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Abstract 
 

We apply interval-based timing constraint 
satisfaction probability results to predict timing 
constraint violations in real-time embedded system 
with a known hardware transient failure model. A 
previous study indicated that hardware transient 
failures follow a Poisson distribution with an average 
failure arrival rate λ. Under this model, the 
distribution of time intervals between successive 
failures follows an exponential distribution with the 
same parameter λ. Our goal is to use the statistical 
transient failure models to calculate the earliest time at 
which we can predict, with a determined level of 
confidence, that a given timing constraint may be 
violated. This earlier prediction provides time-critical 
systems with valuable time before the deadline is 
reached to adapt themselves, and hence, to minimize 
possible negative impacts caused by timing constraint 
violations.  
 
1. Introduction 
 

Hardware units inevitably encounter transient 
failures. Studies [18, 19] have shown that a Poisson 
distribution with an average arrival rate of λ can often 
model transient hardware failures. While the hardware 
unit is in a transient failure state, it will not generate 
expected events or the generated events could be faulty 
and should be ignored. Simply, valid events can 
happen only in the interval between two successive 
transient failures. Under the Poisson distribution 
failure model, the time between two successive failures 
follows an exponential distribution with λ equaling the 
average failure arrival rate. Furthermore, given a 
transient hardware failure distribution, an expected 
event occurrence distribution can be obtained to 
statistically predict if a timing constraint related to the 
expected events will be violated. 

Monitoring the timing behavior of time-critical 
systems is as important as monitoring its functional 
correctness. In practice, it is crucial to monitor the 
minimum/maximum separation between a pair of 
failures. For example, a distributed real-time system 
with a primary machine M1 and a backup machine M2 
should monitor if failures occurring on M1 and M2 are 
separated by at least the time needed by the primary 
machine to recover. 

Researchers developed efficient algorithms that 
detect constraint violations or satisfactions of timed 
events [13]. Later, they extended their work to deal 
with situations where the time point at which an event 
occurs is unknown [12]. They proposed a new type of 
timing constraints based on an interval time event 
model where timestamps for the events are given by 
time intervals. Recent work [10] further analyzed 
timing constraints based on time interval in which an 
event occurrence is uniformly distributed over the 
interval. They introduced the concept of earliest 
expiration time (EET) and were able to quantitatively 
define the relationship between satisfaction probability 
(SP) and the EET. With the earliest expiration time, 
one can obtain an early warning about possible timing 
constraint violations before the actual deadlines, and 
hence, provide real-time systems with opportunities to 
adjust their behaviors. 

We use the interval-based timing constraint model 
to analyze the earliest time at which we can predict 
with a determined level of confidence that a given 
timing constraint may be violated due to different 
statistical failure models. Given the observed Poisson 
hardware failure model, our key contribution is the 
ability to predict timing constraint violations at earlier 
time instances with the more realistic model of 
exponential distributed failures than the simplified 
assumption of uniformly distributed failures. 
 
2. Related Work 
 



Failures occur due to hardware/software errors and 
the effect of cosmic ray radiation. Moreover, transient 
failures occur much more frequently than permanent 
failures [2, 7, 8]. In the literature, transient failures are 
modeled as following a Poisson distribution with an 
average arrival rate of λ [18, 19]. The reason is that 
Poisson distributions can be used to describe various 
phenomena of discrete nature whenever the probability 
of the phenomenon happening is constant in time or 
space. Zhu [19] investigates the dynamic energy 
management problem in real-time embedded systems. 
There, the transient failure is modeled as a Poisson 
model and voltage scaling affects the parameter λ 
associated with the distribution model. Hence this 
approach is more effective as it better reflects realistic 
situations. 

Another approach investigates the problem of 
monitoring by studying timing constraints of events. 
Chodrow et al. [3] presents a constraint-graph-based 
algorithm for detecting violations of timing constraints. 
To check the satisfiability for a set of constraints, a 
constraint graph is instantiated from the current event 
histories with an all-pair shortest path algorithm run on 
the instantiated graph. A negative cycle indicates 
unsatisfiability of the constraint set. 

In [9] and [14], the authors extend the timing 
constraint specification and violation detection 
algorithm to distributed real-time systems. They 
indicate that the derivation of implicit constraints is 
essential for catching timing violations at an earlier 
time since it is possible that an implicit constraint is 
violated before an explicit delay or deadline becomes 
unsatisfiable at run-time. They also prove that for 
constraint violation detection, the problem of 
minimizing the amount of information to be exchanged 
between processors is NP-hard. 

