃k|
|xk| .

Therefore, normwise relative errors give no information about relative errors in
components of smaller magnitude. If relative errors in individual vector compo-
nents are important, then do not use normwise errors.

Remark 2.11. When measuring the normwise relative error of an approximation
x̃ to x, the question is which error to measure, ‖x−x̃‖

‖x‖ or ‖x−x̃‖
‖x̃‖ ? If ‖x̃‖ ≈ ‖x‖,

then the two errors are about the same. In general, the two errors are related as
follows. Let x �= 0, x̃ �= 0, and

ε = ‖x − x̃‖
‖x‖ , ε̃ = ‖x − x̃‖

‖x̃‖ .

If ε < 1, then
ε

1+ ε
≤ ε̃ ≤ ε

1− ε
.

This follows from ε̃ = ε‖x‖/‖x̃‖ and 1− ε̃ ≤ ‖x‖/‖x̃‖ ≤ 1+ ε̃.

Exercises

(i) Let x ∈ C
n. Prove: ‖x‖2 ≤ √‖x‖1‖x‖∞.

(ii) For each equality below, determine a class of vectors that satisfy the equality:

‖x‖1 = ‖x‖∞, ‖x‖1 = n‖x‖∞, ‖x‖2 = ‖x‖∞, ‖x‖2 = √
n‖x‖∞.

(iii) Give examples of vectors x,y ∈ C
n with x∗y �= 0 for which

|x∗y| = ‖x‖1‖y‖∞. Also find examples for |x∗y| = ‖x‖2‖y‖2.
(iv) The p-norm of a vector does not change when the vector is permuted.

Prove: If P is a permutation matrix, then ‖Px‖p = ‖x‖p.
(v) The two norm of a vector does not change when the vector is multiplied by

a unitary matrix.
Prove: If the matrix V ∈ C

n×n is unitary, then ‖V x‖2 = ‖x‖2 for any vector
x ∈ C

n.
(vi) Prove: If Q ∈ C

n×n is unitary and x ∈ C
n is a nonzero vector with Qx = λx,

where λ is a scalar, then |λ| = 1.

1. Verify that the vector p-norms do indeed satisfy the three properties of a
vector norm in Definition 2.6.
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2.6. Matrix Norms 33

2. Reverse Triangle Inequality.
Let x,y ∈ C

n and let ‖ ·‖ be a vector norm. Prove:
∣∣‖x‖−‖y‖ ∣∣≤ ‖x −y‖.

3. Theorem of Pythagoras.
Prove: If x,y ∈ C

n and x∗y = 0, then ‖x ±y‖2
2 = ‖x‖2

2 +‖y‖2
2.

4. Parallelogram Equality.
Let x,y ∈ C

n. Prove: ‖x +y‖2
2 +‖x −y‖2

2 = 2(‖x‖2
2 +‖y‖2

2).
5. Polarization Identity.

Let x,y ∈ C
n. Prove: �(x∗y) = 1

4 (‖x +y‖2
2 −‖x −y‖2

2), where �(α) is the
real part of a complex number α.

6. Let x ∈ C
n. Prove:

‖x‖2 ≤‖x‖1 ≤ √
n‖x‖2,

‖x‖∞ ≤‖x‖2 ≤ √
n‖x‖∞,

‖x‖∞ ≤‖x‖1 ≤ n‖x‖∞.

7. Let A ∈ C
n×n be nonsingular. Show that ‖x‖A = ‖Ax‖p is a vector norm.

2.6 Matrix Norms
We need to separate matrices from vectors inside the norms. To see this, let
Ax = b be a nonsingular linear system, and let Ax̃ = b̃ be a perturbed system.
The normwise absolute error is ‖x − x̃‖ = ‖A−1(b − b̃)‖. In order to isolate the
perturbation and derive a bound of the form ‖A−1‖ ‖b − b̃‖, we have to define a
norm for matrices.

Definition 2.12. A matrix norm ‖ · ‖ is a function from C
m×n to R with three

properties:

N1: ‖A‖ ≥ 0 for all A ∈ C
n×m, and ‖A‖ = 0 if and only if A = 0.

N2: ‖A+B‖ ≤ ‖A‖+‖B‖ for all A, B ∈ C
m×n (triangle inequality).

N3: ‖α A‖ = |α| ‖A‖ for all α ∈ C, A ∈ C
m×n.

Because of the triangle inequality, matrix norms are well-conditioned, in the
absolute sense and in the relative sense.

Fact 2.13. If A,E ∈ C
m×n, then

∣∣‖A+E‖−‖A‖ ∣∣ ≤ ‖E‖.

Proof. The triangle inequality implies ‖A + E‖ ≤ ‖A‖ + ‖E‖, hence
‖A + E‖ − ‖A‖ ≤ ‖E‖. Similarly ‖A‖ = ‖(A + E) − E‖ ≤ ‖A + E‖ + ‖E‖,
so that −‖E‖ ≤ ‖A+E‖−‖A‖. The result follows from

−‖E‖ ≤ ‖A+E‖−‖A‖ ≤ ‖E‖.

The matrix p-norms below are based on the vector p-norms and measure
how much a matrix can stretch a unit-norm vector.
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34 2. Sensitivity, Errors, and Norms

Fact 2.14 (Matrix p-Norms). Let A ∈ C
n×m. The p-norm

‖A‖p = max
x �=0

‖Ax‖p

‖x‖p

= max‖x‖p=1
‖Ax‖p

is a matrix norm.

Remark 2.15. The matrix p-norms are extremely useful because they satisfy the
following submultiplicative inequality.

Let A ∈ C
m×n and y ∈ C

n. Then

‖Ay‖p ≤ ‖A‖p‖y‖p.

This is clearly true for y = 0, and for y �= 0 it follows from

‖A‖p = max
x �=0

‖Ax‖p

‖x‖p

≥ ‖Ay‖p

‖y‖p

.

The matrix one norm is equal to the maximal absolute column sum.

Fact 2.16 (One Norm). Let A ∈ C
m×n. Then

‖A‖1 = max
1≤j≤n

‖Aej‖1 = max
1≤j≤n

m∑
i=1

|aij |.

Proof.

• The definition of p-norms implies

‖A‖1 = max‖x‖1=1
‖Ax‖1 ≥ ‖Aej‖1, 1 ≤ j ≤ n.

Hence ‖A‖1 ≥ max1≤j≤n ‖Aej‖1.

• Let y = (
y1 . . . yn

)T be a vector with ‖A‖1 = ‖Ay‖1 and ‖y‖1 = 1.
Viewing the matrix vector product Ay as a linear combination of columns
of A, see Section 1.5, and applying the triangle inequality for vector norms
gives

‖A‖1 = ‖Ay‖1 = ‖y1Ae1 +·· ·+ynAen‖1 ≤ |y1|‖Ae1‖1 +·· ·+ |yn|‖Aen‖1

≤ (|y1|+ · · ·+ |yn|) max
1≤j≤n

‖Aej‖1.

From |y1|+ · · ·+ |yn| = ‖y‖1 = 1 follows ‖A‖1 ≤ max1≤j≤n ‖Aej‖1.

The matrix infinity norm is equal to the maximal absolute row sum.

Fact 2.17 (Infinity Norm). Let A ∈ C
m×n. Then

‖A‖∞ = max
1≤i≤m

‖A∗ei‖1 = max
1≤i≤m

n∑
j=1

|aij |.
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2.6. Matrix Norms 35

Proof. Denote the rows of A by r∗
i = e∗

i A, and let rk have the largest one norm,
‖rk‖1 = max1≤i≤m ‖ri‖1.

• Let y be a vector with ‖A‖∞ = ‖Ay‖∞ and ‖y‖∞ = 1. Then

‖A‖∞ = ‖Ay‖∞ = max
1≤i≤m

|r∗
i y| ≤ max

1≤i≤m
‖ri‖1‖y‖∞ = ‖rk‖1,

where the inequality follows from Fact 2.8. Hence ‖A‖∞ ≤ max1≤i≤ ‖ri‖1.
• For any vector y with ‖y‖∞ = 1 we have ‖A‖∞ ≥ ‖Ay‖∞ ≥ |r∗

k y|. Now
we show how to choose the elements of y such that ‖r∗

k y‖ = ‖rk‖1. Let
r∗
k = (

ρ1 . . . ρn

)
be the elements of r∗

k . Choose the elements of y such
that ρjyj = |ρj |. That is, if ρj = 0, then yj = 0, and otherwise yj = |ρj |/ρj .
Then ‖y‖∞ = 1 and |r∗

k y| = ∑n
j=1 ρjyj = ∑n

j=1 |ρj | = ‖rk‖1. Hence

‖A‖∞ ≥ |r∗
k y| = ‖rk‖1 = max

1≤i≤m
‖ri‖1.

The p-norms satisfy the following submultiplicative inequality.

Fact 2.18 (Norm of a Product). If A ∈ C
m×n and B ∈ C

n×p, then

‖AB‖p ≤ ‖A‖p‖B‖p.

Proof. Let x ∈ C
p such that ‖AB‖p = ‖ABx‖p and ‖x‖p = 1. Applying Remark

2.15 twice gives

‖AB‖p = ‖ABx‖p ≤ ‖A‖p‖Bx‖p ≤ ‖A‖p‖B‖p‖x‖p = ‖A‖p‖B‖p.

Since the computation of the two norm is more involved, we postpone it
until later. However, even without knowing how to compute it, we can still derive
several useful properties of the two norm. If x is a column vector, then ‖x‖2

2 = x∗x.
We show below that an analogous property holds for matrices. We also show that
a matrix and its transpose have the same two norm.

Fact 2.19 (Two Norm). Let A ∈ C
m×n. Then

‖A∗‖2 = ‖A‖2, ‖A∗A‖2 = ‖A‖2
2.

Proof. The definition of the two norm implies that for some x ∈ C
n with ‖x‖2 = 1

we have ‖A‖2 = ‖Ax‖2. The definition of the vector two norm implies

‖A‖2
2 = ‖Ax‖2

2 = x∗A∗Ax ≤ ‖x‖2‖A∗Ax‖2 ≤ ‖A∗A‖2,

where the first inequality follows from the Cauchy–Schwarz inequality in Fact 2.8
and the second inequality from the two norm of A∗A. Hence ‖A‖2

2 ≤ ‖A∗A‖2.
Fact 2.18 implies ‖A∗A‖2 ≤ ‖A∗‖2‖A‖2. As a consequence,

‖A‖2
2 ≤ ‖A∗A‖2 ≤ ‖A∗‖2‖A‖2, ‖A‖2 ≤ ‖A∗‖2.
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36 2. Sensitivity, Errors, and Norms

The same reasoning applied to AA∗ gives

‖A∗‖2
2 ≤ ‖AA∗‖2 ≤ ‖A‖2‖A∗‖2, ‖A∗‖2 ≤ ‖A‖2.

Therefore ‖A∗‖2 = ‖A‖2 and ‖A∗A‖2 = ‖A‖2
2.

If we omit a piece of a matrix, the norm does not increase but it can decrease.

Fact 2.20 (Norm of a Submatrix). Let A ∈ C
m×n. If B is a submatrix of A, then

‖B‖p ≤ ‖A‖p.

Exercises

(i) Let D ∈ C
n×n be a diagonal matrix with diagonal elements djj . Show that

‖D‖p = max1≤j≤n |djj |.
(ii) Let A ∈ C

n×n be nonsingular. Show: ‖A‖p‖A−1‖p ≥ 1.
(iii) Show: If P is a permutation matrix, then ‖P ‖p = 1.
(iv) Let P ∈ R

m×m, Q ∈ R
n×n be permutation matrices and let A ∈ C

m×n. Show:
‖PAQ‖p = ‖A‖p.

(v) Let U ∈ C
m×m and V ∈ C

n×n be unitary. Show: ‖U‖2 = ‖V ‖2 = 1, and
‖UBV ‖2 = ‖B‖2 for any B ∈ C

m×n.
(vi) Let x ∈ C

n. Show: ‖x∗‖2 = ‖x‖2 without using Fact 2.19.
(vii) Let x ∈ C

n. Is ‖x‖1 = ‖x∗‖1, and ‖x‖∞ = ‖x∗‖∞? Why or why not?
(viii) Let x ∈ C

n be the vector of all ones. Determine

‖x‖1, ‖x∗‖1, ‖x‖∞, ‖x∗‖∞, ‖x‖2, ‖x∗‖2.

(ix) For each of the two equalities, determine a class of matrices A that satisfy
the equality ‖A‖∞ = ‖A‖1, and ‖A‖∞ = ‖A‖1 = ‖A‖2.

(x) Let A ∈ C
m×n. Then ‖A‖∞ = ‖A∗‖1.

1. Verify that the matrix p-norms do indeed satisfy the three properties of a
matrix norm in Definition 2.12.

2. Let A ∈ C
m×n. Prove:

max
i,j

|aij | ≤ ‖A‖2 ≤ √
mnmax

i,j
|aij |,

1√
n
‖A‖∞ ≤ ‖A‖2 ≤ √

m‖A‖∞,

1√
m

‖A‖1 ≤ ‖A‖2 ≤ √
n‖A‖1.

3. Norms of Outer Products.
Let x ∈ C

m and y ∈ C
n. Show:

‖xy∗‖2 = ‖x‖2‖y‖2, ‖xy∗‖∞ = ‖x‖∞‖y‖1.
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2.7. Conditioning of Matrix Addition and Multiplication 37

4. Given an approximate solution z, here is the matrix perturbation of smallest
two norm that “realizes” z, in the sense that the perturbed system has z as a
solution.
Let A ∈ C

n×n, Ax = b, and z �= 0. Show: Among all matrices E with
(A+E)z = b the matrix E0 = (b−Az)z† has the smallest two norm, where
z† = (z∗z)−1z∗.

5. Norms of Idempotent Matrices.
Show: If A �= 0 is idempotent, then ‖A‖p ≥ 1. If A is also Hermitian, then
‖A‖2 = 1.

6. Let A ∈ C
n×n. Show: Among all Hermitian matrices, 1

2 (A + A∗) is the
matrix that is closest to A in the two norm.

2.7 Conditioning of Matrix Addition and
Multiplication

We derive normwise relative bounds for matrix addition and subtraction, as well
as for matrix multiplication.

Fact 2.21 (Matrix Addition). Let U ,V , Ũ , Ṽ ∈ C
m×n such that U ,V ,U +V �= 0.

Then
‖Ũ + Ṽ − (U +V )‖p

‖U +V ‖p

≤ ‖U‖p +‖V ‖p

‖U +V ‖p

max{εU , εV },
where

εU = ‖Ũ −U‖p

‖U‖p

, εV = ‖Ṽ −V ‖p

‖V ‖p

.

Proof. The triangle inequality implies

‖Ũ + Ṽ − (U +V )‖p ≤ ‖Ũ −U‖p +‖Ṽ −V ‖p = ‖U‖pεU +‖V ‖pεV

≤ (‖U‖p +‖V ‖p)max{εU ,εV }.
The condition number for adding, or subtracting, the matrices U and

V is (‖U‖p + ‖V ‖p)/‖U + V ‖p. It is analogous to the condition number for
scalar subtraction in Fact 2.4. If ‖U‖p + ‖V ‖p ≈ ‖U + V ‖p, then the matrix
addition U + V is well-conditioned in the normwise relative sense. But if
‖U‖p + ‖V ‖p � ‖U + V ‖p, then the matrix addition U + V is ill-conditioned
in the normwise relative sense.

Fact 2.22 (Matrix Multiplication). Let U , Ũ ∈ C
m×n and V , Ṽ ∈ C

n×p such that
U ,V ,UV �= 0. Then

‖Ũ Ṽ −UV ‖p

‖UV ‖p

≤ ‖U‖p‖V ‖p

‖UV ‖p

(εU + εV + εUεV ) ,

where

εU = ‖Ũ −U‖p

‖U‖p

, εV = ‖Ṽ −V ‖p

‖V ‖p

.
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38 2. Sensitivity, Errors, and Norms

Proof. If Ũ = U +E and Ṽ = V +F , then

Ũ Ṽ −UV = (U +E)(V +F)−UV = UF +EV +EF .

Now take norms, apply the triangle inequality, and divide by ‖UV ‖p.

Fact 2.22 shows that the normwise relative condition number for multiply-
ing matrices U and V is ‖U‖p‖V ‖p/‖UV ‖p. If ‖U‖p‖V ‖p ≈ ‖UV ‖p, then
the matrix multiplication UV is well-conditioned in the normwise relative sense.
However, if ‖U‖p‖V ‖p � ‖UV ‖p, then the matrix multiplication UV is ill-
conditioned in the normwise relative sense.

Exercises

(i) What is the two-norm condition number of a product where one of the ma-
trices is unitary?

(ii) Normwise absolute condition number for matrix multiplication when one of
the matrices is perturbed.
Let U ,V ∈ C

n×n, and U be nonsingular. Show:

‖F‖p

‖U−1‖p

≤ ‖U(V +F)−UV ‖p ≤ ‖U‖p‖F‖p.

(iii) Here is a bound on the normwise relative error for matrix multiplication with
regard to the perturbed product.
Let U ∈ C

m×n and V ∈ C
n×m. Show: If (U +E)(V +F) �= 0, then

‖(U +E)(V +F)−UV ‖p

‖(U +E)(V +F)‖p

≤ ‖U +E‖p‖V +F‖p

‖(U +E)(V +F)‖p

(εU + εV + εUεV ) ,

where

εU = ‖E‖p

‖U +E‖p

, εV = ‖F‖p

‖V +F‖p

.

2.8 Conditioning of Matrix Inversion
We determine the sensitivity of the inverse to perturbations in the matrix.

We start by bounding the inverse of a perturbed identity matrix. If the
norm of the perturbation is sufficiently small, then the perturbed identity matrix is
nonsingular.

Fact 2.23 (Inverse of Perturbed Identity). If A ∈ C
n×n and ‖A‖p < 1, then

I +A is nonsingular and

1

1+‖A‖p

≤ ‖(I +A)−1‖p ≤ 1

1−‖A‖p

.

If also ‖A‖p ≤ 1/2, then ‖(I +A)−1‖p ≤ 2.

Soc
iet

y fo
r I

ndustr
ial

 an
d A

pplie
d M

at
hem

at
ics

Copyright ©2009 by the Society for Industrial and Applied Mathematics 
This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html



“book”
2009/5/27
page 39

�

�

�

�

�

�

�

�

2.8. Conditioning of Matrix Inversion 39

Proof. Suppose, to the contrary, that ‖A‖p < 1 and I +A is singular. Then there
is a vector x �= 0 such that (I + A)x = 0. Hence ‖x‖p = ‖Ax‖p ≤ ‖A‖p‖x‖p

implies ‖A‖p ≥ 1, a contradiction.

• Lower bound: I = (I +A)(I +A)−1 implies

1 = ‖I‖p ≤ ‖I +A‖p‖(I +A)−1‖p ≤ (1+‖A‖p)‖(I +A)−1‖p.

• Upper bound: From

I = (I +A)(I +A)−1 = (I +A)−1 +A(I +A)−1

follows

1 = ‖I‖p ≥ ‖(I +A)−1‖p −‖A(I +A)−1‖p ≥ (1−‖A‖p)‖(I +A)−1‖p.

If ‖A‖p ≤ 1/2, then 1/(1−‖A‖p) ≤ 2.

Below is the corresponding result for inverses of general matrices.

Corollary 2.24 (Inverse of Perturbed Matrix). Let A ∈ C
n×n be nonsingular

and ‖A−1E‖p < 1. Then A+E is nonsingular and

‖(A+E)−1‖p ≤ ‖A−1‖p

1−‖A−1E‖p

.

If also ‖A−1‖p‖E‖p ≤ 1/2, then ‖(A+E)−1‖p ≤ 2‖A−1‖p.

Proof. Since A is nonsingular, we can write A + E = A(I + A−1E). From
‖A−1E‖p < 1 follows with Fact 2.23 that I +A−1E is nonsingular. Hence A+E

is nonsingular. Its inverse can be written as (A+E)−1 = (I +A−1E)−1A−1. Now
take norms and apply Fact 2.23.

The second assertion follows from ‖A−1E‖p ≤ ‖A−1‖p‖E‖p ≤ 1/2.

Corollary 2.24 implies that if the perturbation E is sufficiently small, then
‖(A+E)−1‖p exceeds ‖A−1‖p by a factor of at most two.

We use the above bounds to derive normwise condition numbers for the
inverses of general nonsingular matrices. A perturbation of a nonsingular matrix
remains nonsingular if the perturbation is small enough in the normwise relative
sense.

Fact 2.25. If A ∈ C
n×n is nonsingular and ‖A−1E‖p < 1, then

‖(A+E)−1 −A−1‖p ≤ ‖A−1‖p

‖A−1E‖p

1−‖A−1E‖p

.

If also ‖A−1‖p‖E‖p ≤ 1/2, then

‖(A+E)−1 −A−1‖p

‖A−1‖p

≤ 2κp(A)
‖E‖p

‖A‖p

,

where κp(A) = ‖A‖p‖A−1‖p ≥ 1.
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40 2. Sensitivity, Errors, and Norms

Proof. Corollary 2.24 implies that A+E is nonsingular. Abbreviating F = A−1E,
we obtain for the absolute difference

(A+E)−1 −A−1 = (I +F)−1A−1 −A−1

=
(
(I +F)−1 − I

)
A−1 = −(I +F)−1FA−1,

where the last equation follows from (I +F)−1(I +F) = I . Taking norms and
applying the first bound in Fact 2.23 yields

‖(A+E)−1 −A−1‖p ≤ ‖(I +F)−1‖p‖F‖p‖A−1‖p ≤ ‖A−1‖p

‖F‖
1−‖F‖p

.

If ‖A−1‖p‖E‖p ≤ 1/2, then the second bound in Fact 2.23 implies

‖(A+E)−1 −A−1‖p ≤ 2‖F‖p‖A−1‖p,

where

‖F‖p ≤ ‖A−1‖p‖E‖p = ‖A‖p‖A−1‖p

‖E‖p

‖A‖p

= κp(A)
‖E‖p

‖A‖p

.

The lower bound for κp(A) follows from

1 = ‖I‖p = ‖AA−1‖p ≤ ‖A‖p‖A−1‖p = κp(A).

Remark 2.26. We can conclude the following from Fact 2.25:

• The inverse of A is well-conditioned in the absolute sense if its norm is
“small.” In particular, the perturbed matrix is nonsingular if the perturba-
tion has small enough norm.

• The inverse of A is well-conditioned in the relative sense if κp(A) is “close
to” 1. Note that κp(A) ≥ 1.

Definition 2.27. LetA ∈ C
n×n be nonsingular. The numberκp(A) = ‖A‖p‖A−1‖p

is a normwise relative condition number of A with respect to inversion.

According to Fact 2.25, a perturbed matrix A + E is nonsingular if
‖A−1E‖p < 1. Is this bound pessimistic, or is it tight? Does it imply that if
‖A−1E‖p = 1, then A+E can be singular? The answer is “yes.” We illustrate
this now for the two norm.

Example 2.28. Let A ∈ C
n×n be nonsingular. We show how to construct an outer

product E such that ‖A−1E‖2 = 1 and A+E is singular.
Set E = −yx∗/‖x‖2

2, where x �= 0 and y �= 0 are vectors we still need to
choose. Since E is an outer product, Exercise 3 in Section 2.6 implies

‖A−1E‖2 = ‖(A−1y)x∗‖2

‖x‖2
2

= ‖A−1y‖2‖x‖2

‖x‖2
2

= ‖A−1y‖2

‖x‖2
.
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2.8. Conditioning of Matrix Inversion 41

Choosing x = A−1y gives ‖A−1E‖2 = 1 and (A+E)x = Ax +Ex = Ax −y = 0.
Since (A+E)x = 0 for x �= 0, the matrix A+E must be singular.