In [13], Mok and Liu provide a more expressive 
specification language based on Real Time Logic to 
define timing constraints. To reduce time complexity 
of the event-monitoring algorithm at run-time, they 
resolve most of the shortest path information of the 
instantiated constraint graph from the uninstantiated 
constraint graph at compilation time. Thus, only small 
modifications of the graph are needed during run-time. 

Two new timing constraints based on time intervals, 
certain and possible, are proposed in [12] to specify 
the desired degree of certainty whether a timing 
violation has occurred. The authors indicate that this 
interval-based timing constraint: I1 + d ≥ I2U, where I1 
and I2 denote the time intervals in which the 
corresponding events may occur, is satisfied either 
possibly (P) or certainly (C). The authors further 
extend the monitoring algorithm in [13] to monitor 
interval-based timing constraints with probabilities.  

Lee et al. [10] propose interval-based timing 
constraints with a confidence threshold model. The 
concept of Earliest Expiration Time (EET) is also 
introduced. The knowledge of EET enables the event 
monitor to announce the violation of timing constraints 
even before the actual deadlines. 

Yu et al. [17] extend Lee’s work by considering 
more general cases of the interval-based timing 
constraint model where events are exponentially or 
normally distributed. This paper uses the results from 
[17] to analyze and predict timing constraint violations 
caused by different transient failure models.  

Examples of other stochastic approaches in real-
time applications can be found in [1, 4, 5, 6, 11, 15]. 

 
3. Basic Assumptions, Definitions and 
Problem Descriptions 
 

We now state our assumptions and definitions and 
then present a theoretical analysis based on them. 

 
3.1. Failure Model 
 

As shown in [18, 19], during the execution of an 
application, failures are modeled to follow a Poisson 
distribution with an average arrival rate λ. That is, 
given the average arrival rate λ in a time interval, the 
probability that exact k failures will occur in this 
period is: 
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Under this model, the time between successive 
arrivals of failures follows an exponential distribution 
with the same parameter λ. That is, suppose X is a 
random variable representing the time between 
successive failure arrivals then the probability density 
function of X is: 
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Example 1 Consider a specific kind of failure that 
occurs at random times with a mean rate of 6 distinct 
times per hour. The probability that ten or less minutes 
will elapse between two failures is: 
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Thus, if one failure occurs at 10:00 am, the probability 
that the second failure will happen before 10:10 am is 
63%. Since we do not know the exact occurrence time 
of the second failure, we assume it follows a 
probability distribution on [t1, +∞) (in this case, 
exponential distribution), where t1 is the time point at 
which the previous failure occurs. In realistic analysis, 



we can use arbitrarily large numbers to replace the 
infinity. In Fig 1, we depict the intuition in which t1+40 
is considered as +∞ in this context. The dark region 
indicates that the failure is more likely to occur in the 
interval of [t1, t2]. 

 
Fig 1. The occurrence of second failure can be 
modeled as following exponential distribution 
over the interval [t1, t1+40]. 
 
3.2. Interval-based Timing Constraint Model 

 
Generally speaking, real-time constraints can be 

categorized into two classes, namely, deadline 
constraints or delay constraints. More specifically, a 
deadline constraint between two events with 
timestamps σ and γ is modeled as σ + d ≥ γ, while a 
delay constraint is modeled as σ + d < γ, where d ≥ 0 
is a constant representing a deadline or a delay. 

For self-completeness, we quote the related 
definitions (Definition 1 through 3) from [10] in the 
following. 

 
Definition 1 (Timestamp) A timestamp I consists of a 
pair of time points: [min_time, max_time] where 
min_time and max_time are the earliest and latest time 
points at which an event may occur, respectively. 
Moreover, given a timestamp I, we assume the 
probability density function of X representing the time 
point at which the event may occur is f(x). 

□ 
Definition 2 (Function min, max, and len) Given a 
timestamp I = (min_time, max_time), the min, max and 
len functions of a timestamp I are defined as following: 

)()()(
)(
)(

IminImaxIlen
max_timeImax
min_timeImin

−=
=
=

 

For brevity, we use mink, maxk, and lenk to denote 
min(Ik), max(Ik), and len(Ik), respectively, where Ik is a 
timestamp.  

□ 
Definition 3 (Interval-based timing constraint) An 
interval-based deadline constraint with a confidence 
threshold is given by: 

PwithIdIc 21: ≥++  
and an interval-based delay constraint with a 
confidence threshold is given by: 

PwithIdIc 21: <+−  

where I1 and I2 are timestamps, d ≥ 0 is a constant 
representing a deadline or a delay, and P is a 
confidence threshold ranging from 0% to 100%. 

□ 
Definition 4 (Run-time timing constraint violation) 
A violation of a deadline timing constraint c+: I1 + d ≥ 
I2 with P 1 is said to occur at run-time when the event 
corresponding to I1 occurs at time point t and the event 
corresponding to I2 does not occur by s, where s∈ 
[min2, t+d), and the remaining satisfaction probability 
of the timing constraint is less than the specified 
confidence threshold P.  

□ 
Definition 4 states that although it is possible that 

the event corresponding to I2 could occur during the 
interval (s, t+d] that satisfies I1+d ≥ I2, the specified 
confidence threshold P is violated. 

 
Definition 5 (Earliest prediction time, EPT) Given a 
timing constraint c+: I1 + d ≥ I2 with P where d ≥ 0, the 
earliest prediction time of deadline constraint violation 
from a time point t, +ctEPT |)( , where t is the time 
point at which the event corresponding to I1 occurs, is 
defined as: 

tttEPT c −=+ '|)(  

where t′ is the earliest time when an event monitor can 
safely claim that c+ is violated in case the event 
corresponding to I2 does not occur by t′.  

□ 
Note that, our definition of the run-time timing 

constraint violation and thus the earliest prediction 
time differs from timing constraint violation and 
earliest expiration time introduced in [10]: In our 
definition, when a deadline timer is set at a time point 
t, we assume the event corresponding to I1 has 
occurred. In other words, only when the event 
corresponding to I1 occurs, do we start the timer and 
try to monitor the occurrence of event corresponding to 
I2 for the possible satisfaction or violation of the 
constraint. In contrast, in [10], both events 
corresponding to I1 and I2 are still random events even 
after the deadline timer is set at t. In our definition, t 
has an intuitive and physical interpretation. Example 2 
in subsection 3.3 will make the distinction more clear. 
 
3.3 Problem Description 
 

Before we formalize the problem, we present an 
intuitive example. 

                                                        
1 The timing constraint violation and the earliest prediction time 

are defined only on a deadline constraint for the reason that delay 
and deadline are symmetric. Hence, it is thus sufficient to focus our 
presentation only on deadline constraints. 



 
Example 2 Consider a distributed embedded system. 
For failure tolerance, the system has a primary machine 
M1 and a backup machine M2. During execution, 
transient failures may occur independently on these 
two machines, both of which follow a Poisson 
distribution with average failure arrival rates λ1 and λ2, 
respectively. To ensure the system availability, it is 
important that the time interval between two failures 
on these two machines must be at least d time units 
apart (where d is the machine recovery time). Since we 
cannot get the exact occurrence times of failures on M1 
and M2, we are only able to give the satisfaction 
probability of the timing constraint. Moreover, if a 
failure occurs on M1 at time t, as we cannot get the 
exact occurrence time of a failure on M2, we may only 
know with a certain level of confidence whether the 
timing constraint is violated at run-time. The following 
figure illustrates the concept. 

 
Fig 2. Independent failure occurrences on a 

primary machine M1 and a backup machine M2. 
 

In Fig 2, failures on M1 and M2 follow exponential 
distribution on intervals [t11, t12] and [t21, t22], 
respectively. If a failure on M1 occurs at t, the timing 
constraint can be satisfied with a certain probability 
since the failure on M2 could occur prior to or after t+d. 
The satisfaction probability can be calculated given the 
failure distribution model on M2. Similarly, prior to t11 
when both failures have not occurred, the satisfaction 
probability can be calculated given the failure models 
on both machines. 

We consider the problem of monitoring the timing 
constraint between two independent failures in real-
time systems. The timing constraint can either be a 
deadline constraint or a delay constraint. We consider 
the more realistic situation where failures are 
exponentially distributed, as well as a much simpler 
case where we assume that the failures are uniformly 
distributed.  