Therefore, if A is nonsingular, y �= 0 is any vector, x = A−1y, and E =
yx∗/‖x‖2

2, then ‖A−1E‖2 = 1 and A+E is singular.

Exercise 3 in Section 2.6 implies that the two norm of the perturbation in
Example 2.28 is ‖E‖2 = ‖y‖2/‖x‖2 = ‖y‖2/‖A−1y‖2. What is the smallest two
norm a matrix E can have that makes A+E singular? We show that the smallest
norm such an E can have is equal to 1/‖A−1‖2.

Fact 2.29 (Absolute Distance to Singularity). Let A ∈ C
n×n be nonsingular.

Then

min {‖E‖2 : A+E is singular} = 1

‖A−1‖2
.

Proof. Let E ∈ C
n×n be any matrix such that A+E is singular. Then there is a

vector x �= 0 so that (A+E)x = 0. Hence ‖x‖2 = ‖A−1Ex‖2 ≤ ‖A−1‖2‖E‖2‖x‖2
implies ‖E‖2 ≥ 1/‖A−1‖2. Since this is true for any E that makes A+E singular,
1/‖A−1‖2 is a lower bound for the absolute distance of A to singularity.

Now we show that there is a matrix E0 that achieves equality. Construct E0
as in Example 2.28, and choose the vector y such that ‖A−1‖2 = ‖A−1y‖2 and
‖y‖2 = 1. Then ‖E0‖2 = ‖y‖2‖A−1y‖2 = 1/‖A−1‖2.

Corollary 2.30 (Relative Distance to Singularity). Let A ∈ C
n×n be nonsingular.

Then

min

{‖E‖2

‖A‖2
: A+E is singular

}
= 1

κ2(A)
,

where κ2(A) = ‖A‖2‖A−1‖2.

Therefore, matrices that are ill-conditioned with respect to inversion are close
to singular, and vice versa. In other words, matrices that are close to being singular
have sensitive inverses.

The example below illustrates that absolute and relative distance to singu-
larity are not the same.

Example. Just because a matrix is close to singularity in the absolute sense does
not imply that it is also close to singularity in the relative sense. To see this, let

A =
(

ε ε

0 ε

)
, 0 < ε � 1, A−1 =

(
1
ε

1
ε

0 1
ε

)
.

Exercise 2 in Section 2.6 implies for an n×n matrix B that ‖B‖2 ≤ nmaxij |bij |.
Hence ε ≤ ‖A‖2 ≤ 2ε and 1

ε
≤ ‖A−1‖2 ≤ 2

ε
. Therefore,

ε

2
≤ 1

‖A−1‖2
≤ ε,

1

4
≤ 1

κ2(A)
≤ 1,
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42 2. Sensitivity, Errors, and Norms

so that A is close to singularity in the absolute sense, but far from singularity in
the relative sense.

Exercises

(i) Let A ∈ C
n×n be unitary. Show: κ2(A) = 1.

(ii) Let A,B ∈ C
n×n be nonsingular. Show: κp(AB) ≤ κp(A)κp(B).

(iii) Residuals for Matrix Inversion.
Let A,A+E ∈ C

n×n be nonsingular, and let Z = (A+E)−1. Show:

‖AZ − In‖p ≤ ‖E‖p‖Z‖p, ‖ZA− In‖p ≤ ‖E‖p‖Z‖p.

1. For small enough perturbations, the identity matrix is well-conditioned with
respect to inversion, in the normwise absolute and relative sense.
Show: If A ∈ C

n×n and ‖A‖p < 1, then

‖(I +A)−1 − I‖p ≤ ‖A‖p

1−‖A‖p

,

and if ‖A‖p ≤ 1/2, then

‖(I +A)−1 − I‖p ≤ 2‖A‖p.

2. If the norm of A is small enough, then (I +A)−1 ≈ I −A.
Let A ∈ C

n×n and ‖A‖p ≤ 1/2. Show:

‖(I −A)− (I +A)−1‖p ≤ 2‖A‖2
p.

3. One can also bound the relative error with regard to (A+E)−1.
Let A and A+E be nonsingular. Show:

‖(A+E)−1 −A−1‖p

‖(A+E)−1‖p

≤ κp(A)
‖E‖p

‖A‖p

.

4. A matrix A ∈ C
n×n is called strictly column diagonally dominant if

n∑
i=1,i �=j

|aij | < |ajj |, 1 ≤ j ≤ n.

Show: A strictly column diagonally dominant matrix is nonsingular.
5. Let A ∈ C

n×n be nonsingular. Show: κp(A) ≥ ‖A‖p/‖A − B‖p for any
singular matrix B ∈ C

n×n.
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We present algorithms for solving systems of linear equations whose coefficient
matrix is nonsingular, and we discuss the accuracy of these algorithms.

3.1 The Meaning of Ax = b
First we examine when a linear system has a solution.

Fact 3.1 (Two Views of a Linear System). Let A ∈ C
m×n and b ∈ C

m×1.

1. The linear system Ax = b has a solution if and only if there is a vector x that
solves the m equations

r1x = b1, . . . , rmx = bm,

where

A =

r1

...
rm


 , b =


b1

...
bm


 .

2. The linear system Ax = b has a solution if and only if b is a linear combination
of the columns of A,

b = a1x1 +·· ·+anxn,

where

A = (
a1 . . . an

)
, x =


x1

...
xn


 .

When the matrix is nonsingular, the linear system has a solution for any
right-hand side, and the solution can be represented in terms of the inverse of A.

43
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44 3. Linear Systems

Corollary 3.2 (Existence and Uniqueness). If A ∈ C
n×n is nonsingular, then

Ax = b has the unique solution x = A−1b for every b ∈ C
n.

Before we discuss algorithms for solving linear systems we need to take into
account, as discussed in Chapter 2, that the matrix and right-hand side may be
contaminated by uncertainties. This means, instead of solving Ax = b, we solve
a perturbed system (A+E)z = b +f . We want to determine how sensitive the
solution is to the perturbations f and E.

Even if we don’t know the perturbations E and f , we can estimate them
from the approximate solution z. To this end, define the residual r = Az−b. We
can view z as the solution to a system with perturbed right-hand side, Az = b+ r .
If z �= 0, then we can also view z as the solution to a system with perturbed matrix,

(A+E)z = b, where E = − rz∗

‖z‖2
2

,

see Exercise 1 below.

Exercises

(i) Determine the solution to Ax = b when A is unitary (orthogonal).
(ii) Determine the solution to Ax = b when A is involutory.

(iii) Let A consist of several columns of a unitary matrix, and let b be such that
the linear system Ax = b has a solution. Determine a solution to Ax = b.

(iv) Let A be idempotent. When does the linear system Ax = b have a solution
for every b?

(v) Let A be a triangular matrix. When does the linear system Ax = b have a
solution for any right-hand side b?

(vi) Let A = uv∗ be an outer product, where u and v are column vectors. For
which b does the linear system Ax = b have a solution?

(vii) Determine a solution to the linear system
(
A B

)(x1
x2

)
= 0 when A is non-

singular. Is the solution unique?

1. Matrix Perturbations from Residuals.
This problem shows how to construct a matrix perturbation from the residual.
Let A ∈ C

n×n be nonsingular, Ax = b, and z ∈ C
n a nonzero approximation

to x. Show that (A+E0)z = b, where E0 = (b−Az)z† and z† = (z∗z)−1z∗;
and that (A+E)z = b, where E = E0 +G(I − zz†) and G ∈ C

n×n is any
matrix.

2. In Problem 1 above show that, among all matrices F that satisfy(A+F)z=b,
the matrix E0 is one with smallest two norm, i.e., ‖E0‖2 ≤ ‖F‖2.

3.2 Conditioning of Linear Systems
We derive normwise bounds for the conditioning of linear systems. The following
two examples demonstrate that it is not obvious how to estimate the accuracy of
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3.2. Conditioning of Linear Systems 45

an approximate solution z for a linear system Ax = b. In particular, they illustrate
that the residual r = Az−b may give misleading information about how close z

is to x.

Example 3.3. We illustrate that a totally wrong approximate solution can have a
small residual norm.

Consider the linear system Ax = b with

A =
(

1 1
1 1+ ε

)
, b =

(
2

2+ ε

)
, 0 < ε � 1, x =

(
1
1

)
,

whose solution x is approximated by z = (
2 0

)T . The residual

r = Az−b =
(

0
−ε

)

has a small norm, ‖r‖p = ε, because ε is small. This appears to suggest that z

does a good job of solving the linear system. However, comparing z to the exact
solution,

z−x =
(−1

1

)
,

shows that z is a bad approximation to x. Therefore, a small residual norm does
not imply that z is close to x.

The same thing can happen even for triangular matrices, as the next example
shows.

Example 3.4. For the linear system Ax = b with

A =
(

1 108

0 1

)
, b =

(
1+108

1

)
, x =

(
1
1

)
,

consider the approximate solution

z =
(

0
1+10−8

)
, r = Az−b =

(
0

10−8

)
.

As in the previous example, the residual has small norm, i.e., ‖r‖p = 10−8, but z

is totally inaccurate,

z−x =
( −1

10−8

)
.

Again, the residual norm is deceptive. It is small even though z is a bad approxi-
mation to x.

The bound below explains why inaccurate approximations can have residuals
with small norm.
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46 3. Linear Systems

Fact 3.5 (Residual Bound). Let A ∈ C
n×n be nonsingular, Ax = b, and b �= 0. If

r = Az−b, then

‖z−x‖p

‖x‖p

≤ κp(A)
‖r‖p

‖A‖p‖x‖p

.

Proof. If b �= 0 and A is nonsingular, then x �= 0; see Fact 1.10. The desired bound
follows immediately from the perturbation bound for matrix multiplication: Apply
Fact 2.22 to U = Ũ = A−1, V = b, Ṽ = b + r , εU = 0, and εV = ‖r‖p/‖b‖p to
obtain

‖z−x‖p

‖x‖p

≤ ‖A−1‖p‖b‖p

‖A−1b‖p

‖r‖p

‖b‖p

= ‖A‖p‖A−1‖p

‖r‖p

‖A‖p‖x‖p

.

The quantity κp(A) is the normwise relative condition number of A with
respect to inversion; see Definition 2.27. The bound in Fact 3.5 implies that the
linear system Ax = b is well-conditioned if κp(A) is small. In particular, if κp(A)

is small and the relative residual norm ‖r‖p

‖A‖p‖x‖p
is also small, then the approximate

solution z has a small error (in the normwise relative sense). However, if κp(A) is
large, then the linear system is ill-conditioned. We return to Examples 3.3 and 3.4
to illustrate the bound in Fact 3.5.

Example. The linear system Ax = b in Example 3.3 is

A =
(

1 1
1 1+ ε

)
, b =

(
2

2+ ε

)
, 0 < ε � 1, x =

(
1
1

)
,

and has an approximate solution z = (
2 0

)T with residual

r = Az−b =
(

0
−ε

)
.

The relative error in the infinity norm is ‖z−x‖∞/‖x‖∞ = 1, indicating that z has
no accuracy whatsoever. To see what the bound in Fact 3.5 predicts, we determine
the inverse

A−1 = 1

ε

(
1+ ε −1
−1 1

)
,

the matrix norms

‖A‖∞ = 2+ ε, ‖A−1‖∞ = 2+ ε

ε
, κ∞(A) = (2+ ε)2

ε
,

as well as the ingredients for the relative residual norm

‖r‖∞ = ε, ‖x‖∞ = 1,
‖r‖∞

‖A‖∞‖x‖∞
= ε

2+ ε
.
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3.2. Conditioning of Linear Systems 47

Since κ∞(A) ≈ 4/ε, the system Ax = b is ill-conditioned. The bound in Fact 3.5
equals

‖z−x‖∞
‖x‖∞

≤ κ∞(A)
‖r‖∞

‖A‖∞‖x‖∞
= 2+ ε,

and so it correctly predicts the total inaccuracy of z. The small relative residual
norm of about ε/2 here is deceptive because the linear system is ill-conditioned.

Even triangular systems are not immune from ill-conditioning.

Example 3.6. The linear system Ax = b in Example 3.4 is

A =
(

1 108

0 1

)
, b =

(
1+108

1

)
, x =

(
1
1

)
,

and has an approximate solution z = (
0 1+10−8

)T
with residual

r = Az−b =
(

0
10−8

)
.

The normwise relative error in the infinity norm is ‖z−x‖∞/‖x‖∞ = 1 and indi-
cates that z has no accuracy. From

A−1 =
(

1 −108

0 1

)

we determine the condition number for Ax = b as κ∞(A) = (1 + 108)2 ≈ 1016.
Note that conditioning of triangular systems cannot be detected by merely looking
at the diagonal elements; the diagonal elements of A are equal to 1 and far from
zero, but nevertheless A is ill-conditioned with respect to inversion.

The relative residual norm is

‖r‖∞
‖A‖∞‖x‖∞

= 10−8

1+108
≈ 10−16.

As a consequence, the bound in Fact 3.5 equals

‖z−x‖∞
‖x‖∞

≤ κ∞(A)
‖r‖∞

‖A‖∞‖x‖∞
= (1+108)10−8 ≈ 1,

and it correctly predicts that z has no accuracy at all.

The residual bound below does not require knowledge of the exact solution.
The bound is analogous to the one in Fact 3.5 but bounds the relative error with
regard to the perturbed solution.

Fact 3.7 (Computable Residual Bound). Let A ∈ C
n×n be nonsingular and

Ax = b. If z �= 0 and r = Az−b, then

‖z−x‖p

‖z‖p

≤ κp(A)
‖r‖p

‖A‖p‖z‖p

.
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48 3. Linear Systems

We will now derive bounds that separate the perturbations in the matrix from
those in the right-hand side. We first present a bound with regard to the relative
error in the perturbed solution because it is easier to derive.

Fact 3.8 (Matrix and Right-Hand Side Perturbation). Let A ∈ C
n×n be non-

singular and let Ax = b. If (A+E)z = b+f with z �= 0, then

‖z−x‖p

‖z‖p

≤ κp(A)
(
εA + εf

)
,

where

εA = ‖E‖p

‖A‖p

, εf = ‖f ‖p

‖A‖p‖z‖p

.

Proof. In the bound in Fact 3.7, the residual r accounts for both perturba-
tions, because if (A + E)z = b + f , then r = Az − b = f − Ez. Replacing
‖r‖p ≤ ‖E‖p‖z‖p +‖f ‖p in Fact 3.7 gives the desired bound.

Below is an analogous bound for the error with regard to the exact solu-
tion. In contrast to Fact 3.8, the bound below requires the perturbed matrix to be
nonsingular.

Fact 3.9 (Matrix and Right-Hand Side Perturbation). Let A ∈ C
n×n be non-

singular, and let Ax = b with b �= 0. If (A+E)z = b+f with ‖A−1‖p‖E‖p ≤ 1/2,
then ‖z−x‖p

‖x‖p

≤ 2κp(A)
(
εA + εf

)
,

where

εA = ‖E‖p

‖A‖p

, εf = ‖f ‖p

‖A‖p‖x‖p

.

Proof. We could derive the desired bound from the perturbation bound for matrix
multiplication in Fact 2.22 and matrix inversion in Fact 2.25. However, the re-
sulting bound would not be tight, because it does not exploit any relation between
matrix and right-hand side. This is why we start from scratch.

Subtracting (A + E)x = b + Ex from (A + E)z = b + f gives (A + E)

(z− x) = f −Ex. Corollary 2.24 implies that A+E is nonsingular. Hence we
can write z − x = (A+E)−1(−Ex +f ). Taking norms and applying Corollary
2.24 yields

‖z−x‖p ≤ 2‖A−1‖p(‖E‖p‖x‖p +‖f ‖p) = 2κp(A)(εA + εf )‖x‖p.

We can simplify the bound in Fact 3.9 and obtain a weaker version.

Corollary 3.10. Let Ax = b with A ∈ C
n×n nonsingular and b �= 0. If (A+E)

z = b+f with ‖A−1‖p‖E‖p < 1/2, then

‖z−x‖p

‖x‖p

≤ 2κp(A)(εA + εb) , where εA = ‖E‖p

‖A‖p

, εb = ‖f ‖p

‖b‖p

.
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3.2. Conditioning of Linear Systems 49

Proof. In Fact 3.9 bound ‖b‖p ≤ ‖A‖p‖x‖p.

Effect of the Right-Hand Side. So far we have focused almost exclusively on
the effect that the matrix has on the conditioning of the linear system, and we have
ignored the right-hand side. The advantage of this approach is that the resulting
perturbation bounds hold for all right-hand sides. However, the bounds can be too
pessimistic for some right-hand sides, as the following example demonstrates.

Example 3.11. We illustrate that a favorable right-hand side can improve the con-
ditioning of a linear system. Let’s change the right-hand side in Example 3.6 and
consider the linear system Ax = b with

A =
(

1 108

0 1

)
, b =

(
1
1

)
, x =

(
1−108

1

)

and the approximate solution

z =
(−108 −9

1+10−7

)
, r = Az−b =

(
0

10−7

)
.

Although κ∞(A) ≈ 1016 implies that A is ill-conditioned with respect to inversion,
the relative error in z is surprisingly small,

‖z−x‖∞
‖x‖∞

= 10

1−108
≈ 10−7.

The bound in Fact 3.5 recognizes this, too. From

κ∞(A) = (1+108)2,
‖r‖∞

‖A‖∞‖x‖∞
= 10−7

(108 −1)(108 +1)
,

we obtain

‖z−x‖∞
‖x‖∞

≤ κ∞(A)
‖r‖∞

‖A‖∞‖x‖∞
= 108 +1

108 −1
10−7 ≈ 10−7.

So, what is happening here? Observe that the relative residual norm is extremely
small, ‖r‖∞‖A‖∞‖x‖∞ ≈ 10−23, and that the norms of the matrix and solution are large

compared to the norm of the right-hand side; i.e., ‖A‖∞‖x‖∞ ≈ 1016 � ‖b‖∞ = 1.
We can represent this situation by writing the bound in Fact 3.5 as

‖z−x‖∞
‖x‖∞

≤ ‖A−1‖∞‖b‖∞
‖A−1b‖∞

‖r‖∞
‖b‖∞

.

Because ‖A−1‖∞‖b‖∞/‖A−1b‖∞ ≈ 1, the matrix multiplication of A−1 with b

is well-conditioned with regard to changes in b. Hence the linear system Ax = b

is well-conditioned for this very particular right-hand side b.
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50 3. Linear Systems

Exercises

(i) Absolute Residual Bounds.
Let A ∈ C

n×n be nonsingular, Ax = b, and r = Az − b for some z ∈ C
n.

Show:

‖r‖p

‖A‖p

≤ ‖z−x‖p ≤ ‖A−1‖p‖r‖p.

(ii) Lower Bounds for Normwise Relative Error.
Let A ∈ C

n×n be nonsingular, Ax = b, b �= 0, and r = Az − b for some
z ∈ C

n. Show:

‖r‖p

‖A‖p‖x‖p

≤ ‖z−x‖p

‖x‖p

,
1

κp(A)

‖r‖p

‖b‖p

≤ ‖z−x‖p

‖x‖p

.

(iii) Relation between Relative Residual Norms.
Let A ∈ C

n×n be nonsingular, Ax = b, b �= 0, and r = Az − b for some
z ∈ C

n. Show:

‖r‖p

‖A‖p‖x‖p

≤ ‖r‖p

‖b‖p

≤ κp(A)
‖r‖p

‖A‖p‖x‖p

.

(iv) If a linear system is well-conditioned, and the relative residual norm is small,
then the approximation has about the same norm as the solution.
Let A ∈ C

n×n be nonsingular and b �= 0. Prove: If

ρκ < 1, where κ = κp(A), ρ = ‖b−Az‖p

‖b‖p

,

then

1−κρ ≤ ‖z‖p

‖x‖p

≤ 1+κρ.

(v) For this special right-hand side, the linear system is well-conditioned with
regard to changes in the right-hand side.
Let A ∈ C

n×n be nonsingular, Ax = b, and Az = b+f . Show: If ‖A−1‖p =
‖A−1b‖p/‖b‖p, then

‖z−x‖p

‖x‖p

≤ ‖f ‖p

‖b‖p

.

1. Let A ∈ C
n×n be the bidiagonal matrix

A =




1 −α

1 −α

. . .
. . .
1 −α

1


 .
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(a) Show:

κ∞(A) =
{ |α|+1

|α|−1 (|α|n −1) if |α| �= 1,

2n if |α| = 1.

Hint: See Exercise 4 in Section 1.13.

(b) Suppose we want to compute an approximation to the solution of
Ax = en when α = 2 and n = 100. How small, approximately, must
the residual norm be so that the normwise relative error bound is less
than .1?

2. Componentwise Condition Numbers.
Let A ∈ C

n×n be nonsingular, b �= 0, and Ax = b. Prove: If xj �= 0, then

|zj −xj |
|xj | ≤ κj

‖b−Az‖p

‖b‖p

, where κj = ‖x‖p

|x|j ‖e∗
jA

−1‖p‖A‖p.

We can interpret κj as the condition number for xj . Which components of x

would you expect to be sensitive to perturbations?
3. Condition Estimation.

Let A be nonsingular. Show how to determine a lower bound for κp(A) with
one linear system solution involving A.

3.3 Solution of Triangular Systems
Linear systems with triangular matrices are easy to solve. In the algorithm below
we use the symbol “≡” to represent an assignment of a value.

Algorithm 3.1. Upper Triangular System Solution.

Input: Nonsingular, upper triangular matrix A ∈ C
n×n, vector b ∈ C

n

Output: x = A−1b

1. If n = 1, then x ≡ b/A.
2. If n > 1, partition

A =
( n−1 1

n−1 Â a

1 0 ann

)
, x =

(
n−1 x̂

1 xn

)
, b =

(
n−1 b̂

1 bn

)
.

(i) Set xn ≡ bn/ann.

(ii) Repeat the process on the smaller system Âx̂ = b̂−xna.

The process of solving an upper triangular system is also called backsub-
stitution, and the process of solving a lower triangular system is called forward
elimination.
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52 3. Linear Systems

Exercises

(i) Describe an algorithm to solve a nonsingular lower triangular system.
(ii) Solution of Block Upper Triangular Systems.

Even if A is not triangular, it may have a coarser triangular structure of which
one can take advantage. For instance, let

A =
(

A11 A12
0 A22

)
,

where A11 and A22 are nonsingular. Show how to solve Ax = b by solving
two smaller systems.

(iii) Conditioning of Triangular Systems.
This problem illustrates that a nonsingular triangular matrix is ill-conditioned
if a diagonal element is small in magnitude compared to the other nonzero
matrix elements.
Let A ∈ C

n×n be upper triangular and nonsingular. Show:

κ∞(A) ≥ ‖A‖∞
min1≤j≤n |ajj | .

3.4 Stability of Direct Methods

We do not solve general nonsingular systems Ax = b by first forming A−1 and
then multiplying by b (likewise, you would not compute 2/4 by first forming 1/4
and then multiplying by 2). It is too expensive and numerically less accurate; see
Exercise 4 below.

A more efficient approach factors A into a product of simpler matrices and
then solves a sequence of simpler linear systems. Examples of such factorizations
include:

• LU factorization: A = LU (if it exists), where L is lower triangular, and
U is upper triangular.

• Cholesky factorization: A = LL∗ (if it exists), where L is lower triangular.
• QR factorization: A = QR, where Q is unitary and R is upper triangular. If

A is real, then Q is real orthogonal.

Methods that solve linear systems by first factoring a matrix are called direct
methods. In general, a direct method factors A = S1S2 (where “S” stands for
“simpler matrix”) and then computes the solution x = A−1b = S−1

2 S−1
1 b by solving

two linear systems.

Algorithm 3.2. Direct Method.

Input: Nonsingular matrix A ∈ C
n×n, vector b ∈ C

n

Output: Solution of Ax = b

1. Factor A = S1S2.
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3.4. Stability of Direct Methods 53

2. Solve the system S1y = b.
3. Solve the system S2x = y.

Each step of the above algorithm is itself a computational problem that may
be sensitive to perturbations. We need to make sure that the algorithm does not in-
troduce additional sensitivity by containing unnecessary ill-conditioned steps. For
a direct method, this means that the factors S1 and S2 should be well-conditioned
with respect to inversion. The example below illustrates that this cannot be taken
for granted. That is, even if A is well-conditioned with respect to inversion, S1 or
S2 can be ill-conditioned.

Example 3.12. The linear system Ax = b with

A =
(

ε 1
1 0

)
, b =

(
1+ ε

1

)
, 0 < ε ≤ 1/2,

has the solution x = (
1 1

)T . The linear system is well-conditioned because

A−1 =
(

0 1
1 −ε

)
, κ∞(A) = (1+ ε)2 ≤ 9/4.

We can factor A = S1S2 where

S1 =
(

1 0
1
ε

1

)
, S2 =

(
ε 1
0 − 1

ε

)

and then solve the triangular systems S1y = b and S2x = y. Suppose that we
compute the factorization and the first linear system solution exactly, i.e.,

A = S1S2, S1y = b, y =
(

1+ ε

− 1
ε

)
,

and that we make errors only in the solution of the second system, i.e.,

S2z = y + r2 =
(

1
− 1

ε

)
, r2 =

(−ε

0

)
.

Then the computed solution satisfies

z =
(

0
1

)
,

‖z−x‖∞
‖x‖∞

= 1.

The relative error is large because the leading component of z is completely
wrong—although A is very well-conditioned. What happened? The triangular
matrices S1 and S2 contain elements that are much larger in magnitude than the
elements of A,

‖A‖∞ = 1+ ε, ‖S1‖∞ = 1+ ε

ε
, ‖S2‖∞ = 1

ε
,
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54 3. Linear Systems

and the same is true for the inverses,

‖A−1‖∞ = 1+ ε, ‖S−1
1 ‖∞ = ‖S−1

2 ‖∞ = 1+ ε

ε
.

The condition numbers for S1 and S2 are

κ∞(S1) =
(

1+ ε

ε

)2

≈ 1

ε2
, κ∞(S2) = 1+ ε

ε2
≈ 1

ε2
.

As a consequence, S1 and S2 are ill-conditioned with respect to inversion. Although
the original linear system Ax = b is well-conditioned, the algorithm contains steps
that are ill-conditioned, namely, the solution of the linear systems S1y = b and
S2x = y.

We want to avoid methods, like the one above, that factor a well-conditioned
matrix into two ill-conditioned matrices. Such methods are called numerically
unstable.

Definition 3.13. An algorithm is (very informally) numerically stable in exact
arithmetic if each step in the algorithm is not much worse conditioned than the
original problem.

If an algorithm contains steps that are much worse conditioned than the
original problem, the algorithm is called numerically unstable.

The above definition talks about “stability in exact arithmetic,” because in
this book we do not take into account errors caused by floating arithmetic operations
(analyses that estimate such errors can be rather tedious). However, if a problem
is numerically unstable in exact arithmetic, then it is also numerically unstable in
finite precision arithmetic, so that a distinction is not necessary in this case.

Below we analyze how the conditioning of the factors S1 and S2 affects the
stability of Algorithm 3.2. The bounds are expressed in terms of relative residual
norms from the linear systems.

Fact 3.14 (Stability in Exact Arithmetic of Direct Methods). Let A ∈ C
n×n be

nonsingular, Ax = b, b �= 0, and

A+E = S1S2, εA = ‖E‖p

‖A‖p

,

S1y = b+ r1, ε1 = ‖r1‖p

‖b‖p

,

S2z = y + r2, ε2 = ‖r2‖p

‖y‖p

.

If ‖A−1‖p‖E‖p ≤ 1/2, then

‖z−x‖p

‖x‖p

≤ 2κp(A)︸ ︷︷ ︸
condition

(εA + ε1 + ε) ,
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3.4. Stability of Direct Methods 55

where

ε = ‖S−1
2 ‖p‖S−1

1 ‖p

‖(A+E)−1‖p︸ ︷︷ ︸
stability

ε2(1+ ε1).

Proof. Expanding the right-hand side gives

(A+E)z = S1S2z = S1(y + r2) = S1y +S1r2 = b+ r1 +S1r2.

The obvious approach would be to apply Fact 3.9 to the perturbed linear system
(A+E)z = b+r1 +S1r2. However, the resulting bound would be too pessimistic,
because we did not exploit the relation between the matrix and the right-hand side.
Instead, we can exploit this relation by subtracting (A+E)x = b+Ex to obtain

(A+E)(z−x) = −Ex + r1 +S1r2.

Corollary 2.24 implies that A+E is nonsingular, so that

z−x = (A+E)−1(−Ex + r1)+S−1
2 r2.

Taking norms gives

‖z−x‖p ≤ ‖(A+E)−1‖p(‖E‖p‖x‖p +‖r1‖p)+‖S−1
2 ‖p‖r2‖p.

Substituting ‖r1‖p = ε1‖b‖p ≤ ε1‖A‖p‖x‖p gives

‖z−x‖p ≤ ‖(A+E)−1‖p‖A‖p(εA + ε1)‖x‖p +‖S−1
2 ‖p‖r2‖p.

It remains to bound ‖r2‖p. From ‖r2‖p = ε2‖y‖p and y = S−1
1 (b+ r1) follows

‖r2‖p = ε2‖y‖p ≤ ‖S−1
1 ‖p(‖b‖p +‖r1‖p).

Bounding ‖r1‖p as above yields

‖r2‖p ≤ ‖S−1
1 ‖p‖A‖p‖x‖pε2(1+ ε1).

We substitute this bound for ‖r2‖p into the above bound for ‖z−x‖p,

‖z−x‖p ≤ ‖A‖p‖x‖p

(
‖(A+E)−1‖p(εA + ε1)+‖S−1

2 ‖p‖S−1
1 ‖pε2(1+ ε1)

)
.

Factoring out ‖(A + E)−1‖p and applying Corollary 2.24 gives the desired
bound.

Remark 3.15.

• The numerical stability in exact arithmetic of a direct method can be rep-
resented by the condition number for multiplying the two matrices S−1

2 and

S−1
1 , see Fact 2.22, since

‖S−1
2 ‖p‖S−1

1 ‖p

‖(A+E)−1‖p

= ‖S−1
2 ‖p‖S−1

1 ‖p

‖S−1
2 S−1

1 ‖p

.
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56 3. Linear Systems

• If ‖S−1
2 ‖p‖S−1

1 ‖p ≈ ‖(A+E)−1‖p, then the matrix multiplication S−1
2 S−1

1
is well-conditioned. In this case the bound in Fact 3.14 is approximately
2κp(A)(εA + ε1 + ε2(1 + ε1)), and Algorithm 3.2 is numerically stable in
exact arithmetic.

• If ‖S−1
2 ‖p‖S−1

1 ‖p � ‖(A+E)−1‖p, then Algorithm 3.2 is unstable.

Example 3.16. Returning to Example 3.12 we see that

κ∞(A) = (1+ ε)2,
‖S−1

1 ‖∞‖S−1
2 ‖∞

‖A−1‖∞
= 1+ ε

ε2
,

‖r2‖∞
‖y‖∞

= ε2.

Hence the bound in Fact 3.14 equals 2(1+ ε)3, and it correctly indicates the inac-
curacy of z.

The following bound is similar to the one in Fact 3.14, but it bounds the
relative error with regard to the computed solution.

Fact 3.17 (A Second Stability Bound). LetA ∈ C
n×n be nonsingular, Ax = b, and

A+E = S1S2, εA = ‖E‖p

‖A‖p

,

S1y = b+ r1, ε1 = ‖r1‖p

‖S1‖p‖y‖p

,

S2z = y + r2, ε2 = ‖r2‖p

‖S2‖p‖z‖p

,

where y �= 0 and z �= 0. Then

‖z−x‖p

‖z‖p

≤ κp(A)︸ ︷︷ ︸
condition

(εA + ε) ,

where

ε = ‖S1‖p‖S2‖p

‖A‖p︸ ︷︷ ︸
stability

(ε2 + ε1(1+ ε2)) .

Proof. As in the proof of Fact 3.14 we start by expanding the right-hand side,

(A+E)z = S1S2z = S1(y + r2) = S1y +S1r2 = b+ r1 +S1r2.

The residual is r = Az−b = −Ez+S1y +S1r2 = b+ r1 +S1r2. Take norms and
substitute the expressions for ‖r1‖p and ‖r2‖p to obtain

‖r‖p ≤ ‖E‖p‖z‖p + ε1‖S1‖p‖y‖p + ε2‖S1‖p‖S2‖p‖z‖p.

To bound ‖y‖p write y = S2z− r2, take norms, and replace ‖r2‖p = ε2‖S2‖p‖z‖p

to get

‖y‖p ≤ ‖S2‖p‖y‖p +‖r2‖p = ‖S2‖p‖z‖p(1+ ε2).
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3.4. Stability of Direct Methods 57

Substituting this into the bound for ‖r‖p gives

‖r‖p ≤ ‖z‖p

(‖E‖p +‖S1‖p‖S2‖pε1(1+ ε2)+‖S1‖p‖S2‖pε2
)

= ‖A‖p‖z‖p(εA + ε).

The relative error bound now follows from Fact 3.7.

In Fact 3.17, the numerical stability is represented by the factor
‖S1‖p‖S2‖p/‖A‖p. If ‖S1‖p‖S2‖ � ‖A‖p, then Algorithm 3.2 is unstable.

Exercises

1. The following bound is slightly tighter than the one in Fact 3.14.
Under the conditions of Fact 3.14 show that

‖z−x‖p

‖x‖p

≤ 2κp(A)
[
εA +ρp(A,b) ε

]
,

where

ρp(A,b) = ‖b‖p

‖A‖p‖x‖p

, ε = ‖S−1
2 ‖p‖S−1

1 ‖p

‖(A+E)−1‖p

ε2(1+ ε1)+ ε1.

2. The following bound suggests that Algorithm 3.2 is unstable if the first factor
is ill-conditioned with respect to inversion.
Under the conditions of Fact 3.14 show that

‖z−x‖p

‖x‖p

≤ 2κp(A)
[
εA + ε1 +κp(S1) ε2(1+ ε1)

]
.

3. The following bound suggests that Algorithm 3.2 is unstable if the second
factor is ill-conditioned with respect to inversion.
Let Ax = b where A is nonsingular. Also let

A = S1S2, S1y = b, S2z = y + r2, where ε2 = ‖r2‖p

‖S2‖p‖z‖p

and z �= 0. Show that

‖z−x‖p

‖z‖p

≤ κp(S2) ε2.

4. How Not to Solve Linear Systems.
One could solve a linear system Ax = b by forming A−1, and then multi-
plying A−1 by b. The bound below suggests that this approach is likely to
be numerically less accurate than a direct solver.
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58 3. Linear Systems

Let A ∈ C
n×n be nonsingular and Ax = b with b �= 0. Let A+E ∈ C

n×n

with ‖A−1‖p‖E‖p ≤ 1/2. Compute Z = (A + E)−1 and z = Z(b + f ).
Show that

‖z−x‖p

‖x‖p

≤ κp(A)

(
2
‖A−1‖p‖b‖p

‖A−1b‖p

εA + εf

)
,

where

εA = ‖E‖p

‖A‖p

, εf = ‖f ‖p

‖A‖p‖x‖p

,

and compare this to the bound in Fact 3.9.
Hint: Use the perturbation bounds for matrix multiplication and matrix in-
version in Facts 2.22 and 2.25.

3.5 LU Factorization
The LU factorization of a matrix is the basis for Gaussian elimination.

Definition 3.18. Let A ∈ C
n×n. A factorization A = LU , where L is unit lower

triangular and U is upper triangular, is called an LU factorization of A.

The LU factorization of a nonsingular matrix, if it exists, is unique; see
Exercise 5 in Section 1.13. Unfortunately, there are matrices that do not have an
LU factorization, as the example below illustrates.

Example 3.19. The nonsingular matrix

A =
(

0 1
1 0

)
cannot be factored into A = LU , where L is lower triangular and U is upper
triangular. Suppose to the contrary that it could. Then(

0 1
1 0

)
=
(

1 0
l 1

)(
u1 u1
0 u3

)
.

The first column of the equality implies that u1 = 0, and lu1 = 1 so u1 �= 0, a
contradiction.

Example 3.12 illustrates that a matrix A that is well-conditioned with re-
spect to inversion can have LU factors that are ill-conditioned with respect to
inversion. Algorithm 3.3 below shows how to permute the rows of a nonsingu-
lar matrix so that the permuted matrix has an LU factorization. Permuting the
rows of A is called partial pivoting—as opposed to complete pivoting where both
rows and columns are permuted. In order to prevent the factors from being too
ill-conditioned, Algorithm 3.3 chooses a permutation matrix so that the elements
of L are bounded.
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3.5. LU Factorization 59

Algorithm 3.3. LU Factorization with Partial Pivoting.

Input: Nonsingular matrix A ∈ C
n×n

Output: Permutation matrix P , unit lower triangular matrix L,
upper triangular matrix U such that PA = LU

1. If n = 1, then P ≡ 1, L ≡ 1, and U ≡ A.
2. If n > 1, then choose a permutation matrix Pn such that

PnA =
( 1 n−1

1 α a

n−1 d An−1

)
,

where α has the largest magnitude among all elements in the leading column,
i.e., |α| ≥ ‖d‖∞, and factor

PnA =
(

1 0
l In−1

)(
α a

0 S

)
,

where l ≡ dα−1 and S ≡ An−1 − la.
3. Compute Pn−1S = Ln−1Un−1, where Pn−1 is a permutation matrix, Ln−1 is

unit lower triangular, and Un−1 is upper triangular.
4. Then

P ≡
(

1 0
0 Pn−1

)
Pn, L ≡

(
1 0

Pn−1l Ln−1

)
, U ≡

(
α a

0 Un−1

)
.

Remark 3.20.

• Each iteration of step 2 in Algorithm 3.3 determines one column of L and
one row of U .

• Partial pivoting ensures that the magnitude of the multipliers is bounded by
one; i.e., ‖l‖∞ ≤ 1 in step 2 of Algorithm 3.3. Therefore, all elements of L

have magnitude less than or equal to one.
• The scalar α is called a pivot, and the matrix S = An−1 −dα−1a is a Schur

complement. We already encountered Schur complements in Fact 1.14, as
part of the inverse of a partitioned matrix. In this particular Schur comple-
ment S the matrix dα−1a is an outer product.

• The multipliers can be easily recovered from L, because they are elements
of L. Step 4 of Algorithm 3.3 shows that the first column of L contains
the multipliers Pn−1l that zero out elements in the first column. Similarly,
column i of L contains the multipliers that zero out elements in column i.
However, the multipliers cannot be easily recovered from L−1.

• Step 4 of Algorithm 3.3 follows from S = P T
n−1Ln−1Un−1, extracting the

permutation matrix,

PnA =
(

1 0
0 P T

n−1

)(
1 0

Pn−1l In−1

)(
α a

0 Ln−1Un−1

)
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60 3. Linear Systems

and separating lower and upper triangular parts(
1 0

Pn−1l In−1

)(
α a

0 Ln−1Un−1

)
=
(

1 0
Pn−1l Ln−1

)(
α a

0 Un−1

)
.

• In the vector Pn−1l, the permutation Pn−1 reorders the multipliers l, but
does not change their values. To combine all permutations into a single
permutation matrix P , we have to pull all permutation matrices in front of
the lower triangular matrix. This, in turn, requires reordering the multipliers
in earlier steps.

Fact 3.21 (LU Factorization with Partial Pivoting). Every nonsingular matrix
A has a factorization PA = LU , where P is a permutation matrix, L is unit lower
triangular, and U is nonsingular upper triangular.

Proof. Perform an induction proof based on Algorithm 3.3.

A factorization PA = LU is, in general, not unique because there are many
choices for the permutation matrix.

With a factorization PA = LU , the rows of the linear system Ax = b are
rearranged, and the system to be solved is PAx = Pb. The process of solving this
linear system is called Gaussian elimination with partial pivoting.

Algorithm 3.4. Gaussian Elimination with Partial Pivoting.

Input: Nonsingular matrix A ∈ C
n×n, vector b ∈ C

n

Output: Solution of Ax = b

1. Factor PA = LU with Algorithm 3.3.
2. Solve the system Ly = Pb.
3. Solve the system Ux = y.

The next bound implies that Gaussian elimination with partial pivoting is
stable in exact arithmetic if the elements of U are not much larger in magnitude
than those of A.

Corollary 3.22 (Stability in Exact Arithmetic of Gaussian Elimination with
Partial Pivoting). If A ∈ C

n×n is nonsingular, Ax = b, and

P(A+E) = LU , εA = ‖E‖∞
‖A‖∞

,

Ly = Pb+ rL, εL = ‖rL‖∞
‖L‖∞‖y‖∞

,

Uz = y + rU , εU = ‖rU‖∞
‖U‖∞‖z‖∞

,

where y �= 0 and z �= 0, then

‖z−x‖∞
‖z‖∞

≤ κ∞(A)(εA + ε) , where ε = n
‖U‖∞
‖A‖∞

(
εU + εL(1+ εU )

)
.
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3.5. LU Factorization 61

Proof. Apply Fact 3.17 to A+E = S1S2, where S1 = P T L and S2 = U . Permu-
tation matrices do not change p-norms, see Exercise (iv) in Section 2.6, so that
‖P T L‖∞ = ‖L‖∞. Because the multipliers are the elements of L, and |lij | ≤ 1
with partial pivoting, we get ‖L‖∞ ≤ n.

The ratio ‖U‖∞/‖A‖∞ represents the element growth during Gaussian elim-
ination. In practice, ‖U‖∞/‖A‖∞ tends to be small, but there are n × n ma-
trices for which ‖U‖∞/‖A‖∞ = 2n−1/n is possible; see Exercise 2 below. If
‖U‖∞ � ‖A‖∞, then Gaussian elimination is unstable.

Exercises

(i) Determine the LU factorization of a nonsingular lower triangular matrix A.
Express the elements of L and U in terms of the elements of A.

(ii) Determine a factorization A = LU when A is upper triangular.
(iii) For

A =
(

0 0
A1 0

)
,

with A1 nonsingular, determine a factorization PA = LU where L is unit
lower triangular and U is upper triangular.

(iv) LDU Factorization.
One can make an LU factorization more symmetric by requiring that both
triangular matrices have ones on the diagonal and factoring A = LDŨ , where
L is unit lower triangular, D is diagonal, and Ũ is unit upper triangular.
Given an LU factorization A = LU , express the diagonal elements dii of D

and the elements ũij in terms of elements of U .
(v) Block LU Factorization.

Suppose we can partition the invertible matrix A as

A =
(

A11 A12
A21 A22

)
,

where A11 is invertible. Verify that A has the block factorization A = LU

where

L =
(

I 0
A21A

−1
11 I

)
, U =

(
A11 A12

0 S

)
,

and S ≡ A22 −A21A
−1
11 A12 is a Schur complement. Note that L is unit lower

triangular. However, U is only block upper triangular, because A11 and S

are in general not triangular. Hence a block LU factorization is not the same
as an LU factorization.
Determine a block LDU factorization A = LDU , where L is unit lower
triangular, U is unit upper triangular, and D is block diagonal.
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62 3. Linear Systems

(vi) The matrix

A =



0 1 1 2
1 0 3 4
1 2 1 2
3 4 3 4




does not have an LU factorization. However, it does have a block LU
factorization A = LU with

A11 =
(

0 1
1 0

)
.

Determine L and U .
(vii) UL Factorization.

Analogous to Algorithm 3.3, present an algorithm that factors any square
matrix A into PA = UL, where P is a permutation matrix, U is unit upper
triangular, and L is lower triangular.

1. Let A ∈ C
n×n be nonsingular and P a permutation matrix such that

PA =
(

A11 A12
A21 A22

)

with A11 nonsingular. Show: If all elements of A21A
−1
11 are less than one in

magnitude, then

κ∞
(
A22 −A21A

−1
11 A12

)
≤ n2κ∞(A).

2. Compute the LU factorization of the n×n matrix

A =




1 1
−1 1 1
−1 −1 1 1

...
. . .

. . .
...

−1 . . . . . . −1 1


 .

Show that pivoting is not necessary. Determine the one norms of A and U .
3. Let A ∈ C

n×n and A + uv∗ be nonsingular, where u,v ∈ C
n. Show how

to solve (A+uv∗)x = b using two linear system solves with A, two inner
products, one scalar vector multiplication, and one vector addition.

4. This problem shows that if Gaussian elimination with partial pivoting en-
counters a small pivot, then A must be ill-conditioned.
Let A ∈ C

n×n be nonsingular and PA = LU , where P is a permutation
matrix, L is unit triangular with elements |lij | ≤ 1, and U is upper triangular
with elements uij . Show that κ∞(A) ≥ ‖A‖∞/minj |ujj |.

5. The following matrices G are generalizations of the lower triangular matrices
in the LU factorization. The purpose of G is to transform all elements of a
column vector into zeros, except for the kth element.

Soc
iet

y fo
r I

ndustr
ial

 an
d A

pplie
d M

at
hem

at
ics

Copyright ©2009 by the Society for Industrial and Applied Mathematics 
This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html



“book”
2009/5/27
page 63

�

�

�

�

�

�

�

�

3.6. Cholesky Factorization 63

Let G = In −geT
k , where g ∈ C

n and 1 ≤ k ≤ n. Which conditions do the
elements of g have to satisfy so that G is invertible? Determine G−1 when
it exists.
Given an index k and a vector x ∈ C

n, which conditions do the elements of
x have to satisfy so that Gx = ek? Determine the vector g when it exists.

3.6 Cholesky Factorization
It would seem natural that a Hermitian matrix should have a factorization that
reflects the symmetry of the matrix. For an n×n Hermitian matrix, we need to
store only n(n+1)/2 elements, and it would be efficient if the same were true for
the factorization. Unfortunately, this is not possible in general. For instance, the
matrix

A =
(

0 1
1 0

)

is nonsingular and Hermitian. But it cannot be factored into a lower times upper
triangular matrix, as illustrated in Example 3.19. Fortunately, a certain class of
matrices, so-called Hermitian positive definite matrices, do admit a symmetric
factorization.

Definition 3.23. A Hermitian matrix A ∈ C
n×n is positive definite if x∗Ax > 0 for

all x ∈ C
n with x �= 0.

A Hermitian matrix A ∈ C
n×n is positive semidefinite if x∗Ax ≥ 0 for all

x ∈ C
n.
A symmetric matrix A ∈ R

n×n is positive definite if xT Ax > 0 for all x ∈ R
n

with x �= 0, and positive semidefinite if xT Ax ≥ 0 for all x ∈ R
n.

A positive semidefinite matrix A can have x∗Ax = 0 for x �= 0.

Example. The 2×2 Hermitian matrix

A =
(

1 β

β 1

)

is positive definite if |β| < 1, and positive semidefinite if |β|2 = 1.
We derive several properties of Hermitian positive definite matrices. We

start by showing that all Hermitian positive definite matrices are nonsingular.

Fact 3.24. If A ∈ C
n×n is Hermitian positive definite, then A is nonsingular.

Proof. Suppose to the contrary that A were singular. Then Ax = 0 for some x �= 0,
implying x∗Ax = 0 for some x �= 0, which contradicts the positive definiteness of
A; i.e., x∗Ax > 0 for all x �= 0.
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64 3. Linear Systems

Hermitian positive definite matrices have positive diagonal elements.