Specifically, we consider the problem of: given a 
transient failure timing constraint of the form c+: I1+d 
≥ I2 with P or c−: I1+d < I2 with P, determine if the 
constraint is satisfiable by comparing the satisfaction 
probability (SP) of the constraint with the confidence 
threshold P. Moreover, we look into the problem of 
predicting at run-time the earliest time (EPT) when we 
can claim a violation of a constraint. If the specified 

timing constraint cannot be satisfied with the required 
degree of confidence, it means that some system 
properties such as the required degree of failure 
tolerance cannot be guaranteed. 

 
4. General Theorems for Interval-based 
Timing Constraints 
 
4.1. Satisfaction Probability (SP) 
 

Given the definitions in Section 3.2, we present 
Theorem 1 that calculates the satisfaction probability 
of a deadline constraint and under arbitrary probability 
density functions. If the calculated satisfaction 
probability is less than the confidence threshold, we 
know at compile time that the specified constraint is 
not satisfiable. 

 
Theorem 1 Given a deadline constraint c+: I1 + d ≥ I2, 
where d ≥ 0, and f(x), g(y) are the probability density 
functions of independent event occurrences on interval 
I1 and I2 , respectively, the satisfaction probability of 
c+, +c

SP is given by the expression: 
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Proof:  
Let X∈ I1, Y∈ I2 be two continuous random 

variables with density functions f(x) and g(y). Since the 
two random variables are mutually independent, the 
joint density function z(x, y) is simply the product of 
their individual density functions, as shown in Fig 3. 
Furthermore, the joint cumulative distribution over I1 = 
[min1, max1] and I2 = [min2, max2], denoted as V, is: 
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Fig 3. Joint density function of independent 

event occurrences on two intervals. 
 
The satisfiable region, denoted as V′, is the 

intersection between the region y ≤ x+d and V, as 



shown in Fig 3. The bold line represents the 
intersection between the joint density function and the 
plane y = x+d. 

The satisfaction probability is thus the ratio between 
the satisfiable region V′ and the joint cumulative 
distribution V. 

To calculate V′, we project the plane y = x+d and 
the surface z(x, y) onto the X-Y plane and consider the 
relationship between the line y = x+d and the four 
points (min1, min2), (min1, max2), (max1, min2), and 
(max1, max2). There are only six possible relationships 
that correspond to the six permissible configurations in 
[10]. Two of the six cases are trivial:  

 (min1, max2) is below the line y = x+d, that is, 
max2 ≤ min1+d, which implies a 100% 
satisfaction probability;  

 (max1, min2) is above the line y = x+d, that is, 
min2 > max1+d, which implies a 0% 
satisfaction probability. 

The four non-trivial configurations are: 
 αβ configuration, where  

min1+d ≤ min2 ∧ min2 < max1+d ≤ max2 
 αγ configuration, where  

min1+d ≤ min2 ∧ max2 < max1+d 
 ββ configuration, where 

min2 < min1+d ≤ max2 ∧ min2 < max1+d≤ max2 
 βγ configuration, where 

min2 < min1+d ≤ max2 ∧ max2 < max1+d 
Fig 4 gives graphical view for the four 

configurations. 
The satisfiable region V′ in each of them is as 

following:  
 αβ configuration 
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 ββ configuration 
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Therefore, the satisfaction probability of c+ is: 
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□  

 
 

Fig 4. Four non-trivial configurations. 
 

4.2. Earliest Prediction Time (EPT) 
 
Theorem 2 Given a timing constraint c+: I1+d ≥ I2 
with P where d ≥ 0, and f(x), g(y) are the probability 
density functions of independent event occurrences on 
interval I1 and I2, respectively. The earliest prediction 
time of a constraint violation from a time point t for c+, 

+c
tEPT )( , where t is time point at which the event 

corresponding to 1I occurs, is given by the expression: 
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Proof: 
Since X∈ I1 and Y∈ I2 are independent, the 

conditional distribution function of Y∈ I2 when X∈ I1 
occurs is g(y).  

Based on Definition 4, a violation occurs when the 
event corresponding to I2 does not occur by s < t+d 
and the remaining satisfaction probability of the timing 
constraint is less than the specified confidence 
threshold. This is shown in the following figure: 



 
Fig 5. EPT of a deadline constraint violation. 

 
As illustrated in the figure, although the event 

corresponding to I2 could occur during the interval (s, 
t+d ] that satisfies I1+d ≥ I2, the specified confidence 
threshold P is violated. That is: 
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Thus, the inferior t′ of such a set of s is the earliest 
time by which we can safely claim that c+ is violated in 
case the event corresponding to I2 does not occur. 