Fact 3.25. If A ∈ C
n×n is Hermitian positive definite, then its diagonal elements

are positive.

Proof. Since A is positive definite, we have x∗Ax > 0 for any x �= 0, and in
particular 0 < e∗

jAej = ajj , 1 ≤ j ≤ n.

Below is a transformation that preserves Hermitian positive definiteness.

Fact 3.26. If A ∈ C
n×n is Hermitian positive definite and B ∈ C

n×n is nonsingular,
then B∗AB is also Hermitian positive definite.

Proof. The matrix B∗AB is Hermitian because A is Hermitian. Since B is non-
singular, y = Bx �= 0 if and only if x �= 0. Hence

x∗B∗ABx = (Bx)∗ A(Bx) = y∗Ay > 0

for any vector y �= 0, so that B∗AB is positive definite.

At last we show that principal submatrices and Schur complements inherit
Hermitian positive definiteness.

Fact 3.27. If A ∈ C
n×n is Hermitian positive definite, then its leading principal

submatrices and Schur complements are also Hermitian positive definite.

Proof. Let B be a k × k principal submatrix of A, for some 1 ≤ k ≤ n− 1. The
submatrix B is Hermitian because it is a principal submatrix of a Hermitian matrix.
To keep the notation simple, we permute the rows and columns of A so that the
submatrix B occupies the leading rows and columns. That is, let P be a permutation
matrix, and partition

Â = P T AP =
(

B A12
A∗

12 A22

)
.

Fact 3.26 implies that Â is also Hermitian positive definite. Thus x∗Âx > 0 for

any vector x �= 0. In particular, let x =
(

y

0

)
for y ∈ C

k . Then for any y �= 0 we

have

0 < x∗Âx = (
y∗ 0

)( B A12
A∗

12 A22

)(
y

0

)
= y∗By.

This means y∗By > 0 for y �= 0, so that B is positive definite. Since the submatrix B

is a principal submatrix of a Hermitian matrix, B is also Hermitian. Therefore,
any principal submatrix B of A is Hermitian positive definite.

Now we prove Hermitian positive definiteness for Schur complements.
Fact 3.24 implies that B is nonsingular. Hence we can set

L =
(

Ik 0
−A∗

12B
−1 In−k

)
,
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3.6. Cholesky Factorization 65

so that

LÂL∗ =
(

B 0
0 S

)
, where S = A22 −A∗

12B
−1A12.

Since L is unit lower triangular, it is nonsingular. From Fact 3.26 follows then that
LÂL∗ is Hermitian positive definite. Earlier in this proof we showed that principal
submatrices of Hermitian positive definite matrices are Hermitian positive definite,
thus the Schur complement S must be Hermitian positive definite.

Now we have all the tools we need to factor Hermitian positive definite
matrices. The following algorithm produces a symmetric factorization A = LL∗
for a Hermitian positive definite matrix A. The algorithm exploits the fact that
the diagonal elements of A are positive and the Schur complements are Hermitian
positive definite.

Definition 3.28. Let A ∈ C
n×n be Hermitian positive definite. A factorization

A = LL∗, where L is (lower or upper) triangular with positive diagonal elements,
is called a Cholesky factorization of A.

Below we compute a lower-upper Cholesky factorization A = LL∗ where L

is a lower triangular matrix.

Algorithm 3.5. Cholesky Factorization.

Input: Hermitian positive definite matrix A ∈ C
n×n

Output: Lower triangular matrix L with positive diagonal elements
such that A = LL∗

1. If n = 1, then L ≡ √
A.

2. If n > 1, partition and factor

A =
( 1 n−1

1 α a∗
n−1 a An−1

)
=
(

α1/2 0
aα−1/2 In−1

)(
1 0
0 S

)(
α1/2 α−1/2a∗

0 In−1

)
,

where S ≡ An−1 −aα−1a∗.
3. Compute S = Ln−1L

∗
n−1, where Ln−1 is lower triangular with positive di-

agonal elements.
4. Then

L ≡
(

α1/2 0
aα−1/2 Ln−1

)
.

A Cholesky factorization of a positive matrix is unique.

Fact 3.29 (Uniqueness of Cholesky factorization). Let A ∈ C
n×n be Hermitian

positive definite. If A = LL∗ where L is lower triangular with positive diagonal,
then L is unique. Similarly, if A = LL∗ where L is upper triangular with positive
diagonal elements, then L is unique.
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66 3. Linear Systems

Proof. This can be shown in the same way as the uniqueness of the LU factoriza-
tion.

The following result shows that one can use a Cholesky factorization to
determine whether a Hermitian matrix is positive definite.

Fact 3.30. Let A ∈ C
n×n be Hermitian. A is positive definite if and only if A =

LL∗ where L is triangular with positive diagonal elements.

Proof. Algorithm 3.5 shows that if A is positive definite, then A = LL∗. Now
assume that A = LL∗. Since L is triangular with positive diagonal elements, it is
nonsingular. Therefore, Lx �= 0 for x �= 0, and x∗Ax = ‖L∗x‖2

2 > 0.

The next bound shows that a Cholesky solver is numerically stable in exact
arithmetic.

Corollary 3.31 (Stability of Cholesky Solver). Let A ∈ C
n×n and let A+E be

Hermitian positive definite matrices, Ax = b, b �= 0, and

A+E = LL∗, εA = ‖E‖2

‖A‖2
,

Ly = b+ r1, ε1 = ‖r1‖2

‖b‖2
,

L∗z = y + r2, ε2 = ‖r2‖2

‖y‖2
.

If ‖A−1‖2‖E‖2 ≤ 1/2, then

‖z−x‖2

‖x‖2
≤ 2κ2(A)(εA + ε1 + ε2(1+ ε1)) .

Proof. Apply Fact 3.14 to A+E, where S1 = L and S2 = L∗. The stability factor
is ‖L−∗‖2‖L−1‖2/‖(A+E)−1‖2 = 1 because Fact 2.19 implies

‖(A+E)−1‖2 = ‖L−∗L−1‖2 = ‖L−1‖2
2 = ‖L−∗‖2‖L−1‖2.

Exercises

(i) The magnitude of an off-diagonal element of a Hermitian positive definite
matrix is bounded by the geometric mean of the corresponding diagonal
elements.
Let A ∈ C

n×n be Hermitian positive definite. Show: |aij | <
√

aiiajj for
i �= j .
Hint: Use the positive definiteness of the Schur complement.

(ii) The magnitude of an off-diagonal element of a Hermitian positive definite
matrix is bounded by the arithmetic mean of the corresponding diagonal
elements.
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3.6. Cholesky Factorization 67

Let A ∈ C
n×n be Hermitian positive definite. Show: |aij | ≤ (aii + ajj )/2

for i �= j .
Hint: Use the relation between arithmetic and geometric mean.

(iii) The largest element in magnitude of a Hermitian positive definite matrix is
on the diagonal.
Let A ∈ C

n×n be Hermitian positive definite. Show: max1≤i,j≤n |aij | =
max1≤i≤n aii .

(iv) Let A ∈ C
n×n be Hermitian positive definite. Show: A−1 is also positive

definite.
(v) Modify Algorithm 3.5 so that it computes a factorization A = LDL∗ for a

Hermitian positive definite matrix A, where D is diagonal and L is unit lower
triangular.

(vi) Upper-Lower Cholesky Factorization.
Modify Algorithm 3.5 so that it computes a factorization A = L∗L for a Her-
mitian positive definite matrix A, where L is lower triangular with positive
diagonal elements.

(vii) Block Cholesky Factorization.
Partition the Hermitian positive definite matrix A as

A =
(

A11 A12
A21 A22

)
.

Analogous to the block LU factorization in Exercise (v) of Section 3.5 de-
termine a factorization A = LL∗, where L is block lower triangular. That is,
L is of the form

L =
(

L11 0
L21 L22

)
,

where L11 and L22 are in general not lower triangular.
(viii) Let

A =
(

A11 A12
A21 A22

)
be Hermitian positive definite. Show:

‖A22 −A21A
−1
11 A12‖2 ≤ ‖A‖2

and

κ2(A22 −A21A
−1
11 A12) ≤ κ2(A).

(ix) Prove: A = MM∗ for some nonsingular matrix M if and only if A is Her-
mitian positive definite.

(x) Generalized Cholesky Factorization.
Let M ∈ C

n×n be Hermitian positive definite. Prove: If M = M∗
1 M1 =

M∗
2 M2, for square matrices M1 and M2, then there exists a unitary matrix Q

such that M2 = QM1.
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68 3. Linear Systems

(xi) Let M = A+ ıB be Hermitian positive definite, where ı2 = −1, and A and B

are real square matrices. Show that the matrix

C =
(

A −B

B A

)
is real symmetric positive definite.

3.7 QR Factorization
The QR factorization is a matrix factorization where one of the factors is unitary
and the other one is triangular. We derive the existence of a QR factorization from
the Cholesky factorization.

Fact 3.32. Every nonsingular matrix A ∈ C
n×n has a unique factorization A =

QR, where Q is unitary and R is upper triangular with positive diagonal elements.

Proof. Since A is nonsingular, Ax �= 0 for x �= 0, and x∗A∗Ax = ‖Ax‖2
2 > 0,

which implies that M = A∗A is Hermitian positive definite. Let M = LL∗ be a
Cholesky factorization of M , where L is lower triangular with positive diagonal
elements. Then M = A∗A = LL∗. Multiplying by A−∗ on the left gives A = QR,
where Q = A−∗L, and where R = L∗ is upper triangular with positive diagonal
elements. Exercise (ix) in Section 3.6 shows that Q is unitary.

The uniqueness of the QR factorization follows from the uniqueness of the
Cholesky factorization, as well as from Exercise 6 in Section 1.13.

The bound below shows that a QR solver is numerically stable in exact
arithmetic.

Corollary 3.33 (Stability of QR Solver). Let A ∈ C
n×n be nonsingular, Ax = b,

b �= 0, and

A+E = QR, εA = ‖E‖2

‖A‖2
,

Qy = b+ r1, ε1 = ‖r1‖2

‖b‖2
,

Rz = y + r2, ε2 = ‖r2‖2

‖y‖2
.

If ‖A−1‖2‖E‖2 ≤ 1/2, then

‖z−x‖2

‖x‖2
≤ 2κ2(A)(εA + ε1 + ε2(1+ ε1)) .

Proof. Apply Fact 3.14 to A+E, where S1 = Q and S2 = R. The stability factor
is ‖R−1‖2‖Q∗‖2/‖(A+E)−1‖2 = 1, because Exercise (v) in Section 2.6 implies
‖Q∗‖2 = 1 and ‖(A+E)−1‖2 = ‖R−1‖2.
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3.7. QR Factorization 69

There are many ways to compute a QR factorization. Here we present an
algorithm that is based on Givens rotations; see Definition 1.17. Givens rotations
are unitary, see Example 1.16, and they are often used to introduce zeros into
matrices. Let’s start by using a Givens rotation to introduce a single zero into a
vector.

Example. Let x,y ∈ C.(
c s

−s c

)(
x

y

)
=
(

d

0

)
, where d =

√
|x|2 +|y|2.

If x = y = 0, then c = 1 and s = 0; otherwise c = x/d and s = y/d. That is, if
both components of the vector are zero, then there is nothing to do and the unitary
matrix is the identity. Note that d ≥ 0 and |c|2 +|s|2 = 1.

When introducing zeros into a longer vector, we embed each Givens rotation
in an identity matrix.

Example. Suppose we want to zero out elements 2, 3, and 4 in a 4×1 vector with
a unitary matrix. We can apply three Givens rotations in the following order.

1. Apply a Givens rotation to rows 3 and 4 to zero out element 4,




1 0 0 0
0 1 0 0
0 0 c4 s4
0 0 −s4 c4






x1
x2
x3
x4


 =




x1
x2
y3
0


 ,

where y3 = √|x3|2 +|x4|2 ≥ 0. If x4 = x3 = 0, then c4 = 1 and s4 = 0;
otherwise c4 = x3/y3 and s4 = x4/y3.

2. Apply a Givens rotation to rows 2 and 3 to zero out element 3,




1 0 0 0
0 c3 s3 0
0 −s3 c3 0
0 0 0 1






x1
x2
y3
0


 =




x1
y2
0
0


 ,

where y2 = √|x2|2 +|y3|2 ≥ 0. If y3 = x2 = 0, then c3 = 1 and s3 = 0;
otherwise c3 = x2/y2 and s3 = y3/y2.

3. Apply a Givens rotation to rows 1 and 2 to zero out element 2,




c2 s2 0 0
−s2 c2 0 0

0 0 1 0
0 0 0 1






x1
y2
0
0


 =




y1
0
0
0


 ,

where y1 = √|x1|2 +|y2|2 ≥ 0. If y2 = x1 = 0, then c2 = 1 and s2 = 0;
otherwise c2 = x1/y1 and s2 = y2/y1.
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70 3. Linear Systems

Therefore Qx = y1e1, where y1 = ‖Qx‖2 and

Q =



c2 s2 0 0
−s2 c2 0 0

0 0 1 0
0 0 0 1






1 0 0 0
0 c3 s3 0
0 −s3 c3 0
0 0 0 1






1 0 0 0
0 1 0 0
0 0 c4 s4
0 0 −s4 c4


 .

There are many possible orders in which to apply Givens rotations, and
Givens rotations don’t have to operate on adjacent rows either. The example
below illustrates this.

Example. Here is another way to to zero out elements 2, 3, and 4 in a 4×1 vector.
We can apply three Givens rotations that all involve the leading row.

1. Apply a Givens rotation to rows 1 and 4 to zero out element 4,


c4 0 0 s4
0 1 0 0
0 0 1 0

−s4 0 0 c4






x1
x2
x3
x4


 =




y1
x2
x3
0


 ,

where y1 = √|x1|2 +|x4|2 ≥ 0. If x4 = x1 = 0, then c4 = 1 and s4 = 0;
otherwise c4 = x1/y1 and s4 = x4/y1.

2. Apply a Givens rotation to rows 1 and 3 to zero out element 3,


c3 0 s3 0
0 1 0 0

−s3 0 c3 0
0 0 0 1






y1
x2
x3
0


 =




z1
x2
0
0


 ,

where z1 = √|y1|2 +|x3|2 ≥ 0. If x3 = y1 = 0, then c3 = 1 and s3 = 0;
otherwise c3 = y1/z1 and s3 = x3/z1.

3. Apply a Givens rotation to rows 1 and 2 to zero out element 2,


c2 s2 0 0
−s2 c2 0 0

0 0 1 0
0 0 0 1






x1
y2
0
0


 =




u1
0
0
0


 ,

where u1 = √|z1|2 +|x2|2 ≥ 0. If x2 = z1 = 0, then c2 = 1 and s2 = 0;
otherwise c2 = z1/u1 and s2 = x2/u1.

Therefore Qx = u1e1, where u1 = ‖Qx‖2 and

Q =



c2 s2 0 0
−s2 c2 0 0

0 0 1 0
0 0 0 1






c3 0 s3 0
0 1 0 0

−s3 0 c3 0
0 0 0 1






c4 0 0 s4
0 1 0 0
0 0 1 0

−s4 0 0 c4


 .
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The preceding examples demonstrate that if a Givens rotation operates on
rows i and j , then the c and s elements occupy positions (i, i), (i,j), (j , i), and
(j ,j).

At last here is a sketch of how one can reduce a square matrix to upper
triangular form by means of Givens rotations.

Example. We introduce zeros one column at a time, from left to right, and within
a column from bottom to top. The Givens rotations operate on adjacent rows.
Elements that can be nonzero are represented by ∗. Elements that were affected
by the ith Givens rotation have the label i. We start by introducing zeros into
column 1,


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 1→




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
1 1 1 1
0 1 1 1


 2→




∗ ∗ ∗ ∗
2 2 2 2
0 2 2 2
0 1 1 1


 3→




3 3 3 3
0 3 3 3
0 2 2 2
0 1 1 1


 .

Now we introduce zeros into column 2, and then into column 3,


3 3 3 3
0 3 3 3
0 2 2 2
0 1 1 1


 4→




3 3 3 3
0 3 3 3
0 4 4 4
0 0 4 4


 5→




3 3 3 3
0 5 5 5
0 0 5 5
0 0 4 4


 6→




3 3 3 3
0 5 5 5
0 0 6 6
0 0 0 6


 .

Below is the general algorithm.

Algorithm 3.6. QR Factorization for Nonsingular Matrices.

Input: Nonsingular matrix A ∈ C
n×n

Output: Unitary matrix Q ∈ C
n×n and upper triangular matrix R ∈

C
n×n with positive diagonal elements such that A = QR

1. If n = 1, then Q ≡ A/|A| and R ≡ |A|.
2. If n > 1, zero out elements n,n−1, . . . ,2 in column 1 of A as follows.

(i) Set
(
bn1 bn2 . . . bnn

) = (
an1 an2 . . . ann

)
.

(ii) For i = n,n−1, . . . ,2
Zero out element (i,1) by applying a rotation to rows i and i −1,(

ci si
−si ci

)(
ai−1,1 ai−1,2 . . . ai−1,n
bi1 bi2 . . . bin

)

=
(

bi−1,1 bi−1,2 . . . bi−1,n
0 âi2 . . . âin

)
,

where bi−1,1 ≡ √|bi1|2 +|ai−1,1|2. If bi1 = ai−1,1 = 0, then ci ≡ 1
and si ≡ 0; otherwise ci ≡ ai−1,1/bi−1,1 and si ≡ bi1/bi−1,1.

(iii) Multiply all n−1 rotations,

Q∗
n ≡


 c2 s2 0

−s2 c2 0
0 0 In−2


 · · ·


In−2 0 0

0 cn sn
0 −sn cn


 .
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72 3. Linear Systems

(iv) Partition the transformed matrix,

Q∗
nA =

(
r11 r∗
0 Â

)
, where Â ≡


â22 . . . â2n

...
...

ân2 . . . ânn


 ,

r∗ ≡ (
b12 . . . b1n

)
, and r11 ≡ b11 > 0.

3. Compute Â = Qn−1Rn−1, where Qn−1 is unitary and Rn−1 is upper trian-
gular with positive diagonal elements.

4. Then

Q ≡ Qn

(
1 0
0 Qn−1

)
, R ≡

(
r11 r∗
0 Rn−1

)
.

Exercises

(i) Determine the QR factorization of a real upper triangular matrix.
(ii) QR Factorization of Outer Product.

Let x,y ∈ C
n, and apply Algorithm 3.6 to xy∗. How many Givens rotations

do you have to apply at the most? What does the upper triangular matrix R

look like?
(iii) Let A ∈ C

n×n be a tridiagonal matrix, that is, only elements aii , ai+1,i , and
ai,i+1 can be nonzero; all other elements are zero. We want to compute a
QR factorization A = QR with n− 1 Givens rotations. In which order do
the elements have to be zeroed out, on which rows do the rotations act, and
which elements of R can be nonzero?

(iv) QL Factorization.
Show: Every nonsingular matrix A ∈ C

n×n has a unique factorization
A = QL, where Q is unitary and L is lower triangular with positive di-
agonal elements.

(v) Computation of QL Factorization.
Suppose we want to compute the QL factorization of a nonsingular matrix
A ∈ C

n×n with Givens rotations. In which order do the elements have to be
zeroed out, and on which rows do the rotations act?

(vi) The elements in a Givens rotation

G =
(

c s

−s c

)
are named to invoke an association with sine and cosine, because
|c|2 + |s|2 = 1. One can also express the elements in terms of tangents
or cotangents. Let

G

(
x

y

)
=
(

d

0

)
, where d =

√
|x|2 +|y|2.

Show the following: If |y| > |x|, then

τ = x

y
, s = y

|y|
1√

1+|τ |2 , c = τs,
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and if |x| > |y|, then

τ = y

x
, c = x

|x|
1√

1+|τ |2 , s = τc.

(vii) Householder Reflections.
Here is another way to introduce zeros into a vector without changing
its two norm. Let x ∈ C

n and x1 �= 0. Define Q = I − 2vv∗/v∗v, where
v = x + α‖x‖2e1 and α = x1/|x1|. Show that Q is unitary and that
Qx = −α‖x‖2e1. The matrix Q is called a Householder reflection.

(viii) Householder Reflections for Real Vectors.
Let x,y ∈ R

n with ‖x‖2 = ‖y‖2. Show how to choose a vector v in the
Householder reflection so that Qx = y.

3.8 QR Factorization of Tall and Skinny Matrices
We look at rectangular matrices A ∈ C

m×n with at least as many rows as columns,
i.e., m ≥ n. If A is involved in a linear system Ax = b, then we must have b ∈ C

m

and x ∈ C
n. Such linear systems do not always have a solution; and if they do

happen to have a solution, then the solution may not be unique.

Example. If

A =

1

1
1


 , b =


b1

b2
b3


 ,

then the linear system Ax = b has a solution only for those b all of whose elements
are the same, i.e., β = b1 = b2 = b3. In this case the solution is x = β.

Fortunately, there is one right-hand side for which a linear system Ax = b

always has a solution, namely, b = 0. That is, Ax = 0 always has the solution
x = 0. However, x = 0 may not be the only solution.

Example. If

A =

 1 −1

−1 1
1 −1


 ,

then Ax = 0 has infinitely many solutions x = (
x1 x2

)T with x1 = x2.
We distinguish matrices A where x = 0 is the unique solution for Ax = 0.

Definition 3.34. Let A ∈ C
m×n. The columns of A are linearly independent if

Ax = 0 implies x = 0. If Ax = 0 has infinitely many solutions, then the columns
of A are linearly dependent.

Example.

• The columns of a nonsingular matrix A are linearly independent.

• If A is nonsingular, then the matrix

(
A

0

)
has linearly independent columns.
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74 3. Linear Systems

• Let x ∈ C
n. If x �= 0, then x consists of a single, linearly independent

column. If x = 0, then x is linearly dependent.

• If A ∈ C
m×n with A∗A = In, then A has linearly independent columns. This

is because multiplying Ax = 0 on the left by A∗ implies x = 0.

• If the linear system Ax = b has a solution x, then the matrix B = (
A b

)
has linearly dependent columns. That is because B

(
x

−1

)
= 0.

How can we tell whether a tall and skinny matrix has linearly independent
columns? We can use a QR factorization.

Algorithm 3.7. QR Factorization for Tall and Skinny Matrices.

Input: Matrix A ∈ C
m×n with m ≥ n

Output: Unitary matrix Q ∈ C
m×m and upper triangular matrix R ∈

C
n×n with nonnegative diagonal elements such that A = Q

(
R

0

)
1. If n = 1, then Q is a unitary matrix that zeros out elements 2, . . . ,m of A,

and R ≡ ‖A‖2.
2. If n > 1, then, as in Algorithm 3.6, determine a unitary matrix Qm ∈ C

m×m

to zero out elements 2, . . . ,m in column 1 of A, so that

Q∗
mA =

(
r11 r∗
0 Â

)
,

where r11 ≥ 0 and Â ∈ C
(m−1)×(n−1).

3. Compute Â = Qm−1

(
Rn−1

0

)
, where Qm−1 ∈ C

(m−1)×(m−1) is unitary, and

Rn−1 ∈ C
(n−1)×(n−1) is upper triangular with nonnegative diagonal elements.

4. Then

Q ≡ Qm

(
1 0
0 Qm−1

)
, R ≡

(
r11 r∗
0 Rn−1

)
.

Fact 3.35. Let A ∈ C
m×n with m ≥ n, and A = Q

(
R

0

)
where Q ∈ C

m×m is uni-

tary, and R ∈ C
n×n is upper triangular. Then A has linearly independent columns

if and only if R has nonzero diagonal elements.

Proof. Since Q is nonsingular, Ax = Q

(
R

0

)
0 ⇒ x = 0 if and only if

Rx = 0 ⇒ x = 0. This is the case if and only if R is nonsingular and has nonzero
diagonal elements.

One can make a QR factorization more economical by reducing the storage
and omitting part of the unitary matrix.

Soc
iet

y fo
r I

ndustr
ial

 an
d A

pplie
d M

at
hem

at
ics

Copyright ©2009 by the Society for Industrial and Applied Mathematics 
This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at www.ec-securehost.com/SIAM/OT113.html



“book”
2009/5/27
page 75

�

�

�

�

�

�

�

�
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Fact 3.36 (Thin QR Factorization). If A ∈ C
m×n with m ≥ n, then there exists

a matrix Q1 ∈ C
m×n with Q∗

1Q1 = In, and an upper triangular matrix R ∈ C
n×n

with nonnegative diagonal elements so that A = Q1R.

Proof. Let A = Q

(
R

0

)
be a QR factorization as in Fact 3.35. Partition

Q = (
Q1 Q2

)
, where Q1 has n columns. Then A = Q1R.

Definition 3.37. IfA ∈ C
m×n andA∗A = In, then the columns ofAare orthonormal.

For a square matrix the thin QR decomposition is identical to the full QR
decomposition.

Example 3.38. The columns of a unitary or an orthogonal matrix A ∈ C
n×n are

orthonormal because A∗A = In, and so are the rows because AA∗ = In. This
means, a square matrix with orthonormal columns must be a unitary matrix. A real
square matrix with orthonormal columns is an orthogonal matrix.

Exercises

(i) Let A ∈ C
m×n, m ≥ n, with thin QR factorization A = QR. Show:

‖A‖2 = ‖R‖2.
(ii) Uniqueness of Thin QR Factorization.

Let A ∈ C
m×n have linearly independent columns. Show: If A = QR,

where Q ∈ C
m×n satisfies Q∗Q = In and R is upper triangular with positive

diagonal elements, then Q and R are unique.
(iii) Generalization of Fact 3.35.

Let A ∈ C
m×n, m ≥ n, and A = B

(
C

0

)
, where B ∈ C

m×n has linearly

independent columns, and C ∈ C
n×n. Show: A has linearly independent

columns if and only if C is nonsingular.
(iv) Let A ∈ C

m×n where m > n. Show: There exists a matrix Z ∈ C
m×(m−n)

such that Z∗A = 0.
(v) Let A ∈ C

m×n, m ≥ n, have a thin QR factorization A = QR. Express the
kth column of A as a linear combination of columns of Q and elements of R.
How many columns of Q are involved?

(vi) Let A ∈ C
m×n, m ≥ n, have a thin QR factorization A = QR. Determine a

QR factorization of A−Qe1e
∗
1R from the QR factorization of A.

(vii) Let A = (
a1 . . . an

)
have linearly independent columns aj , 1 ≤ j ≤ n.

Let A = QR be a thin QR factorization where Q = (
q1 . . . qn

)
and R is

upper triangular with positive diagonal elements. Express the elements of R

in terms of the columns aj of A and the columns qj of Q.
(viii) Let A be a matrix with linearly independent columns. Show how to com-

pute the lower-upper Cholesky factorization of A∗A without forming the
product A∗A.
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76 3. Linear Systems

(ix) Bessel’s Inequality.
Let V ∈ C

m×n with V = (
v1 . . . vn

)
have orthonormal columns, and let

x ∈ C
m. Show:

n∑
j=1

|v∗
j x|2 ≤ x∗x.

1. QR Factorization with Column Pivoting.
This problem presents a method to compute QR factorizations of arbitrary
matrices. Let A ∈ C

m×n with rank(A) = r . Then there exists a permutation
matrix P so that

AP = Q

(
R1 R2
0 0

)
,

where R1 is an upper triangular nonsingular matrix.

(a) Show how to modify Algorithm 3.7 so that it computes such a factor-
ization. In the first step, choose a permutation matrix Pn that brings
the column with largest two norm to the front; i.e.,

‖APne1‖2 = max
1≤j≤n

‖APnej‖2.

(b) Show that the diagonal elements of R1 have decreasing magnitudes;
i.e., (R1)11 ≥ (R1)22 ≥ ·· · ≥ (R1)rr .
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4. Singular Value
Decomposition

In order to solve linear systems with a general rectangular coefficient matrix, we
introduce the singular value decomposition. It is one of the most important tools
in numerical linear algebra, because it contains a lot of information about a matrix,
including rank, distance to singularity, column space, row space, and null spaces.

Definition 4.1 (SVD). LetA ∈ C
m×n. Ifm ≥ n, then a singular value decomposition

(SVD) of A is a decomposition

A = U

(



0

)
V ∗, where 
 =


σ1

. . .
σn


 , σ1 ≥ ·· · ≥ σn ≥ 0,

and U ∈ C
m×m and V ∈ C

n×n are unitary.
If m ≤ n, then an SVD of A is

A = U
(

 0

)
V ∗, where 
 =


σ1

. . .
σm


 , σ1 ≥ ·· · ≥ σm ≥ 0,

and U ∈ C
m×m and V ∈ C

n×n are unitary.
The matrix U is called a left singular vector matrix, V is called a right

singular vector matrix, and the scalars σj are called singular values.

Remark 4.2.

• An m×n matrix has min{m,n} singular values.
• The singular values are unique, but the singular vector matrices are not.

Although an SVD is not unique, one often says “the SVD” instead of “an
SVD.”

77
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78 4. Singular Value Decomposition

• Let A ∈ C
m×n with m ≥ n. If A = U

(



0

)
V ∗ is an SVD of A, then

A∗ = V
(

 0

)
U∗ is an SVD of A∗. Therefore, A and A∗ have the same

singular values.
• A ∈ C

n×n is nonsingular if and only if all singular values are nonzero, i.e.,
σj > 0, 1 ≤ j ≤ n.
If A = U
V ∗ is an SVD of A, then A−1 = V 
−1U∗ is an SVD of A−1.

Example 4.3. The 2×2 matrix

A =
(

1 α

0 1

)

has a smallest singular value equal to

σ2 =
(

2

2+|α|2 +|α|√4+|α|2

)1/2

.

As |α| → ∞, the smallest singular value approaches zero, σ2 → 0, so that the
absolute distance of A to singularity decreases.

Exercises

(i) Let A ∈ C
n×n. Show: All singular values of A are the same if and only if A

is a multiple of a unitary matrix.
(ii) Show that the singular values of a Hermitian idempotent matrix are 0 and 1.

(iii) Show: A ∈ C
n×n is Hermitian positive definite if and only if it has an SVD

A = V 
V ∗ where 
 is nonsingular.
(iv) Let A,B ∈ C

m×n. Show: A and B have the same singular values if and only
if there exist unitary matrices Q ∈ C

n×n and P ∈ C
m×m such that B = PAQ.

(v) Let A ∈ C
m×n, m ≥ n, with QR decomposition A = Q

(
R

0

)
, where

Q ∈ C
m×m is unitary and R ∈ C

n×n. Determine an SVD of A from an
SVD of R.

(vi) Determine an SVD of a column vector, and an SVD of a row vector.
(vii) Let A ∈ C

m×n with m ≥ n. Show: The singular values of A∗A are the
squares of the singular values of A.

1. Show: If A ∈ C
n×n is Hermitian positive definite and α > −σn, then A+αIn

is also Hermitian positive definite with singular values σj +α.

2. Let A ∈ C
m×n and α > 0. Express the singular values of (A∗A+αI)−1A∗

in terms of α and the singular values of A.
3. Let A ∈ C

m×n with m ≥ n. Show: The singular values of

(
In

A

)
are equal to√

1+σ 2
j , 1 ≤ j ≤ n.
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4.1. Extreme Singular Values 79

4.1 Extreme Singular Values
The smallest and largest singular values of a matrix provide information about the
two norm of the matrix, the distance to singularity, and the two norm of the inverse.

Fact 4.4 (Extreme Singular Values). If A ∈ C
m×n has singular values

σ1 ≥ ·· · ≥ σp, where p = min{m,n}, then

‖A‖2 = max
x �=0

‖Ax‖2

‖x‖2
= σ1, min

x �=0

‖Ax‖2

‖x‖2
= σp.

Proof. The two norm of A does not change when A is multiplied by unitary
matrices; see Exercise (iv) in Section 2.6. Hence ‖A‖2 = ‖
‖2. Since 
 is a
diagonal matrix, Exercise (i) in Section 2.6 implies ‖
‖2 = maxj |σj | = σ1.

To show the expression for σp, assume that m ≥ n, so p = n. Then A

has an SVD A = U

(



0

)
V ∗. Let z be a vector so that ‖z‖2 = 1 and ‖Az‖2 =

min‖x‖2=1 ‖Ax‖2. With y = V ∗z we get

min‖x‖2=1
‖Ax‖2 = ‖Az‖2 = ‖
V ∗z‖2 = ‖
y‖2 =

(
n∑

i=1

σ 2
i |yi |2

)1/2

≥ σn‖y‖2 = σn.

Thus, σn ≤ min‖x‖2=1 ‖Ax‖2. As for the reverse inequality,

σn = ‖
en‖2 = ‖U∗AV en‖2 = ‖A(V en)‖2 ≥ min‖x‖2=1
‖Ax‖2.

The proof for m < n is analogous.

The extreme singular values are useful because they provide information
about the two-norm condition number with respect to inversion, and about the
distance to singularity.

The expressions below show that the largest singular value determines how
much a matrix can stretch a unit-norm vector and the smallest singular value
determines how much a matrix can shrink a unit-norm vector.

Fact 4.5. If A ∈ C
n×n is nonsingular with singular values σ1 ≥ ·· · ≥ σn > 0, then

‖A−1‖2 = 1

σn

, κ2(A) = σ1

σn

.

The absolute distance of A to singularity is

σn = min {‖E‖2 : A+E is singular}
and the relative distance is

σn

σ1
= min

{‖E‖2

‖A‖2
: A+E is singular

}
.
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80 4. Singular Value Decomposition

Proof. Remark 4.2 implies that 1/σj are the singular values of A−1, so that
‖A−1‖2 = maxj 1/|σj | = 1/σn. The expressions for the distance to singularity
follow from Fact 2.29 and Corollary 2.30.

Fact 4.5 implies that a nonsingular matrix is almost singular in the absolute
sense if its smallest singular value is close to zero. If the smallest and largest
singular values are far apart, i.e., if σ1 � σn, then the matrix is ill-conditioned with
respect to inversion in the normwise relative sense, and it is almost singular in the
relative sense.

The singular values themselves are well-conditioned in the normwise abso-
lute sense. We show this below for the extreme singular values.

Fact 4.6. Let A,A + E ∈ C
m×n, p = min{m,n}, and let σ1 ≥ ·· · ≥ σp be the

singular values of A and σ̃1 ≥ ·· · ≥ σ̃p the singular values of A+E. Then

|σ̃1 −σ1| ≤ ‖E‖2, |σ̃p −σp| ≤ ‖E‖2.

Proof. The inequality for σ1 follows from σ1 = ‖A‖2 and Fact 2.13, which states
that norms are well-conditioned.

Regarding the bound for σp, let y be a vector so that σp = ‖Ay‖2 and
‖y‖2 = 1. Then the triangle inequality implies

σ̃p = min‖x‖2=1
‖(A+E)x‖2 ≤ ‖(A+E)y‖2 ≤ ‖Ay‖2 +‖Ey‖2

= σp +‖Ey‖2 ≤ σp +‖E‖2.

Hence σ̃p −σp ≤ ‖E‖2. To show that −‖E‖2 ≤ σ̃p −σp, let y be a vector so that
σ̃p = ‖(A+E)y‖2 and ‖y‖2 = 1. Then the triangle inequality yields

σp = min‖x‖2=1
‖Ax‖2 ≤ ‖Ay‖2 = ‖(A+E)y −Ey‖2 ≤ ‖(A+E)y‖2 +‖Ey‖2

= σ̃p +‖Ey‖2 ≤ σ̃p +‖E‖2.

Exercises

1. Extreme Singular Values of a Product.
Let A ∈ C

k×m, B ∈ C
m×n, q = min{k,n}, and p = min{m,n}. Show:

σ1(AB) ≤ σ1(A)σ1(B), σq(AB) ≤ σ1(A)σp(B).

2. Appending a column to a tall and skinny matrix does not increase the smallest
singular value but can decrease it, because the new column may depend
linearly on the old ones. The largest singular value does not decrease but it
can increase, because more “mass” is added to the matrix.
Let A ∈ C

m×n with m > n, z ∈ C
m, and B = (

A z
)
. Show:

σn+1(B) ≤ σn(A) and σ1(B) ≥ σ1(A).
3. Appending a row to a tall and skinny matrix does not decrease the smallest

singular value but can increase it. Intuitively, this is because the columns
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become longer which gives them an opportunity to become more linearly
independent. The largest singular value does not decrease but can increase,
because more “mass” is added to the matrix.
Let A ∈ C

m×n with m ≥ n, z ∈ C
n, and B =

(
A

z∗
)

. Show that

σn(B) ≥ σn(A), σ1(A) ≤ σ1(B) ≤
√

σ1(A)2 +‖z‖2
2.

4.2 Rank
For a nonsingular matrix, all singular values are nonzero. For a general matrix, the
number of nonzero singular values measures how much “information” is contained
in a matrix, while the number of zero singular values indicates the amount of
“redundancy.”

Definition 4.7 (Rank). The number of nonzero singular values of a matrix
A ∈ C

m×n is called the rank of A. An m×n zero matrix has rank 0.

Example 4.8.

• If A ∈ C
m×n, then rank(A) ≤ min{m,n}.

This follows from Remark 4.2.
• If A ∈ C

n×n is nonsingular, then rank(A) = n = rank(A−1).
A nonsingular matrix A contains the maximum amount of information, be-
cause it can reproduce any vector b ∈ C

n by means of b = Ax.
• For any m×n zero matrix 0, rank(0) = 0.

The zero matrix contains no information. It can only reproduce the zero
vector, because 0x = 0 for any vector x.

• If A ∈ C
m×n has rank(A) = n, then A has an SVD A = U

(



0

)
V ∗, where


 is nonsingular. This means, all singular values of A are nonzero.
• If A ∈ C

m×n has rank(A) = m, then A has an SVD A = U
(

 0

)
V ∗, where


 is nonsingular. This means, all singular values of A are nonzero.

A nonzero outer product uv∗ contains little information: because
uv∗x = (v∗x)u, the outer product uv∗ can produce only multiples of the vector u.

Remark 4.9 (Outer Product). If u ∈ C
m and v ∈ C

n with u �= 0 and v �= 0, then
rank(uv∗) = 1.

To see this, determine an SVD of uv∗. Let U ∈ C
m×m be a unitary matrix so

that U∗u = ‖u‖2e1, and let V ∈ C
n×n be a unitary matrix so that V ∗v = ‖v‖2e1.

Substituting these expressions into uv∗ shows that uv∗ = U
V ∗ is an SVD, where

 ∈ R

m×n and 
 = ‖u‖2‖v‖2e1e
∗
1 . Therefore, the singular values of uv∗ are

‖u‖2‖v‖2, and (min{m,n}−1) zeros. In particular, ‖uv∗‖2 = ‖u‖2‖v‖2.

The above example demonstrates that a nonzero outer product has rank one.
Now we show that a matrix of rank r can be represented as a sum of r outer
products. To this end we distinguish the columns of the left and right singular
vector matrices.
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82 4. Singular Value Decomposition

Definition 4.10 (Singular Vectors). Let A ∈ C
m×n, with SVD A = U

(



0

)
V ∗ if

m ≥ n, and SVD A = U
(

 0

)
V ∗ if m ≤ n. Set p = min{m,n} and partition

U = (
u1 . . . um

)
, V = (

v1 . . . vn

)
, 
 =


σ1

. . .
σp


 ,

where σ1 ≥ ·· · ≥ σp ≥ 0.
We call σj the j th singular value, uj the j th left singular vector, and vj the

j th right singular vector.

Corresponding left and right singular vectors are related to each other.

Remark 4.11. Let A have an SVD as in Definition 4.10. Then

Avi = σiui , A∗ui = σivi , 1 ≤ i ≤ p.

This follows from the fact that U and V are unitary, and 
 is Hermitian.

Now we are ready to derive an economical representation for a matrix, where
the size of the representation is proportional to the rank of the matrix. Fact 4.12
below shows that a matrix of rank r can be expressed in terms of r outer products.
These outer products involve the singular vectors associated with the nonzero
singular values.

Fact 4.12 (Reduced SVD). Let A ∈ C
m×n have an SVD as in Definition 4.10. If

rank(A) = r , then

A =
r∑

j=1

σjujv
∗
j .

Proof. From rank(A) = r follows σ1 ≥ ·· · ≥ σr > 0. Confine the nonzero singular
values to the matrix 
r , so that


r =

σ1

. . .
σr


 , and A = U

(

r 0
0 0

)
V ∗

is an SVD of A. Partitioning the singular vectors conformally with the nonzero
singular values,

U = ( r m− r

Ur Um−r

)
, V = ( r n− r

Vr Vn−r

)
,

yields A = Ur
rV
∗
r . Using Ur = (

u1 . . . ur

)
and Vr = (

v1 . . . vr

)
, and

viewing matrix multiplication as an outer product, as in View 4 of Section 1.7,
shows

A = Ur
rV
∗
r = (

σ1u1 . . . σrur

)v∗
1
...

v∗
r


 =

r∑
j=1

σjujv
∗
j .
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4.2. Rank 83

For a nonsingular matrix, the reduced SVD is equal to the ordinary SVD.
Based on the above outer product representation of a matrix, we will now

show that the singular vectors associated with the k largest singular values of A

determine the rank k matrix that is closest to A in the two norm. Moreover, the
(k +1)st singular value of A is the absolute distance of A, in the two norm, to the
set of rank k matrices.

Fact 4.13 (Optimality of the SVD). Let A ∈ C
m×n have an SVD as in Defini-

tion 4.9. If k < rank(A), then the absolute distance of A to the set of rank k

matrices is
σk+1 = min

B∈Cm×n,rank(B)=k
‖A−B‖2 = ‖A−Ak‖2,

where Ak = ∑k
j=1 σjujv

∗
j .

Proof. Write the SVD as

A = U

(

1


2

)
V ∗, where 
1 =


σ1

. . .
σk+1




and σ1 ≥ ·· · ≥ σk+1 > 0, so that 
1 is nonsingular. The idea is to show that the
distance of 
1 to the set of singular matrices, which is σk+1, is a lower bound for
the distance of A to the set of all rank k matrices.

Let C ∈ C
m×n be a matrix with rank(C) = k, and partition

U∗CV =
(

C11 C12
C21 C22

)
,

where C11 is (k+1)×(k+1). From rank(C) = k follows rank(C11) ≤ k (although
it is intuitively clear, it is proved rigorously in Fact 6.19), so that C11 is singular.
Since the two norm is invariant under multiplication by unitary matrices, we obtain

‖A−C‖2 =
∥∥∥∥
(


1

2

)
−U∗CV

∥∥∥∥
2

=
∥∥∥∥
(


1 −C11 −C12
−C21 
2 −C22

)∥∥∥∥
2
≥ ‖
1 −C11‖2.

Since 
1 is nonsingular and C11 is singular, Facts 2.29 and 4.5 imply that
‖
1 −C11‖2 is bounded below by the distance of 
1 from singularity, and

‖
1 −C11‖2 ≥ min{‖
1 −B11‖2 : B11 is singular} = σk+1.

A matrix C for which ‖A−C‖2 = σk+1 is C = Ak . This is because

C11 =




σ1
. . .

σk

0


 , C12 = 0, C21 = 0, C22 = 0.
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84 4. Singular Value Decomposition

Since the 
1 −C11 has k diagonal elements equal to zero, and the diagonal elements
of 
2 are less than or equal to σk+1, we obtain

‖A−C‖2 =
∥∥∥∥
(


1 −C11 0
0 
2

)∥∥∥∥
2
=
∥∥∥∥
(

σk+1

2

)∥∥∥∥
2
= σk+1.

The singular values also help us to relate the rank of A to the rank of A∗A
and AA∗. This will be important later on for the solution of least squares problems.

Fact 4.14. For any matrix A ∈ C
m×n,

1. rank(A) = rank(A∗),
2. rank(A) = rank(A∗A) = rank(AA∗),
3. rank(A) = n if and only if A∗A is nonsingular,
4. rank(A) = m if and only if AA∗ is nonsingular.

Proof.

1. This follows from Remark 4.2, because A and A∗ have the same singular
values.

2. If m ≥ n, then A has an SVD A = U

(



0

)
V ∗, and A∗A = V 
2V ∗ is an

SVD of A∗A. Since 
 and 
2 have the same number of nonzero diagonal

elements, rank(A) = rank(A∗A). Also, AA∗ = U

(

2 0
0 0

)
U∗ is an SVD

of AA∗. As before, rank(A) = rank(AA∗) because 
 and 
2 have the same
number of nonzero diagonal elements.
A similar argument applies when m < n.

3. Since A∗A is n × n, A∗A is nonsingular if and only if n = rank(A∗A) =
rank(A), where the second equality follows from item 2.

4. The proof is similar to that of item 3.

In item 3 above the matrix A has linearly independent columns, and in item
4 it has linearly independent rows. Below we give another name to such matrices.

Definition 4.15 (Full Rank). A matrix A ∈ C
m×n has full column rank if

rank(A) = n, and full row rank if rank(A) = m.
A matrix A ∈ C

m×n has full rank if A has full column rank or full row rank.
A matrix that does not have full rank is rank deficient.

Example.

• A nonsingular matrix has full row rank and full column rank.

• A nonzero column vector has full column rank, and a nonzero row vector
has full row rank.

• If A ∈ C
n×n is nonsingular, then

(
A B

)
has full row rank for any matrix

B ∈ C
n×m, and

(
A

C

)
has full column rank, for any matrix C ∈ C

m×n.

• A singular square matrix is rank deficient.
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4.2. Rank 85

Below we show that matrices with orthonormal columns also have full col-
umn rank. Recall from Definition 3.37 that A has orthonormal columns if A∗A = I .

Fact 4.16. A matrix A ∈ C
m×n with orthonormal columns has rank(A) = n, and

all singular values are equal to one.

Proof. Fact 4.14 implies rank(A) = rank(A∗A) = rank(In) = n. Thus A

has full column rank, and we can write its SVD as A = U

(



0

)
V ∗. Then

In = A∗A = V 
2V ∗ implies 
 = In, so that all singular values of A are equal
to one.

Exercises

(i) Let A ∈ C
m×n. Show: If Q ∈ C

m×m and P ∈ C
n×n are unitary, then

rank(A) = rank(QAP).
(ii) What can you say about the rank of a nilpotent matrix, and the rank of an

idempotent matrix?
(iii) Let A ∈ C

m×n. Show: If rank(A) = n, then ‖(A∗A)−1A∗‖2 = 1/σn, and if
rank(A) = m, then ‖(AA∗)−1A‖2 = 1/σm.

(iv) Let A ∈ C
m×n with rank(A) = n. Show that A(A∗A)−1A∗ is idempotent

and Hermitian, and ‖A(A∗A)−1A∗‖2 = 1.
(v) Let A ∈ C

m×n with rank(A) = m. Show that A∗(AA∗)−1A is idempotent
and Hermitian, and ‖A∗(AA∗)−1A‖2 = 1.

(vi) Nilpotent Matrices.
Let A ∈ C

n×n be nilpotent so that Aj = 0 and Aj−1 �= 0 for some j ≥ 1.
Let b ∈ C

n with Aj−1b �= 0. Show that K = (
b Ab . . . Aj−1b

)
has full

column rank.
(vii) In Fact 4.13 let B be a multiple of Ak , i.e., B = αAk . Determine ‖A−B‖2.