□ 
It is worth pointing out that in Fig 5, t′ is drawn at 

the point where the integration equals P. However, for 
many probability density functions, especially discrete 
ones, we may not find the point that equals P. We 
draw t′ at the point because all the probability density 
functions we are dealing with in the following sections 
are contiguous. 

 
5. Poisson Failure Model 

 
As shown in Section 3.1, the random variable X 

representing the time between successive arrivals of 
transient failures (which can be viewed as events) 
follows an exponential distribution with parameter λ. 
Moreover, as shown in Section 3.3 and the following 
example, monitoring timing constraints between 
failures can actually be mapped to monitoring interval-
based timing constraints discussed in the previous 
section.  

 
Example 2 Revisited To map the failure monitoring 
problem to the interval-based timing constraint 
problem, we do the following reductions: since 
transient failures on M1 and M2 follow exponential 
distribution on intervals [t11, t12] and [t21, t22], 
respectively, and failure occurrences on M1 and M2 are 
independent, we can model failures on the two 
machine as independent event occurrences over two 
intervals. Moreover, the required delay between the 
two failures on the two machines can be mapped to 

monitoring if no failure occurs before a given deadline, 
that is, whenever a deadline constraint monitor says 
“yes”, a delay constraint monitor says “no” and vice 
versa.2 From Section 3.1, we know that when a failure 
follows Poisson distribution with an average arrival 
rate λ, the time between successive failure arrivals 
follows exponential distribution. Therefore, given a 
timing constraint of failures c+: I1+d ≥ I2 with P, we 
assume the probability density functions of failure 
occurrence in I1 and I2 are:  
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respectively, where min1 = t11 and min2 = t21. 
Furthermore, without loss of generality, we assume 
that the individual cumulative distributions of failures 
over the intervals are the same, i.e.,  
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The joint density function of failures over I1 and I2 
is illustrated in Fig 6 which is derived from Fig 2 and 
Fig 3. 

 
Fig 6. Joint density function of independent 

failure occurrences. 
 
Therefore, the problem of monitoring timing 

constraint of transient failure is reduced to the problem 
of monitoring interval-based timing constraints. In 
Section 4, we presented analytical results for interval-
based timing constraint satisfaction probabilities and 
earliest prediction time under arbitrary probability 
density functions. It may seem that the failure 
monitoring problem is nothing more than a special case 
of general interval base timing constrain monitoring 
problem. However, as shown in the following 
subsections, Poisson failure model offers many good 
properties which help us to improve the effectiveness 
of monitoring. 
 
5.1. Satisfaction Probability (SP) 
 

                                                        
2 Note that although it is more convenient to directly use delay 

constraint to model timing constraint between failures, we stick to 
deadline constraint instead in order to be consistent with the 
discussions in [10]. 



Substitute f(x) and g(y) in (1) with )min(
1
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for the satisfaction probability under Poisson failure 
model: 
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Given a specific deadline timing constraint c+: I1+d 
≥ I2, although it is possible for us to directly calculate 
the satisfaction probability using (3), sometimes, for 
the following reasons, this is not done: 

1. For certain probability density functions (such 
as normal distribution) which do not have 
elementary antiderivatives, we may not be able 
to obtain an analytical representation of the 
integration as we do in (4) below. In this case, 
we can only use numerical integrations to 
calculate the satisfaction probability instead. 
However, this is time consuming and not 
always computationally permissible in a real-
time environment. 

2. Even in the case where an analytical 
representation of the integration can be 
obtained as in (4), calculating the specific 
value of the satisfaction probability consumes 
CPU cycles and introduces additional overhead 
to the system. 

Therefore, it is desirable to derive some bounds on 
the satisfaction probabilities under certain 
configurations. For example, given a deadline timing 
constraint c+: (0, 3)+5 ≥ (6, 10) with 60%, where the 
probability density functions of transient failure 
occurrences in I1 and I2 are exponentially distributed, 
by Theorem 3 below, we can safely claim that this 
constraint specification is not satisfiable without the 
need to even actually calculate the satisfaction 
probability.  

Let us consider the four non-trivial cases for 
constraint c+: I1+d ≥ I2 with P in detail. 
 
5.1.1. αβ Configuration. As defined in the previous 
section, under αβ configuration, min1+d and max1+d 
are bounded by min1+d ≤ min2 and min2 < max1+d ≤ 
max2, respectively, as shown in Fig 7. 