1. Let A ∈ C
n×n. Show that there exists a unitary matrix Q such that

A∗ = QAQ.
2. Polar Decomposition.

Show: If A ∈ C
m×n has rank(A) = n, then there is a factorization A = PH ,

where P ∈ C
m×n has orthonormal columns, and H ∈ C

n×n is Hermitian
positive definite.

3. The polar factor P is the closest matrix with orthonormal columns in the two
norm.
Let A ∈ C

n×n have a polar decomposition A = PH . Show that
‖A−P ‖2 ≤ ‖A−Q‖2 for any unitary matrix Q.

4. The distance of a matrix A from its polar factor P is determined by how
close the columns A are to being orthonormal.
Let A ∈ C

m×n, with rank(A) = n, have a polar decomposition A = PH .
Show that

‖A∗A− In‖2

1+‖A‖2
≤ ‖A−P ‖2 ≤ ‖A∗A− In‖2

1+σn

.
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86 4. Singular Value Decomposition

5. Let A ∈ C
n×n and σ > 0. Show: σ is a singular value of A if and only if

the matrix (
A −σI

−σI A∗
)

is singular.
6. Rank Revealing QR Factorization.

With an appropriate permutation of the columns, a QR factorization can
almost reveal the smallest singular value of a full column rank matrix.
Let A ∈ C

m×n with rank(A) = n and smallest singular value σn. Let the cor-
responding singular vectors be Av = σnu, where ‖v‖2 = ‖u‖2 = 1. Choose

a permutation P so that w = P ∗v and |wn| = ‖w‖∞, and let AP = Q

(
R

0

)
be a QR decomposition of AP . Show: |rnn| ≤ √

nσn.

4.3 Singular Vectors
The singular vectors of a matrix A give information about the column spaces and
null spaces of A and A∗.

The column space of a matrix A is the set of all right-hand sides b for which
the system Ax = b has a solution, and the null space of A determines whether these
solutions are unique.

Definition 4.17 (Column Space and Null Space). If A ∈ C
m×n, then the set

R(A) = {b ∈ C
m : b = Ax for some x ∈ C

n}
is the column space or range of A, and the set

Ker(A) = {x ∈ C
n : Ax = 0}

is the kernel or null space of A.

Example.

• The column space of an m×n zero matrix is the zero vector, and the null
space is C

n, i.e., R(0m×n) = {0m×1} and Ker(0m×n) = C
n.

• The column space of an n×n nonsingular complex matrix is C
n, and the

null space consists of the single vector 0n×1.

• Ker(A) = {0} if and only if the columns of the matrix A are linearly inde-
pendent.

• If A ∈ C
m×n, then for all k ≥ 1

R
(
A 0m×k

) = R(A), Ker

(
A

0k×n

)
= Ker(A).
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4.3. Singular Vectors 87

• If A ∈ C
n×n is nonsingular, then for any B ∈ C

n×p and C ∈ C
p×n

R
(
A B

) = R(A), Ker

(
A

C

)
= {0n×1}.

The column and null spaces of A∗ are also important, and we give them
names that relate to the matrix A.

Definition 4.18 (Row Space and Left Null Space). Let A ∈ C
m×n. The set

R(A∗) = {d ∈ C
n : d = A∗y for some y ∈ C

m}
is the row space of A. The set

Ker(A∗) = {y ∈ C
m : A∗y = 0}

is the left null space of A.

Note that all spaces of a matrix are defined by column vectors.

Example 4.19. IfA is Hermitian, thenR(A∗) = R(A) and Ker(A∗) = Ker(A).

The singular vectors reproduce the four spaces associated with a matrix. Let
A ∈ C

m×n with rank(A) = r and SVD

A = U

(

r 0
0 0

)
V ∗,

where 
r is nonsingular, and

( r n− r

r 
r 0
m− r 0 0

)
, U = ( r m− r

Ur Um−r

)
, V = ( r n− r

Vr Vn−r

)
.

Fact 4.20 (Spaces of a Matrix and Singular Vectors). Let A ∈ C
m×n.

1. The leading r left singular vectors represent the column space of A:
If A �= 0, then R(Ur) = R(A); otherwise R(A) = {0m×1}.

2. The trailing n− r right singular vectors represent the null space of A:
If rank(A) = r < n, then R(Vn−r ) = Ker(A); otherwise Ker(A) = {0n×1}.

3. The leading r right singular vectors represent the row space of A:
If A �= 0, then R(A∗) = R(Vr); otherwise R(A∗) = {0n×1}.

4. The trailing m− r left singular vectors represent the left null space of A:
If r < m, then R(Um−r ) = Ker(A∗); otherwise Ker(A∗) = {0m×1}.

Proof. Although the statements may be intuitively obvious, they are proved rigor-
ously in Section 6.1.

The singular vectors help us to relate the spaces of A∗A and AA∗ to those
of the matrix A. Since A∗A and AA∗ are Hermitian, we need to specify only two
spaces; see Example 4.19.
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88 4. Singular Value Decomposition

Fact 4.21 (Spaces of A∗A and AA∗). Let A ∈ C
m×n.

1. Ker(A∗A) = Ker(A) and R(A∗A) = R(A∗).
2. R(AA∗) = R(A) and Ker(AA∗) = Ker(A∗).

Proof. Fact 4.14 implies that A∗A and AA∗ have the same rank as A. Since A∗A
has the same right singular vectors as A, Fact 4.20 implies Ker(A∗A) = Ker(A)

and R(A∗A) = R(A∗). Since AA∗ has the same left singular vectors as A, Fact
4.20 implies R(AA∗) = R(A) and Ker(AA∗) = Ker(A∗).

In the special case when the rank of a matrix is equal to the number of rows,
then the number of elements in the column space is as large as possible. When the
rank of the matrix is equal to the number of columns, then the number of elements
in the null space is as small as possible.

Fact 4.22 (Spaces of Full Rank Matrices). Let A ∈ C
m×n. Then

1. rank(A) = m if and only if R(A) = C
m;

2. rank(A) = n if and only if Ker(A) = {0}.

Proof. Let A = U

(

r 0
0 0

)
V ∗ be an SVD of A, where 
r is nonsingular.

1. From Fact 4.20 follows R(A) = R(Ur). Hence r = m if and only if Ur = U ,
because U is nonsingular so that R(U) = C

m.
2. Fact 4.20 also implies r = n if and only if Vn−r is empty, which means that

Ker(A) = {0}.
If the matrix in a linear system has full rank, then existence or uniqueness of

a solution is guaranteed.

Fact 4.23 (Solutions of Full Rank Linear Systems). Let A ∈ C
m×n.

1. If rank(A) = m, then Ax = b has a solution x = A∗(AA∗)−1b for every
b ∈ C

m.
2. If rank(A) = n and if b ∈ R(A), then Ax = b has the unique solution

x = (A∗A)−1A∗b.

Proof.

1. Fact 4.22 implies that Ax = b has a solution for every b ∈ C
m, and

Fact 4.14 implies that AA∗ is nonsingular. Clearly, x = A∗(AA∗)−1b satis-
fies Ax = b.

2. Since b ∈ R(A), Ax = b has a solution. Multiplying on the left by A∗
gives A∗Ax = A∗b. According to Fact 4.14, A∗A is nonsingular, so that
x = (A∗A)−1A∗b.
Suppose Ax = b and Ay = b; then A(x − y) = 0. Fact 4.22 implies that
Ker(A) = {0}, so x = y, which proves uniqueness.
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4.3. Singular Vectors 89

Exercises

(i) Fredholm’s Alternatives.

(a) The first alternative implies that R(A) and Ker(A∗) have only the zero
vector in common. Assume b �= 0 and show:
If Ax = b has a solution, then b∗A �= 0.
In other words, if b ∈ R(A), then b �∈ Ker(A∗).

(b) The second alternative implies that Ker(A) and R(A∗) have only the
zero vector in common. Assume x �= 0 and show:
If Ax = 0, then there is no y such that x = A∗y.
In other words, if x ∈ Ker(A), then x �∈ R(A∗),

(ii) Normal Matrices.
If A ∈ C

n is Hermitian, then R(A∗) = R(A) and Ker(A∗) = Ker(A). These
equalities remain true for a larger class of matrices, the so-called normal
matrices. A matrix A ∈ C

n is normal if A∗A = AA∗.
Show: If A ∈ C

n×n is normal, then R(A∗) = R(A) and Ker(A∗) = Ker(A).
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5. Least Squares Problems

Here we solve linear systems Ax = b that do not have a solution. If b is not in
the column space of A, there is no x such that Ax = b. The best we can do is to
find a vector y that brings left- and right-hand sides of the linear system as close
as possible; in other words y is chosen to make the distance between Ay and b as
small as possible. That is, we want to minimize the distance ‖Ax −b‖2 over all x,
and distance will again be measured in the two norm.

Definition 5.1 (Least Squares Problem). Let A ∈ C
m×n and b ∈ C

m. The least
squares problem consists of finding a vector y ∈ C

n so that

min
x

‖Ax −b‖2 = ‖Ay −b‖2.

The vector Ay −b is called the least squares residual.

The name comes about as follows:

min
x

‖Ax −b‖2
2 = min

x︸︷︷︸
least

∑
i

|(Ax −b)i |2︸ ︷︷ ︸
squares

.

5.1 Solutions of Least Squares Problems
We express the solutions of least squares problems in terms of the SVD.

Let A ∈ C
m×n have rank(A) = r and an SVD

A = U

(

r 0
0 0

)
V ∗, U = ( r m− r

Ur Um−r

)
, V = ( r n− r

Vr Vn−r

)
,

where U ∈ C
m×m and V ∈ C

n×n are unitary, and 
r is a diagonal matrix with
diagonal elements σ1 ≥ ·· · ≥ σr > 0, i.e., 
r is nonsingular.

91
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92 5. Least Squares Problems

Fact 5.2 (All Least Squares Solutions). Let A ∈ C
m×n and b ∈ C

m. The solu-
tions of minx ‖Ax −b‖2 are of the form y = Vr


−1
r U∗

r b+Vn−rz for any z ∈ C
n−r .

Proof. Let y be a solution of the least squares problem, partition

V ∗y =
(

V ∗
r y

V ∗
n−ry

)
=
(

w

z

)
,

and substitute the SVD of A into the residual,

Ay −b = U

(

r 0
0 0

)
V ∗y −b = U

(

rw −U∗

r b

−U∗
m−rb

)
.

Two norms are invariant under multiplication by unitary matrices, so that

‖Ay −b‖2
2 = ‖
rw −U∗

r b‖2
2 +‖U∗

m−rb‖2
2.

Since the second summand is constant and independent of w and z, the residual
is minimized if the first summand is zero, that is, if w = 
−1

r U∗
r b. Therefore, the

solution of the least squares problem equals

y = V

(
w

z

)
= Vrw +Vn−rz = Vr


−1
r U∗

r b+Vn−rz.

Fact 4.20 implies that Vn−rz ∈ Ker(A) for any vector z. Hence Vn−rz does not
have any effect on the least squares residual, so that z can assume any value.

Fact 5.1 shows that if A has rank r < n, then the least squares problem has
infinitely many solutions. The first term in a least squares solution contains the
matrix

Vr

−1
r U∗

r = V

(

−1

r 0
0 0

)
U∗

which is obtained by inverting only the nonsingular parts of an SVD. This matrix
is almost an inverse, but not quite.

Definition 5.3 (Moore–Penrose Inverse). If A ∈ C
m×n and rank(A) = r ≥ 1, let

A = U

(

r 0
0 0

)
V ∗ be an SVD where 
r is nonsingular. The n×m matrix

A† = V

(

−1

r 0
0 0

)
U∗

is called Moore–Penrose inverse of A. If A = 0m×n, then A† = 0n×m.

The Moore–Penrose inverse of a full rank matrix can be expressed in terms
of the matrix itself.

Remark 5.4 (Moore–Penrose Inverses of Full Rank Matrices). Let A ∈ C
m×n.

• If A is nonsingular, then A† = A−1.
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5.1. Solutions of Least Squares Problems 93

• If A ∈ C
m×n and rank(A) = n, then A† = (A∗A)−1A∗.

This means A†A = In, so that A† is a left inverse of A.
• If A ∈ C

m×n and rank(A) = m, then A† = A∗(AA∗)−1.
This means AA† = Im, so that A† is a right inverse of A.

Now we can express the least squares solutions in terms of the Moore–
Penrose inverse, without reference to the SVD.

Corollary 5.5 (All Least Squares Solutions). Let A ∈ C
m×n and b ∈ C

m×n. The
solutions of minx ‖Ax −b‖2 are of the form y = A†b+q, where q ∈ Ker(A).

Proof. This follows from setting q = Vn−rz ∈ Ker(A) in Fact 4.20.

Although a least squares problem can have infinitely many solutions, all
solutions have the part A†b in common, and they differ only in the part that belongs
to Ker(A). As a result, all least squares solutions have not just residuals of the
same norm, but they have the same residual.

Fact 5.6 (Uniqueness of the Least Squares Residual). Let A ∈ C
m×n and

b ∈ C
m. All solutions y of minx ‖Ax −b‖2 have the same residual b − Ay =

(I −AA†)b.

Proof. Let y1 and y2 be solutions to minx ‖Ax −b‖2. Corollary 5.5 implies
y1 = A†b+q1 and y2 = A†b+q2, where q1,q2 ∈ Ker(A). Hence Ay1 = AA†b =
Ay2, and both solutions have the same residual, b − Ay1 = b − Ay2 =
(I −AA†)b.

Besides being unique, the least squares residual has another important prop-
erty: It is orthogonal to the column space of the matrix.

Fact 5.7 (Residual is Orthogonal to Column Space). Let A ∈ C
m×n, b ∈ C

m,
and y a solution of minx ‖Ax −b‖2 with residual r = b−Ay. Then A∗r = 0.

Proof. Fact 5.6 implies that the unique residual is r = (I −AA†)b. Let A have
an SVD

A = U

(

r 0
0 0

)
V ∗,

where U and V are unitary, and 
r is a diagonal matrix with positive diagonal
elements. From Definition 5.3 of the Moore–Penrose inverse we obtain

AA† = U

(
Ir 0
0 0(m−r)×(m−r)

)
U∗, I −AA† = U

(
0r×r 0

0 Im−r

)
U∗.

Hence A∗(I −AA†) = 0n×m and A∗r = 0.

The part of the least squares problem solution y = A†b+q that is responsible
for lack of uniqueness is the term q ∈ Ker(A). We can force the least squares
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94 5. Least Squares Problems

problem to have a unique solution if we add the constraint q = 0. It turns out that
the resulting solution A†b has minimal norm among all least squares solutions.

Fact 5.8 (Minimal Norm Least Squares Solution). Let A ∈ C
m×n and b ∈ C

m.
Among all solutions of minx ‖Ax −b‖2 the one with minimal two norm is y = A†b.

Proof. From the proof of Fact 5.2 follows that any least squares solution has the
form

y = V

(

−1

r U∗
r b

z

)
.

Hence

‖y‖2
2 = ‖
−1

r U∗
r b‖2

2 +‖z‖2
2 ≥ ‖
−1

r U∗
r b‖2

2 = ‖Vr

−1
r U∗

r b‖2
2 = ‖A†b‖2

2.

Thus, any least squares solution y satisfies ‖y‖2 ≥ ‖A†b‖2. This means y = A†b

is the least squares solution with minimal two norm.

The most pleasant least squares problems are those where the matrix A has
full column rank because then Ker(A) = {0} and the least squares solution is unique.

Fact 5.9 (Full Column Rank Least Squares). Let A ∈ C
m×n and b ∈ C

m. If
rank(A) = n, then minx ‖Ax −b‖2 has the unique solution y = (A∗A)−1A∗b.

Proof. From Fact 4.22 we know that rank(A) = n implies Ker(A) = {0}. Hence
q = 0 in Corollary 5.5. The expression for A† follows from Remark 5.4.

In particular, when A is nonsingular, then the Moore–Penrose inverse re-
duces to the ordinary inverse. This means, if we solve a least squares problem
minx ‖Ax −b‖2 with a nonsingular matrix A, we obtain the solution y = A−1b of
the linear system Ax = b.

Exercises

(i) What is the Moore–Penrose inverse of a nonzero column vector? of a nonzero
row vector?

(ii) Let u ∈ C
m×n and v ∈ C

n with v �= 0. Show that ‖uv†‖2 = ‖u‖2/‖v‖2.
(iii) Let A ∈ C

m×n. Show that the following matrices are idempotent:

AA†, A†A, Im −AA†, In −A†A.

(iv) Let A ∈ C
m×n. Show: If A �= 0, then ‖AA†‖2 = ‖A†A‖2 = 1.

(v) Let A ∈ C
m×n. Show:

(Im −AA†)A = 0m×n, A(In −A†A) = 0m×n.

(vi) Let A ∈ C
m×n. Show: R(A†) = R(A∗) and Ker(A†) = Ker(A∗).
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5.2. Conditioning of Least Squares Problems 95

(vii) Let A ∈ C
m×n have rank(A) = r . Show: ‖A†‖2 = 1/σr .

(viii) Let A ∈ C
m×n have rank(A) = n. Show: ‖(A∗A)−1‖2 = ‖A†‖2

2.
(ix) Let A = BC where B ∈ C

m×n has rank(B) = n and C ∈ C
n×n is nonsingular.

Show: A† = C−1B†.
(x) Let A ∈ C

m×n with rank(A) = n and thin QR factorization A = QR, where
Q∗Q = In and R is upper triangular. Show: A† = R−1Q∗.

(xi) Show: If A has orthonormal columns, then A† = A∗.
(xii) Partial Isometry.

A matrix A ∈ C
m×n is called a partial isometry if A† = A∗. Show: A is a

partial isometry if and only if all its singular values are 0 or 1.
(xiii) What is the minimal norm solution to minx ‖Ax −b‖2 when A = 0?
(xiv) If y is the minimal norm solution to minx ‖Ax −b‖2 and A∗b = 0, then what

can you say about y?
(xv) Given an approximate solution z to a linear system Ax = b, this problem

shows how to construct a linear system (A+E)x = b for which z is the exact
solution.
Let A ∈ C

m×n and b ∈ C
m. Let z ∈ C

n with z �= 0 and residual r = b−Az.
Show: If E = rz†, then (A+E)z = b.

1. What is the minimal norm solution to minx ‖Ax −b‖2 when A = uv∗, where
u and v are column vectors?

2. Let A ∈ C
m×n. Show: The singular values of

(
In

A

)†

are equal to 1/
√

1+σ 2
j ,

1 ≤ j ≤ n.
3. Let A ∈ C

m×n have rank(A) = n. Show: ‖I −AA†‖2 = min{1,m−n}.
4. Let A ∈ C

m×n. Show: A† is the Moore–Penrose inverse of A if and only if
A† satisfies

MP1: AA†A = A, A†AA† = A†,

MP2: AA† and A†A are Hermitian.

5. Partitioned Moore–Penrose Inverse.
Let A ∈ C

m×n have rank(A) = n and be partitioned as A = (
A1 A2

)
. Show:

(a)

A† =
(

B
†
1

B
†
2

)
, where B1 = (I −A2A

†
2)A1, B2 = (I −A1A

†
1)A2.

(b) ‖B1‖2 = minZ ‖A1 −A2Z‖2 and ‖B2‖2 = minZ ‖A2 −A1Z‖2.

(c) Let 1 ≤ k ≤ n, and let V11 be the leading k×k principal submatrix of V .
Show: If V11 is nonsingular, then ‖A†

1‖2 ≤ ‖V −1
11 ‖2/σk .

5.2 Conditioning of Least Squares Problems
Least squares problems are much more sensitive to perturbations than linear sys-
tems. A least squares problem whose matrix is deficient in column rank is so
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96 5. Least Squares Problems

sensitive that we cannot even define a condition number. The example below
illustrates this.

Example 5.10 (Rank Deficient Least Squares Problems are Ill-Posed). Con-
sider the least squares problem minx ‖Ax −b‖2 with

A =
(

1 0
0 0

)
= A†, b =

(
1
1

)
, y = A†b =

(
1
0

)
.

The matrix A is rank deficient and y is the minimal norm solution. Let us perturb
the matrix so that

A+E =
(

1 0
0 ε

)
, where 0 < ε � 1.

The matrix A+E has full column rank and minx ‖(A+E)x −b‖2 has the unique
solution z where

z = (A+E)†b = (A+E)−1b =
(

1
1/ε

)
.

Comparing the two minimal norm solutions shows that the second element of z

grows as the (2,2) element of A+E decreases, i.e., z2 = 1/ε → ∞ as ε → 0. But
at ε = 0 we have z2 = 0. Therefore, the least squares solution does not depend
continuously on the (2,2) element of the matrix. This is an ill-posed problem.

In an ill-posed problem the solution is not a continuous function of the inputs.
The ill-posedness of a rank deficient least squares problem comes about because a
small perturbation can increase the rank of the matrix.

To avoid ill-posedness we restrict ourselves to least squares problems where
the exact and perturbed matrices have full column rank. Below we determine the
sensitivity of the least squares solution to changes in the right-hand side.

Fact 5.11 (Right-Hand Side Perturbation). Let A ∈ C
m×n have rank(A) = n,

let y be the solution to minx ‖Ax −b‖2, and let z be the solution to
minx ‖Ax − (b+f )‖2. If y �= 0, then

‖z−y‖2

‖y‖2
≤ κ2(A)

‖f ‖2

‖A‖2‖y‖2
,

and if z �= 0, then

‖z−y‖2

‖z‖2
≤ κ2(A)

‖f ‖2

‖A‖2‖z‖2
,

where κ2(A) = ‖A‖2‖A†‖2.

Proof. Fact 5.9 implies that y = A†b and z = A†(b+f ) are the unique solutions
to the respective least squares problems. From y = A†b = (A∗A)−1A∗b, see
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5.2. Conditioning of Least Squares Problems 97

Remark 5.4, and the assumption A∗b �= 0 follows y �= 0. Applying the bound for
matrix multiplication in Fact 2.22 yields

‖z−y‖2

‖y‖2
≤ ‖A†‖2‖b‖2

‖A†b‖2

‖f ‖2

‖b‖2
= ‖A†‖2

‖f ‖2

‖y‖2
.

Now multiply and divide by ‖A‖2 on the right.

In Fact 5.11 we have extended the two-norm condition number with respect
to inversion from nonsingular matrices to matrices with full column rank.

Definition 5.12. Let A ∈ C
m×n with rank(A) = n. Then κ2(A) = ‖A‖2‖A†‖2 is

the two-norm condition number of A with regard to left inversion.

Fact 5.11 implies that κ2(A) is the normwise relative condition number of
the least squares solution to changes in the right-hand side. If the columns of A

are close to being linearly dependent, then A is close to being rank deficient and
the least squares solution is sensitive to changes in the right-hand side.

With regard to changes in the matrix, though, the situation is much bleaker.
It turns out that least squares problems are much more sensitive to changes in the
matrix than linear systems.

Example 5.13 (Large Residual Norm). Let

A =

1 0

0 α

0 0


 , b =


β1

0
β3


 , where 0 < α ≤ 1, 0 < β1,β3.

The element β3 represents the part of b outside R(A). The matrix A has full column
rank, and the least squares problem minx ‖Ax −b‖2 has the unique solution y

where

A† = (A∗A)−1A∗ =
(

1 0 0
0 1/α 0

)
, y = A†b =

(
β1
0

)
.

The residual norm is minx ‖Ax −b‖2 = ‖Ay −b‖2 = β3.
Let us perturb the matrix and change its column space so that

A+E =

1 0

0 α

0 ε


 , where 0 < ε � 1.

Note that R(A+E) �= R(A). The matrix A+E has full column rank and Moore–
Penrose inverse

(A+E)† = [
(A+E)∗(A+E)

]−1
(A+E)∗ =

(
1 0 0
0 α

α2+ε2
ε

α2+ε2

)
.