 
Fig 7.  configuration 

 
Therefore, the satisfaction probability under αβ 

configuration can be simplified as: 
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With this analytical representation of the satisfaction 
probability, we can study how the satisfaction 
probability changes when max2 or min2 changes under 
αβ configuration. This is given by the following 
lemma. 

Lemma 1 If a timing constraint c+: I1+d ≥ I2 with P 
is in αβ configuration, where transient failure 
occurrences on I1 and I2 are exponentially distributed, 
the satisfaction probability of the constraint increases 
when either max2 or min2 decreases. 
Proof: 

The first part of the lemma trivially holds since max2 
only appears on the denominator of the fraction.  

To prove the second part, we can view the 
expression for +c

SP under αβ configuration as a 
function for min2 and compute the partial derivative of 
the function on min2: 
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It suffices to prove that 
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Note that under αβ configuration,  
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It follows from (8) and (9) that 
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Therefore, from (7) and (10), we have 
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where min2< max1+d≤ max2, which is a necessary 
condition for αβ configuration. Equation (11), together 
with (5), implies that: 
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Thus, under αβ configuration, the satisfaction 
probability of the constraint increases when min2 
decreases. 

□ 
Theorem 3 If a deadline timing constraint c+: I1+d 

≥ I2 with P is in αβ configuration, where transient 
failure occurrences on I1 and I2 are exponentially 
distributed, the satisfaction probability reaches its 
maximum when min2 = min1+d ∧ max2 = max1+d. 
Under the assumption that the individual cumulative 
distributions over the two intervals are the same, this 
maximum is 50%. 
Proof: 

The first part of this theorem immediately follows 
from Lemma 1 and the necessary condition for αβ 
configuration, i.e., min1+d ≤ min2 ∧ min2 < max1+d ≤ 
max2.  

To compute the corresponding satisfaction 
probability, take min2 = min1+d, max2 = max1+d, and 
len2 = max2−min2 = len1 in (4): 
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Given that the individual cumulative distributions 
over the intervals are the same, we have: 
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As a result, (12) can be simplified as: 
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□ 
Therefore, the satisfaction probability of timing 

constraint of transient failures c+ under αβ 
configuration is less than or equal to 50%. It is worth 
noting that this theorem may not hold for arbitrary 
probability density functions. Consider a scenario: the 
event occurrence on I1 is normally distributed while the 
event occurrence on I2 is exponentially distributed. Fig 
8 (a) shows the joint density function of event 
occurrences with the bold line indicating its 
intersection with the plane y = x+d. It is clear from the 
contour map in (b) that the upper bound of the 
satisfaction probability under αβ configuration could 
be much larger than 50% since the contour lines are 

much denser in the region y ≤ x+d than in y > x+d. 

 
(a) Joint density function 

 
(b) The contour map of the joint density function. 

Fig 8. Two events with normal distribution on 
I1 and exponential distribution on I2. 

 
Theorem 3 is particularly useful when given a 

deadline timing constraint c+: I1+d ≥ I2 with P, where 
both failure occurrences are of exponential distribution, 
if I1 and I2 are in αβ configuration (constant time 
decidable), and P > 50%, we can safely claim that this 
constraint specification is not satisfiable with the 
required confidence and no run-time monitoring is 
even needed. Therefore, if we are given a timing 
constraint of transient failures of the form c+: (0, 3)+5 
≥ (6, 10) with 60%, since this constraint is intrinsically 
unsatisfiable, it means that the required degree of 
failure tolerance cannot be guaranteed. 

 
5.1.2. βγ configuration. Similar lemma and theorem 
hold for βγ configuration: 

Lemma 2 If a timing constraint c+: I1+d ≥ I2 with P 
is in βγ configuration, where transient failure 
occurrences on I1 and I2 are exponentially distributed, 
the satisfaction probability of the constraint decreases 
when either max2 or min2 decreases. 

□ 
Theorem 4 If a timing constraint c+: I1+d ≥ I2 with 

P is in βγ configuration, with failure occurrences on I1 
and I2 exponentially distributed, the satisfaction 
probability approaches its minimum when 
min2→min1+d∧max2→max1+d. Under the assumption 



that the individual cumulative distributions over the 
two intervals are the same, this minimum is 50%. 

□ 
For remaining two non-trivial configurations, i.e., 

αγ and ββ configurations, the following observations 
can be made: 

1. From Fig 4(b), it is easy to see that under the αγ 
configuration, the satisfaction probability 
approaches 100% when max2→min2 ∧ 
min2→min1+d and moves toward 0% when 
max2→max1+d ∧ min2→max2.  