The perturbed problem minx ‖(A+E)x −b‖2 has the unique solution z, where

z = (A+E)†b =
(

β1

εβ3/(α
2 + ε2)

)
.
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98 5. Least Squares Problems

Since ‖y‖2 = β1, the normwise relative error is

‖z−y‖2

‖y‖2
= β3ε

β1(α2 + ε2)
≤ β3

α2 β1
ε.

If β3 ≥ β1, then β3/(α
2β1) ≥ 1/α2. This means if more of b is outside R(A) than

inside R(A), then the perturbation is amplified by at least 1/α2.
In other words, since ‖E‖ = ε, ‖A†‖2 = 1/α, and β3/β1 = ‖Ay−b‖2/‖y‖2,

we can write

‖z−y‖2

‖y‖2
≤ ‖A†‖2

2
‖Ay −b‖2

‖y‖2
‖E‖2 = [κ2(A)]2 ‖r‖2

‖A‖2‖y‖2

‖E‖2

‖A‖2
,

where r = Ay − b is the residual. This means, if the right-hand side is far away
from the column space, then the condition number with respect to changes in the
matrix is [κ2(A)]2, rather than just κ2(A).

We can give a geometric interpretation for the relative residual norm. If we
bound

‖r‖2

‖A‖2‖y‖2
≤ ‖r‖2

‖Ay‖2
,

then we can exploit the relation between ‖r‖2 and ‖Ay‖2 from Exercise (iii) below.
There, it is shown that ‖b‖2

2 = ‖r‖2
2 +‖Ay‖2

2, hence

1 =
(‖r‖2

‖b‖2

)2

+
(‖Ay‖2

‖b‖2

)2

.

It follows that ‖r‖2/‖b‖2 and ‖Ay‖2/‖b‖2 behave like sine and cosine. Thus there
is θ so that

1 = sin θ2 + cosθ2, where sin θ = ‖r‖2

‖b‖2
, cosθ = ‖Ay‖2

‖b‖2
,

and θ can be interpreted as the angle between b and R(A). This allows us to bound
the relative residual norm by

‖r‖2

‖A‖2‖y‖2
≤ ‖r‖2

‖Ay‖2
= sin θ

cosθ
= tan θ .

This means if the angle between right-hand side and column space is large enough,
then the least squares solution is sensitive to perturbations in the matrix, and this
sensitivity is represented by [κ2(A)]2.

The matrix in Example 5.13 is representative of the situation in general.
Least squares solutions are more sensitive to changes in the matrix when the right-
hand side is too far from the column space. Below we present a bound for the
relative error with regard to the perturbed solution z, because it is much easier to
derive than a bound for the relative error with regard to the exact solution y.
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5.2. Conditioning of Least Squares Problems 99

Fact 5.14 (Matrix and Right-Hand Side Perturbation). Let A,A+E ∈ C
m×n

with rank(A) = rank(A+E) = n, let y be the solution to minx ‖Ax −b‖2, and let
z �= 0 be the solution to minx ‖(A+E)x − (b+f )‖2. Then

‖z−y‖2

‖z‖2
≤ κ2(A)

(
εA + εf

)+[κ2(A)]2 ‖s‖2

‖A‖2‖z‖2
εA,

where

s = (A+E)z− (b+f ), εA = ‖E‖2

‖A‖2
, εf = ‖f ‖2

‖A‖2‖z‖2
.

Proof. From Fact 5.9 follows that y = A†b and z = (A + E)†(b + f ) are the
unique solutions to the respective least squares problems. Applying Fact 5.7 to
the perturbed least squares problem gives (A + E)∗s = 0, hence A∗s = −E∗s.
Multiplying by (A∗A)−1 and using A† = (A∗A)−1A∗ from Remark 5.4 gives

−(A∗A)−1E∗s = A†s = A† ((A+E)z− (b+f )) = z−y +A†(Ez−f ).

Solving for z−y yields z−y = −A†(Ez−f )− (A∗A)−1E∗s. Now take norms,
and use the fact that ‖(A∗A)−1‖2 = ‖A†‖2

2, see Exercise (viii) in Section 5.1, to
obtain

‖z−y‖2 ≤ ‖A†‖2 (‖E‖2‖z‖2 +‖f ‖2)+‖A†‖2
2 ‖E‖2‖s‖2.

At last divide both sides of the inequality by ‖z‖2, and multiply and divide the
right side by ‖A‖2

2.

Remark 5.15.

• If E = 0, then the bound in Fact 5.14 is identical to that in Fact 5.11.
Therefore, the least squares solution is more sensitive to changes in the
matrix than to changes in the right-hand side.

• The first term κ2(A)(εA + εf ) in the above bound is the same as the per-
turbation bound for linear systems in Fact 3.8. It is because of the second
term in Fact 5.14 that least squares problems are more sensitive than linear
systems to perturbations in the matrix.

• We can interpret ‖s‖2/(‖A‖2‖z‖2) as an approximation to the distance be-
tween perturbed right-hand side and perturbed matrix. From Exercise (ii)
and Example 5.13 follows

‖s‖2

‖A‖2‖z‖2
≤ ‖s‖2

‖A+E‖2‖z‖2
(1+ εA) ≤ tan θ̃ (1+ εA),

where θ̃ is the angle between b+f and R(A+E).
• If most of the right-hand side lies in the column space, then the condition

number of the least squares problem is κ2(A).
In particular, if ‖s‖2‖A‖2‖z‖2

≈ εA, then the second term in the bound in Fact 5.14

is about [κ2(A)]2ε2
A, and negligible for small enough εA.
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100 5. Least Squares Problems

• If the right-hand side is far away from the column space, then the condition
number of the least squares problem is [κ2(A)]2.

• Therefore, the solution of the least squares is ill-conditioned in the normwise
relative sense, if A is close to being rank deficient, i.e., κ2(A) � 1, or if the
relative residual norm is large, i.e., ‖(A+E)z−(b+f )‖2/(‖A‖2‖z‖2) � 0.

• If the perturbation does not change the column space so that R(A+E) =
R(A), then the least squares problem is no more sensitive than a linear
system; see Exercise 1 below.

Exercises

(i) Let A ∈ C
m×n have orthonormal columns. Show that κ2(A) = 1.

(ii) Under the assumptions of Fact 5.14 show that

‖s‖2

‖A+E‖2‖z‖2
(1− εA) ≤ ‖s‖2

‖A‖2‖z‖2
≤ ‖s‖2

‖A+E‖2‖z‖2
(1+ εA).

(iii) Let A ∈ C
m×n, and let y be a solution to the least squares problem

minx ‖Ay −b‖2. Show:

‖b‖2
2 = ‖Ay −b‖2

2 +‖Ay‖2
2.

(iv) Let A ∈ C
m×n have rank(A) = n. Show that the solution y of the least

squares problem minx ‖Ax −b‖2 and the residual r = b−Ay can be viewed
as solutions to the linear system(

I A

A∗ 0

)(
r

y

)
=
(

b

0

)
,

and that (
I A

A∗ 0

)−1

=
(

I −AA† (A†)∗
A† −(A∗A)−1

)
.

(v) In addition to the assumptions of Exercise (ii), let A + E ∈ C
m×n have

rank(A + E) = n, and let z be the solution of the least squares problem
minx ‖(A+E)x − (b+f )‖2 with residual s = b+f − (A+E)z. Show:(

s − r

z−y

)
=
(

I −AA† (A†)∗
A† −(A∗A)−1

)(
f −Ez

−E∗s

)
.

(vi) Let A,A+E ∈ C
m×n and rank(A) = n. Show: If ‖E‖2 ‖A†‖2 < 1, then

rank(A+E) = n.

1. Matrices with the Same Column Space.
When the perturbed matrix has the same column space as the original matrix,
then the least squares solution is less sensitive, and the error bound is the
same as the one for linear systems in Fact 3.9.
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Let A,A + E ∈ C
m×n have rank(A) = rank(A + E) = n. Let y be the

solution to minx ‖Ax −b‖2, and let z �= 0 be the solution to
minx ‖(A+E)x − (b+f )‖2. Show: If R(A) = R(A+E), then

‖z−y‖2

‖z‖2
≤ κ2(A)

(
εA + εf

)
, where εA = ‖E‖2

‖A‖2
, εf = ‖f ‖

‖A‖2‖z‖2
.

2. Conditioning of the Least Squares Residual.
This bound shows that the least squares residual is insensitive to changes in
the right-hand side.
Let A ∈ C

m×n have rank(A) = n. Let y be the solution to minx ‖Ax −b‖2
with residual r = Ay −b, and let z be the solution to minx ‖Az− (b+f )‖2
with residual s = Az− (b+f ). Show:

‖s − r‖2 ≤ ‖f ‖2.

3. Conditioning of the Least Squares Residual Norm.
The following bound gives an indication of how sensitive the norm of the
least squares residual may be to changes in the matrix and right-hand side.
Let A,A + E ∈ C

m×n so that rank(A) = rank(A + E) = n. Let y be the
solution to minx ‖Ax −b‖2 with residual r = Ay−b, and let z be the solution
to minx ‖(A+E)x − (b+f )‖2 with residual s = (A+E)z−(b+f ). Show:
If b �= 0, then

‖s‖2

‖b‖2
≤ ‖r‖2

‖b‖2
+κ2(A) εA + εb, where εA = ‖E‖2

‖A‖2
, εb = ‖f ‖2

‖b‖2
.

4. This bound suggests that the error in the least squares solution depends on
the error in the least squares residual.
Under the conditions of Fact 5.14 show that

‖z−y‖2

‖z‖2
≤ κ2(A)

[ ‖r − s‖2

‖A‖2‖z‖2
+ εA + εf

]
.

5. Given an approximate least squares solution z, this problem shows how to
construct a least squares problem for which z is the exact solution.
Let z �= 0 be an approximate solution of the least squares problem
minx ‖Ax −b‖2. Let rc = b − Az be the computable residual, h an arbi-
trary vector, and F = −hh†A+ (I −hh†)rcz

†. Show that z is a least squares
solution of minx ‖(A+F)x −b‖2.

5.3 Computation of Full Rank Least Squares
Problems

We present two algorithms for computing the solution to a least squares problem
with full column rank.

Let A ∈ C
m×n have rank(A) = n and an SVD

A = U

(



0

)
V ∗, U = ( n m−n

Un Um−n

)
,
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102 5. Least Squares Problems

where U ∈ C
m×m and V ∈ C

n×n are unitary, and 
 ∈ C
n×n is a diagonal matrix

with diagonal elements σ1 ≥ ·· · ≥ σn > 0.

Fact 5.16 (Least Squares via SVD). Let A ∈ C
m×n with rank(A) = n, let b ∈

C
m, and let y be the solution to minx ‖Ax −b‖2. Then

y = V 
−1U∗
n b, min

x
‖Ax −b‖2 = ‖U∗

m−nb‖2.

Proof. The expression for y follows from Fact 5.9. With regard to the residual,

Ay −b = U

(



0

)
V ∗V 
−1U∗

n b−b

= U

[(
U∗

n b

0

)
−
(

U∗
n b

U∗
m−nb

)]

= U

(
0

−U∗
m−nb

)
.

Therefore, minx ‖Ax −b‖2 = ‖Ay −b‖2 = ‖U∗
m−nb‖2.

Algorithm 5.1. Least Squares Solution via SVD.

Input: Matrix A ∈ C
m×n with rank(A) = n, vector b ∈ C

m

Output: Solution y of minx ‖Ax −b‖2, residual norm ρ = ‖Ay−b‖2

1. Compute an SVD A = U

(



0

)
V ∗ where U ∈ C

m×m and V ∈ C
n×n are

unitary, and 
 is diagonal.
2. Partition U = (

Un Um−n

)
, where Un has n columns.

3. Multiply y ≡ V 
−1U∗
n b.

4. Set ρ ≡ ‖U∗
m−nb‖2.

The least squares solution can also be computed from a QR factorization,
which may be cheaper than an SVD. Let A ∈ C

m×n have rank(A) = n and a QR
factorization

A = Q

(
R

0

)
, Q = ( n m−n

Qn Qm−n

)
,

where Q ∈ C
m×m is unitary and R ∈ C

n×n is upper triangular with positive diagonal
elements.

Fact 5.17 (Least Squares Solution via QR). Let A ∈ C
m×n with rank(A) = n,

let b ∈ C
m, and let y be the solution to minx ‖Ax −b‖2. Then

y = R−1Q∗
nb, min

x
‖Ax −b‖2 = ‖Q∗

m−nb‖2.

Proof. Fact 5.9 and Remark 5.4 imply for the solution

y = A†b = (A∗A)−1A∗b = (
R−1 0

)
Q∗b = (

R−1 0
)( Q∗

nb

Q∗
m−nb

)
= R−1Q∗

nb.
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5.3. Computation of Full Rank Least Squares Problems 103

With regard to the residual,

Ay −b = Q

(
R

0

)
R−1Q∗

nb−b = Q

[(
Q∗

nb

0

)
−
(

Q∗
nb

Q∗
m−nb

)]
= Q

(
0

−Q∗
m−nb

)
.

Therefore, minx ‖Ax −b‖2 = ‖Ay −b‖2 = ‖Q∗
m−nb‖2.

Algorithm 5.2. Least Squares via QR.

Input: Matrix A ∈ C
m×n with rank(A) = n, vector b ∈ C

m

Output: Solution y of minx ‖Ax −b‖2, residual norm ρ = ‖Ay−b‖2

1. Factor A = Q

(
R

0

)
where Q ∈ C

m×m is unitary and R ∈ C
n×n is triangular.

2. Partition Q = (
Qn Qm−n

)
, where Qn has n columns.

3. Solve the triangular system Ry = Q∗
nb.

4. Set ρ ≡ ‖Q∗
m−nb‖2.

Exercises

1. Normal Equations.
Let A ∈ C

m×n and b ∈ C
m. Show: y is a solution of minx ‖Ax −b‖2 if and

only if y is a solution of A∗Ax = A∗b.
2. Numerical Instability of Normal Equations.

Show that the normal equations can be a numerically unstable method for
solving the least squares problem.
Let A ∈ C

m×n with rank(A) = n, and let A∗Ay = A∗b with A∗b �= 0. Let z

be a perturbed solution with A∗Az = A∗b+f . Show:

‖z−y‖2

‖y‖2
≤ [κ2(A)]2 ‖f ‖2

‖A∗A‖2‖y‖2
.

That is, the numerical stability of the normal equations is always determined
by [κ2(A)]2, even if the least squares residual is small.Soc
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6. Subspaces

We present properties of column, row, and null spaces; define operations on them;
show how they are related to each other; and illustrate how they can be represented
computationally.

Remark 6.1. Column and null spaces of a matrix A are more than just ordinary
sets.

If x,y ∈ Ker(A), then Ax = 0 and Ay = 0. Hence A(x + y) = 0, and
A(αx) = 0 for α ∈ C. Therefore, x +y ∈ Ker(A) and αx ∈ Ker(A).

Also, if b,c ∈ R(A), then b = Ax and c = Ay for some x and y. Hence
b + c = A(x + y) and αb = A(αx) for α ∈ C. Therefore b + c ∈ R(A) and
αb ∈ R(A).

The above remark illustrates that we cannot “fall out of” the sets Ker(A) and
R(A) by adding vectors from the set or by multiplying a vector from the set by a
scalar. Sets with this property are called subspaces.

Definition 6.2 (Subspace). A set S ⊂ C
n is a subspace of C

n if S is closed under
addition and scalar multiplication. That is, if v,w ∈ S, then v+w ∈ S and αv ∈ S
for α ∈ C.

A set S ⊂ R
n is a subspace of R

n if v,w ∈ S implies v +w ∈ S and αv ∈ S
for α ∈ R.

A subspace is never empty. At the very least it contains the zero vector.

Example.

• Extreme cases: {0n×1} and C
n are subspaces of C

n; and {0n×1} and R
n are

subspaces of R
n.

• If A ∈ C
m×n, then R(A) is a subspace of C

m, and Ker(A) is a subspace
of C

n.

105
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106 6. Subspaces

• If A ∈ R
m×n, then R(A) is a subspace of R

m, and Ker(A) is a subspace
of R

n.

For simplicity, we will state subsequent results and definitions only for com-
plex subspaces, but they hold also for real subspaces.

Exercises

(i) Let S ⊂ C
3 be the set of all vectors with first and third components equal to

zero. Show that S is a subspace of C
3.

(ii) Let S ⊂ C
3 be the set of all vectors with first component equal to 17. Show

that S is not a subspace of C
3.

(iii) Let u ∈ C
n. Show that the set {x ∈ C

n : x∗u = 0} is a subspace of C
n.

(iv) Let u ∈ C
n and u �= 0. Show that the set {x ∈ C

n : x∗u = 1} is not a subspace
of C

n.
(v) Let A ∈ C

m×n. For which b ∈ C
m is the set of all solutions to Ax = b a

subspace of C
n?

(vi) Let A ∈ C
m×n and B ∈ C

m×p. Show that the set

{(
x

y

)
: Ax = By

}
is a

subspace of C
n+p.

(vii) Let A ∈ C
m×n and B ∈ C

m×p. Show that the set{
b : b = Ax +By for some x ∈ C

n,y ∈ C
p
}

is a subspace of C
m.

6.1 Spaces of Matrix Products
We give a rigorous proof of Fact 4.20, which shows that the four subspaces of a
matrix are generated by singular vectors. In order to do so, we first relate column
and null spaces of a product to those of the factors.

Fact 6.3 (Column Space and Null Space of a Product). Let A ∈ C
m×n and

B ∈ C
n×p. Then

1. R(AB) ⊂ R(A). If B has linearly independent rows, then R(AB) = R(A).
2. Ker(B) ⊂ Ker(AB). If A has linearly independent columns, then

Ker(B) = Ker(AB).

Proof.

1. If b ∈ R(AB), then b = ABx for some vector x. Setting y = Bx implies
b = Ay, which means that b is a linear combination of columns of A and
b ∈ R(A). Thus R(AB) ⊂ R(A).
If B has linearly independent rows, then B has full row rank, and Fact 4.22
implies R(B) = C

n. Let b ∈ R(A) so that b = Ax for some x ∈ C
n. Since

B has full row rank, there exists a y ∈ C
p so that x = By. Hence b = ABy

and b ∈ R(AB). Thus R(A) ⊂ R(AB).
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6.1. Spaces of Matrix Products 107

2. If x ∈ Ker(B), then Bx = 0. Hence ABx = 0 so that x ∈ Ker(AB). Thus
Ker(B) ⊂ Ker(AB).
If A has linearly independent columns, then A has full column rank, and Fact
4.22 implies that Ker(A) = {0n×1}. Hence ABx = 0 implies that Bx = 0.
Thus Ker(AB) ⊂ Ker(B).

Fact 6.3 implies in particular that rank(AB) = rank(A) if B is nonsingular,
and that Ker(AB) = Ker(B) if A is nonsingular.

If we partition a nonsingular matrix and its inverse appropriately, then we
can relate null spaces in the inverse to column spaces in the matrix proper.

Fact 6.4 (Partitioned Inverse). If A ∈ C
n×n is nonsingular and

A = ( k n−k

A1 A2
)
, A−1 =

(
k B∗

1
n−k B∗

2

)
,

then Ker(B∗
1 ) = R(A2) and Ker(B∗

2 ) = R(A1).

Proof. We will use the relations B∗
1 A1 = Ik and B∗

1 A2 = 0, which follow from
A−1A = In.

If b ∈ R(A2), then b = A2x for some x and B∗
1 b = B∗

1 A2x = 0, so
b ∈ Ker(B∗

1 ). Thus R(A2) ⊂ Ker(B∗
1 ).

If b ∈ Ker(B∗
1 ), then B∗

1 b = 0. Write b = AA−1b = A1x1 +A2x2, where
x1 = B∗

1 b and x2 = B∗
2 b. But b ∈ Ker(B∗

1 ) implies x1 = 0, so b = A2x2 and
b ∈ R(A2). Thus Ker(B∗

1 ) ⊂ R(A2).
The equality Ker(B∗

2 ) = R(A1) is shown in an analogous fashion.

Example 6.5.

• Applying Fact 6.4 to the 3×3 identity matrix gives, for instance,

Ker
(
1 0 0

) = R

0 0

1 0
0 1


 , Ker

(
0 1 0
0 0 1

)
= R


1

0
0


 .

• If A ∈ C
n×n is unitary and A = (

A1 A2
)
, then

Ker(A∗
1) = R(A2), Ker(A∗

2) = R(A1).

Now we are ready to relate subspaces of a matrix to column spaces of singular
vectors. Let A ∈ C

m×n have rank(A) = r and an SVD

A = U

(

r 0
0 0

)
V ∗, U = ( r m− r

Ur Um−r

)
, V = ( r n− r

Vr Vn−r

)
,

where U ∈ C
m×m and V ∈ C

n×n are unitary, and 
r is a diagonal matrix with
positive diagonal elements σ1 ≥ ·· · ≥ σr > 0.
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108 6. Subspaces

Fact 6.6 (Column Space). If A ∈ C
m×n and A �= 0, then R(A) = R(Ur).

Proof. In the reduced SVD A = Ur
rV
∗
r , the matrices V ∗

r and 
r have linearly
independent rows. Fact 6.3 implies R(A) = R(Ur).

Fact 6.7 (Null Space). IfA ∈ C
m×n and rank(A) = r < n, thenR(Vn−r ) = Ker(A).

Proof. In the reduced SVD A = Ur
rV
∗
r , the matrices Ur and 
r have linearly

independent columns. Fact 6.3 implies Ker(A) = Ker(V ∗
r ). From Example 6.5

follows Ker(V ∗
r ) = R(Vn−r ).

The analogous statements for row space and left null space in Fact 4.20 can
be proved by applying Facts 6.6 and 6.7 to A∗.

Exercises

(i) Let

A =
(

A11 A12
0 A22

)
,

where A11 and A22 are nonsingular. Show:

R
(

A11
0

)
= Ker

(
0 A−1

22

)
, R

(
A12
A22

)
= Ker

(
A−1

11 −A−1
11 A12A

−1
22

)
.

(ii) Let A ∈ C
n×n be idempotent. Show: R(I −A) = Ker(A).

(iii) Let A,B ∈ C
n×n, and B idempotent. Show: AB = A if and only if

Ker(B) ⊂ Ker(A).
(iv) Let A ∈ C

n×n be idempotent. Show: R(A − AB) and R(AB − B) have
only the zero vector in common.

1. QR Factorization.
Let A ∈ C

m×n with m ≥ n have a QR decomposition

A = Q

(
R

0

)
, Q = ( n m−n

Qn Qm−n

)
,

where Q ∈ C
m×m is unitary and R ∈ C

n×n is upper triangular. Show:

R(A) ⊂ R(Qn), Ker(A) = Ker(R), R(Qm−n) ⊂ Ker(A∗).

If, in addition, rank(A) = n, show: R(A) = R(Qn) and Ker(A∗) = R(Qn−m).
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6.2 Dimension
All subspaces of C

n, except for {0}, have infinitely many elements. But some
subspaces have more infinitely many elements than others. To quantify the “size”
of a subspace we introduce the concept of dimension.

Definition 6.8 (Dimension). Let S be a subspace of C
m, and let A ∈ C

m×n be a
matrix so that S = R(A). The dimension of S is dim(S) = rank(A).

Example.

• dim(Cn) = dim(Rn) = n.

• dim({0n×1}) = 0.

We show that the dimension of a subspace is unique and therefore well
defined.

Fact 6.9 (Uniqueness of Dimension). Let S be a subspace of C
m, and let

A ∈ C
m×n and B ∈ C

m×p be matrices so that S = R(A) = R(B). Then
rank(A) = rank(B).

Proof. If S = {0m×1}, then A = 0m×n and B = 0m×p so that rank(A) =
rank(B) = 0.

If S �= {0}, set α = rank(A) and β = rank(B). Fact 6.6 implies that
R(A) = R(UA), where UA is an m×α matrix of left singular vectors associated
with the α nonzero singular values of A. Similarly, R(B) = R(UB) where UB

is an m×β matrix of left singular vectors associated with the β nonzero singular
values of B.

Now suppose to the contrary that α > β. Since S = R(UA) = R(UB), each
of the α columns of UA can be expressed as a linear combination of UB . This
means UA = UBY , where Y is a β ×α matrix. Using the fact that UA and UB have
orthonormal columns gives

Iα = U∗
AUA = Y ∗U∗

BUBY = Y ∗Y .

Fact 4.14 and Example 4.8 imply

α = rank(Iα) = rank(Y ∗Y ) = rank(Y ) ≤ min{α,β} = β.

Thus α ≤ β, which contradicts the assumption α > β. Therefore, we must have
α = β, so that the dimension of S is unique.

The so-called dimension formula below is sometimes called the first part of
the “fundamental theorem of linear algebra.” The formula relates the dimensions
of column and null spaces to the number of rows and columns.

Fact 6.10 (Dimension Formula). If A ∈ C
m×n, then

rank(A) = dim(R(A)) = dim(R(A∗))
and

n = rank(A)+dim(Ker(A)), m = rank(A)+dim(Ker(A∗)).
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110 6. Subspaces

Proof. The first set of equalities follows from rank(A) = rank(A∗); see Fact 4.14.
The remaining equalities follow from Fact 4.20, and from Fact 4.16 which implies
that a matrix with k orthonormal columns has rank equal to k.

Fact 6.10 implies that the column space and the row space of a matrix have the
same dimension. Furthermore, for an m×n matrix, the null space has dimension
n− rank(A), and the left null space has dimension m− rank(A).

Example 6.11.

• If A ∈ C
n×n is nonsingular, then rank(A) = n, and dim(Ker(A)) = 0.

• rank(0m×n) = 0 and dim(Ker(0m×n)) = n.
• If u ∈ C

m, v ∈ C
n, u �= 0 and v �= 0, then

rank(uv∗) = 1, dim(Ker(uv∗)) = n−1, dim(Ker(vu∗)) = m−1.

The following bound confirms that the dimension gives information about
the “size” of a subspace: If a subspace V is contained in a subspace W , then the
dimension of V cannot exceed the dimension of W but it can be smaller.

Fact 6.12. If V and W are subspaces of C
n, and V ⊂ W , then dim(V) ≤ dim(W).

Proof. Let A and B be matrices so that V = R(A) and W = R(B). Since each
element of V is also an element of W , then in particular each column of A must
be in W . Thus there is a matrix X so that A = BX. Fact 6.13 implies that
rank(A) ≤ rank(B). But from Fact 6.9 we know that rank(A) = dim(V) and
rank(B) = dim(W).

The rank of a product cannot exceed the rank of any factor.

Fact 6.13 (Rank of a Product). If A ∈ C
m×n and B ∈ C

m×p, then

rank(AB) ≤ min{rank(A), rank(B)}.

Proof. The inequality rank(AB) ≤ rank(A) follows from R(AB) ⊂ R(A) in Fact
6.3, Fact 6.12, and rank(A) = dim(R(A)). To derive rank(AB) ≤ rank(B), we
use the fact that a matrix and its transpose have the same rank, see Fact 4.14, so
that rank(AB) = rank(B∗A∗). Now apply the first inequality.

Exercises

(i) Let A be a 17×4 matrix with linearly independent columns. Determine the
dimensions of the four spaces of A.

(ii) What can you say about the dimension of the left null space of a 25 × 7
matrix?

(iii) Let A ∈ C
m×n. Show: If P ∈ C

m×m and Q ∈ C
n×n are nonsingular, then

rank(PAQ) = rank(A).
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6.3. Intersection and Sum of Subspaces 111

(iv) Let A ∈ C
n×n. Show: rank(A2 − In) ≤ min {rank(A+ In), rank(A− In)}.

(v) Let A and B be matrices with n columns, and let C and D be matrices with
n rows. Show:

rank

(
AC AD

BC BD

)
≤ min

{
rank

(
A

B

)
,
(
C D

)}
.

(vi) Let A ∈ C
m×n and B ∈ C

m×p. Show: rank(AA∗ +BB∗) ≤ rank
(
A B

)
.

(vii) Let A,B ∈ C
m×n. Show: rank(A+B) ≤ rank

(
A B

)
.

Hint: Write A+B as product.
(viii) Let A ∈ C

m×n and B ∈ C
n×p. Show: If AB = 0, then rank(A) +

rank(B) ≤ n.

6.3 Intersection and Sum of Subspaces
We define operations on subspaces, so that we can relate column, row, and null
spaces to those of submatrices.

Definition 6.14 (Intersection and Sum of Subspaces). Let V and W be subspaces
of C

n. The intersection of two subspaces is defined as

V ∩W = {x : x ∈ V and x ∈ W},
and the sum is defined as

V +W = {z : z = v +w, v ∈ V and w ∈ W}.

Example.

• Extreme cases: If V is a subspace of C
n, then

V ∩{0n×1} = {0n×1}, V ∩C
n = V

and
V +{0n×1} = V , V +C

n = C
n.

•

R

1 0

0 0
0 1


∩R


0 0

1 0
0 1


 = R


0

0
1


 .

•

R

1 0

0 1
0 0


+R


0 0

1 0
0 1


 = C

3.

• If A ∈ C
n×n is nonsingular, and A = (

A1 A2
)
, then

R(A1)∩R(A2) = {0n×1}, R(A1)+R(A2) = C
n.
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112 6. Subspaces

Intersections and sums of subspaces produce again subspaces.

Fact 6.15 (Intersection and Sum of Subspaces). If V and W are subspaces of
C

n, then V ∩W and V +W are also subspaces of C
n.

Proof. Let x,y ∈ V ∩ W . Then x,y ∈ V and x,y ∈ W . Since V and W are
subspaces, this implies x +y ∈ V and x +y ∈ W . Hence x +y ∈ V ∩W .

Let x,y ∈ V +W . Then x = v1 +w1 and y = v2 +w2 for some v1,v2 ∈ V
and w1,w2 ∈ W . Since V and W are subspaces, v1 + v2 ∈ V and w1 +w2 ∈ W .
Hence x +y = (v1 +v2)+ (w1 +w2) where v1 +v2 ∈ V and w1 +w2 ∈ W .

The proofs for αx where α ∈ C are analogous.

With the sum of subspaces, we can express the column space of a matrix in
terms of column spaces of subsets of columns.

Fact 6.16 (Sum of Column Spaces). If A ∈ C
m×n and B ∈ C

m×p, then

R
(
A B

) = R(A)+R(B).

Proof. From Definition 4.17 of a column space, and second view of matrix times
column vector in Section 1.5 we obtain the following equivalences:

b ∈ R
(
A B

) ⇐⇒ b = (
A B

)
x = Ax1 +Bx2 for some x =

(
x1
x2

)
∈ C

n+p

⇐⇒ b = v +w where v = Ax1 ∈ R(A) and w = Bx2 ∈ R(B).

Example.

• Let A ∈ C
m×n and B ∈ C

m×p. If R(B) ⊂ R(A), then

R
(
A B

) = R(A)+R(B) = R(A).

• If A ∈ C
m×n, then

R
(
A Im

) = R(A)+R(Im) = R(A)+C
m = C

m.

With the help of sums of subspaces, we can now show that the row space
and null space of an m×n matrix together make up all of C

n, while the column
space and left null space make up C

m.

Fact 6.17 (Subspaces of a Matrix are Sums). If A ∈ C
m×n, then

C
n = R(A∗)+Ker(A), C

m = R(A)+Ker(A∗).

Proof. Facts 4.20 and 6.16 imply

R(A∗)+Ker(A) = R(Vr)+R(Vn−r ) = R
(
Vr Vn−r

) = R(V ) = C
n

and

R(A)+Ker(A∗) = R(Ur)+R(Um−r ) = R
(
Ur Um−r

) = R(U) = C
m.

Fact 6.18 (Intersection of Null Spaces). If A ∈ C
m×n and B ∈ C

p×n, then

Ker

(
A

B

)
= Ker(A)∩Ker(B).
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6.3. Intersection and Sum of Subspaces 113

Proof. From Definition 4.17 of a null space, and first view of matrix times column
vector in Section 1.5 we obtain the following equivalences:

x ∈ Ker

(
A

B

)
⇐⇒ 0 =

(
A

B

)
x =

(
Ax

Bx

)
⇐⇒ Ax = 0 and Bx = 0

⇐⇒ x ∈ Ker(A) and x ∈ Ker(B) ⇐⇒ x ∈ Ker(A)∩Ker(B).

Example.

• If A ∈ C
m×n, then

Ker

(
A

0k×n

)
= Ker(A)∩Ker(0k×n) = Ker(A)∩C

n = Ker(A).

• If A ∈ C
m×n and B ∈ C

n×n is nonsingular, then

Ker

(
A

B

)
= Ker(A)∩Ker(B) = Ker(A)∩{0n×1} = {0n×1}.

The rank of a submatrix cannot exceed the rank of a matrix. We already used
this for proving the optimality of the SVD in Fact 4.13.

Fact 6.19 (Rank of Submatrix). If B is a submatrix of A ∈ C
m×n, then

rank(B) ≤ rank(A).

Proof. Let P ∈ C
m×m and Q ∈ C

n×n be permutation matrices that move the
elements of B into the top left corner of the matrix,

PAQ =
(

B A12
A21 A22

)
.

Since the permutation matrices P and Q can only affect singular vectors but not
singular values, rank(A) = rank(PAQ); see also Exercise (i) in Section 4.2.

We relate rank(B) to rank(PAQ) by gradually isolating B with the help of
Fact 6.18. Partition

PAQ =
(

C

D

)
, where C = (

B A12
)

, D = (
A21 A22

)
.

Fact 6.18 implies

Ker(PAQ) = Ker

(
C

D

)
= Ker(C)∩Ker(D) ⊂ Ker(C).

Hence Ker(PAQ) ⊂ Ker(C). From Fact 6.12 follows dim(Ker(PAQ)) ≤
dim(Ker(C)). We use the dimension formula in Fact 6.10 to relate the dimen-
sion of Ker(C) to rank(C),

rank(A) = rank(PAQ) = n−dim(Ker(PAQ)) ≥ n−dim(Ker(C)) = rank(C).

Thus rank(C) ≤ rank(A).
In order to show that rank(B) ≤ rank(C), we repeat the above argument

for C∗ and use the fact that a matrix has the same rank as its transpose; see
Fact 4.14.
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114 6. Subspaces

Exercises

(i) Solution of Linear Systems.
Let A ∈ C

m×n and b ∈ C
m. Show: Ax = b has a solution if and only if

R
(
A b

) = R(A).
(ii) Let A ∈ C

m×n and B ∈ C
m×p. Show:

C
m = R(A)+R(B)+Ker(A∗)∩Ker(B∗).

(iii) Let A ∈ C
m×n and B ∈ C

m×p. Show that R(A)∩R(B) and Ker
(
A B

)
have the same number of elements.

(iv) Rank of Block Diagonal Matrix.
Let A ∈ C

m×n and B ∈ C
p×q . Show:

rank

(
A 0
0 B

)
= rank(A)+ rank(B).

(v) Rank of Block Triangular Matrix.
Let A ∈ C

m×n and

A =
(

A11 A12
0 A22

)
,

where A11 is nonsingular. Show: rank(A) ≤ rank(A11)+ rank(A22).
Give an example to illustrate that this inequality may not hold anymore when
A11 is singular or not square.

(vi) Rank of Schur Complement.
Let A ∈ C

m×n be partitioned so that

A =
(

A11 A12
A21 A22

)
,

where A11 is nonsingular. For S = A22 −A21A
−1
11 A12 show that

rank(S) ≤ rank(A) ≤ rank(A11)+ rank(S).

(vii) Let A,B ∈ C
n×n. Show:

rank(AB) ≥ rank(A)+ rank(B)−n.

(viii) Properties of Intersections and Sums.
Intersections of subspaces can produce “smaller” subspaces, while sums can
produce “larger” subspaces.
Let V and W be subspaces of C

n. Show:

(a) V ∩W ⊂ V , and V ∩W ⊂ W .
(b) V ∩W = V if and only if V ⊂ W .
(c) V ⊂ V +W , and W ⊂ V +W .
(d) V +W = V if and only if W ⊂ V .

1. Let A,B ∈ C
n×n be idempotent and AB = BA. Show:

(a) R(AB) = R(A)∩R(B).
(b) Ker(AB) = Ker(A)+Ker(B).
(c) If also AB = 0, then A+B is idempotent.
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6.4 Direct Sums and Orthogonal Subspaces
It turns out that the column and null space pairs in Fact 6.17 have only the minimal
number of elements in common. Sums of subspaces that have minimal overlap
are called direct sums.

Definition 6.20 (Direct Sum). Let V and W be subspaces in C
n with S = V +W .

If V ∩W = {0}, then S is a direct sum of V and W , and we write S = V ⊕W .
Subspaces V and W are also called complementary subspaces.

Example.

•

R

1

0
0


⊕


0

1
0


⊕


0

0
1


 = C

3.

•
R
(

1 2
−1 −2

)
⊕R

(
1 2 4

−3 −6 −12

)
= C

2.

The example above illustrates that the columns of the identity matrix In form
a direct sum of C

n. In general, linearly independent columns form direct sums.
That is, in a full column rank matrix, the columns form a direct sum of the column
space.

Fact 6.21 (Full Column Rank Matrices). Let A ∈ C
m×n with A = (

A1 A2
)
.

If rank(A) = n, then R(A) = R(A1)⊕R(A2).

Proof. Fact 6.16 implies R(A) = R(A1) + R(A2). To show that R(A1) ∩
R(A2) = {0}, suppose that b ∈ R(A1)∩R(A2). Then b = A1x1 = A2x2, and

0 = A1x1 −A2x2 = (
A1 A2

)( x1
−x2

)
.

Since A has full column rank, Fact 4.22 implies x1 = 0 and x2 = 0, hence b = 0.

We are ready to show that the row space and null space of a matrix have
only minimal overlap, and so do the column space and left null space. In other
words, for an m×n matrix, row space and null space form a direct sum of C

n,
while column space and left null space form a direct sum of C

m.

Fact 6.22 (Subspaces of a Matrix are Direct Sums). If A ∈ C
m×n, then

C
n = R(A∗)⊕Ker(A), C

m = R(A)⊕Ker(A∗).

Proof. The proof of Fact 6.17 shows that

R(A∗)+Ker(A) = R(Vr)+R(Vn−r ), R(A)+Ker(A∗) = R(Ur)+R(Um−r ).
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116 6. Subspaces

Since the unitary matrices V = (
Vr Vn−r

)
and U = (

Ur Um−r

)
have full col-

umn rank, Fact 6.21 implies R(A∗)∩ Ker(A) = {0n×1} and R(A)∩ Ker(A∗) =
{0m×1}.

It is tempting to think that for a given subspace V �= {0n×1} of C
n, there

is only one way to complement V and fill up all of C
n. However, that is not

true—there are infinitely many complementary subspaces. Below is a very simple
example.

Remark 6.23 (Complementary Subspaces Are Not Unique). Let

V = R
(

1
0

)
, W = R

(
α

β

)
.

Then for any β �= 0, V ⊕W = C
2.

This is because for β �= 0 the matrix

A =
(

1 α

0 β

)

is nonsingular, hence C
2 = R(A) = V +W . Since A has full column rank, Fact

6.21 implies V ∩W = {0}.

There is a particular type of direct sum, where the two subspaces are as “far
apart” as possible.

Definition 6.24 (Orthogonal Subspaces). Let V and W be subspaces in C
n with

V +W = C
n. If v∗w = 0 for all v ∈ V and w ∈ W , then the spaces V and W are

orthogonal subspaces. We write V = W⊥, or equivalently, W = V⊥.
In particular, (Cn)⊥ = {0n×1} and {0n×1}⊥ = C

n.

Below is an example of a matrix that produces orthogonal subspaces; it is a
generalization of a unitary matrix.

Fact 6.25. Let A ∈ C
n×n be nonsingular and A = (

A1 A2
)
. If A∗

1A2 = 0, then

R(A2)
⊥ = R(A1).

Proof. Since A has full column rank, Fact 6.16 implies R(A1)+R(A2) = R(A) =
C

n. From A∗
1A2 = 0 follows 0 = x∗A∗

1A2y = (A1x)∗(A2y). With v = A1x and
w = A2y we conclude that v∗w = 0 for all v ∈ R(A1) and w ∈ R(A2).

Now we come to what is sometimes referred to as the second part of the
“fundamental theorem of linear algebra.” It says that any matrix has two pairs of
orthogonal subspaces: column space and left null space are orthogonal subspaces,
and row space and null space are orthogonal subspaces.

Fact 6.26 (Orthogonal Subspaces of a Matrix). If A ∈ C
m×n, then

Ker(A) = R(A∗)⊥, Ker(A∗) = R(A)⊥.
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Proof. Facts 6.17 and 4.20 imply

C
n = R(A∗)+Ker(A), R(A∗) = R(Vr), Ker(A) = R(Vn−r )

and

C
m = R(A)+Ker(A∗), R(A) = R(Ur), Ker(A∗) = R(Um−r ).

Now apply Fact 6.25 to the unitary matrices V = (
Vr Vn−r

)
and

U = (
Ur Um−r

)
.

Exercises

(i) Show: If A ∈ C
n×n is Hermitian, then C

n = R(A)⊕Ker(A).
(ii) Show: If A ∈ C

n×n is idempotent, then

R(A)⊥ = R(In −A∗), R(A∗)⊥ = R(In −A).

(iii) Show: If A ∈ C
n×n is idempotent, then C

n = R(A)⊕R(In −A).

(iv) Let A ∈ C
m×n have rank(A) = n and a QR factorization A = Q

(
R

0

)
, where

Q = (
Qn Qm−n

)
is unitary. Show: R(A)⊥ = R(Qm−n).

(v) Let A ∈ C
m×n have rank(A) = n, and let y be the solution of the least squares

problem minx ‖Ax −b‖2. Show:

R
(
A b

) = R(A)⊕R(Ay −b).

(vi) Let A ∈ C
n×n be a matrix all of whose rows sum to zero. Show:

R(e) ⊂ R(A∗)⊥, where e is the n×1 vector of all ones.
(vii) Orthogonal Subspaces Form Direct Sums.

Let V and W be subspaces of C
n so that W = V⊥. Show: V ⊕W = C

n.
(viii) Direct sums of subspaces produce unique representations in the following

sense.
Let S be a subspace of C

m and S = V +W . Show: S = V ⊕W if and only
if for every b ∈ S there exist unique vectors v ∈ V and w ∈ W such that
b = v +w.

(ix) Normal Matrices.
Show: If A ∈ C

n is normal, i.e., A∗A = AA∗, then Ker(A) = R(A)⊥.

1. Let A ∈ C
n×n with

X−1AX =
(

A1 0
0 A2

)
,

where A1 and A2 are square. Show: If A1 is nonsingular and A2 is nilpotent,
then for k large enough we have C

n = R(Ak)⊕Ker(Ak).
2. Properties of Orthogonal Subspaces.

Let V and W be subspaces of C
n. Show:

(a) (V⊥) = V .

(b) If V ⊂ W , then W⊥ ⊂ V⊥.
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118 6. Subspaces

(c) (V +W)⊥ = V⊥ ∩W⊥.

(d) (V ∩W)⊥ = V⊥ +W⊥.

6.5 Bases
A basis makes it possible to represent the infinitely many vectors of a subspace by
just a finite number. The elements of a basis are much like members of parliament,
with a few representatives standing for large constituency. A basis contains just
enough vectors to capture the whole space, but sufficiently few to avoid redundancy.

Definition 6.27 (Basis). The columns of a matrix W ∈ C
m×n represent a basis for

a subspace S of C
m if

B1: Ker(W) = {0}, i.e., rank(W) = n,

B2: R(W) = S.

If, in addition, W has orthonormal columns, then the columns of W represent an
orthonormal basis for S.

Example.

• The columns of a nonsingular matrix A ∈ C
n×n represent a basis for C

n. If
A is unitary, then the columns of A represent an orthonormal basis for C

n.
• Let A ∈ C

n×n be nonsingular, and

A = ( k n−k

A1 A2
)
, A−1 =

(
k B∗

1
n−k B∗

2

)
.

Then the columns of A1 represent a basis for Ker(B∗
2 ), and the columns of

A2 represent a basis for Ker(B∗
1 ).

This follows from Fact 6.4.
• Let U ∈ C

n×n be unitary and U = (
U1 U2

)
. Then the columns of U1

represent an orthonormal basis for Ker(U∗
2 ), and the columns of U2 represent

an orthonormal basis for Ker(U∗
1 ).

Remark 6.28. Let V be a subspace of C
m. If V �= {0m×1}, then there are infinitely

many different bases for V . But all bases have the same number of vectors; this
follows from Fact 6.9.

The singular vectors furnish orthonormal bases for all four subspaces of a
matrix. Let A ∈ C

m×n have rank(A) = r and an SVD

A = U

(

r 0
0 0

)
V ∗, U = ( r m− r

Ur Um−r

)
, V = ( r n− r

Vr Vn−r

)
,

where U ∈ C
m×m and V ∈ C

n×n are unitary, and 
r is a diagonal matrix with
positive diagonal elements σ1 ≥ ·· · ≥ σr > 0.
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Fact 6.29 (Orthonormal Bases for Spaces of a Matrix). Let A ∈ C
m×n.

• If A �= 0, then the columns of Ur represent an orthonormal basis for R(A),
and the columns of Vr represent an orthonormal basis for R(A∗).

• If r < n, then the columns of Vn−r represent an orthonormal basis for Ker(A).
• If r < m, then the columns of Um−r represent an orthonormal basis for

Ker(A∗).

Proof. This follows from applying Facts 6.6 and 6.7 to A and to A∗.

Why Orthonormal Bases? Orthonormal bases are attractive because they are
easy to work with, and they do not amplify errors. For instance, if x is the solution
of the linear system Ax = b where A has orthonormal columns, then x = A∗b can
be determined with only a matrix vector multiplication. The bound below justifies
that orthonormal bases do not amplify errors.

Fact 6.30. Let A ∈ C
m×n with rank(A) = n, and b ∈ C

m with Ax = b and b �= 0.
Let z be an approximate solution with residual r = Az−b. Then

‖z−x‖2

‖x‖2
≤ κ2(A)

‖r‖2

‖A‖2‖x‖2
,

where κ2(A) = ‖A†‖2‖A‖2.
If A has orthonormal columns, then κ2(A) = 1.

Proof. This follows from Fact 5.11. If A has orthonormal columns, then all
singular values are equal to one, see Fact 4.16, so that κ2(A) = σ1/σn = 1.

Exercises

(i) Let u ∈ C
m and v ∈ C

n with u �= 0 and v �= 0. Determine an orthonormal
basis for R(uv∗).

(ii) Let A ∈ C
m×n be nonsingular and B ∈ C

m×p. Prove: The columns of(−A−1B

Ip

)
represent a basis for Ker

(
A B

)
.

(iii) Let A ∈ C
m×n with rank(A) = n have a QR decomposition

A = Q

(
R

0

)
, Q = ( n m−n

Qn Qm−n

)
,

where Q ∈ C
m×m is unitary and R ∈ C

n×n is upper triangular. Show: The
columns of Qn represent an orthonormal basis for R(A), and the columns
of Qm−n represent an orthonormal basis for Ker(A∗).
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