2. Likewise, it is easy to see from Fig 4(c) that 
under the ββ configuration, the satisfaction 
probability approaches 100% when 
max2→max1+d ∧ min2→−∞ and moves toward 
0% when max2→+∞ ∧ min2→min1+d. 

Therefore, for αγ and ββ configurations, no general 
upper bounds or lower bounds can be proven. 

 
5.2. Earliest Prediction Time (EPT) 
 

As the probability distribution for failure occurrence 
is exponentially distributed within time intervals, it is 
clear that the cumulative distribution on the shorter 
interval [min, min +(max−min)/n] which is 
1−e−λ(max−min)/n does not differ much from the 
cumulative distribution on the entire interval [min, 
max] which is 1−e−λ(max−min), since 
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 In other words, failures will be more likely to occur 
in the first 1/n subinterval than in the last (n−1)/n. This 
observation provides a basis for shortening the earliest 
prediction time and thus improving the effectiveness of 
run-time monitoring. 

Since the probability density function of 
exponential distribution is contiguous,  
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Therefore, according to Theorem 2, the earliest 
prediction time of a deadline timer from a time point t 
for c+: I1+d ≥ I2 with P, where failure occurrences on I1 
and I2 are exponentially distributed, is given as:  
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 (13) 
Example 3 Consider a deadline timing constraint 

between failures: c+: (0, 3)+8 ≥ (4, 9) with 40%. 
Suppose a failure occurs on machine M1 at time point 
2, that is, the deadline timer is set at the time. The 
earliest prediction times in the cases of uniform 
distribution and exponential distribution are illustrated 
in Fig 9: 

 
Fig 9. Earliest prediction times in the cases of 
uniform and exponential distribution. 
 
1. If the failure occurrence on machine M2 is 

uniformly distributed, the earliest time we can 
safely claim that the constraint is violated is 7 
since (9−7)/(9−4) = 40%, and thus EPT is 7−2 = 5. 

2. If the failure occurrence on machine M2 is 
exponentially distributed with λ2 = 1. According 
to (13), the earliest time we can safely claim that 
the deadline constraint is violated is 

92.4
)4.01(4.0

1ln4' 5 ≈
×−+

+= −e
t  

and thus EPT is 4.92−2 = 2.92. 
□ 

This example shows that if transient failure 
occurrences are exponentially distributed, the earliest 
prediction time is earlier than in uniformly distributed 
failure occurrences in certain cases. It is thus possible 
for us to give earlier warnings for potential constraint 
violations. In Section 7, we will give analytical 
comparisons of the two cases. 
 
6. Uniform Failure Model 
 

To simplify modeling, uniform distributions are also 



used to model event occurrence sometimes. To 
facilitate comparisons of interval-based timing 
constraints with different failure models in the next 
section, we give the results on the satisfaction 
probability and earliest prediction time for timing 
constraints based on intervals with uniformly 
distributed failure occurrences. This corresponds to the 
case where failures are equally likely to happen within 
a given period. Similar to the previous section, the 
monitoring of failures under the uniform assumption is 
also a special case of the theorems presented in Section 
4. Our discussion is based on the following 
assumptions: 

Given a timing constraint c+: I1+d ≥ I2 with P, we 
assume the probability density functions of event 
occurrence in I1 and I2 are:  
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respectively. 
 
6.1. Satisfaction Probability (SP) 
 

Substitute f(x) and g(y) in Theorem 1 with 1/len1 
and 1/len2, we get the expression for the satisfaction 
probability under uniform distribution: 
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which is Lee’s Theorem 1 given in [10]. 
It is not hard to prove that if a timing constraint c+: 

I1+d ≥ I2 with P is in αβ configuration, where failure 
occurrences on I1 and I2 are uniformly distributed, the 
satisfaction probability of the constraint increases 
when either max2 or min2 decreases and thus the 
maximum satisfaction probability under αβ 
configuration is 50%. Similar arguments hold for βγ 
configuration. 

 
6.2. Earliest Prediction Time (EPT) 
 

According to Theorem 2, the earliest prediction 
time of a deadline timer from a time point t for c+: 
I1+d ≥ I2 with P, where failure occurrences on I1 and I2 
are uniformly distributed, is given as: 
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          (14) 

 

7. Comparisons on Different Failure 
Models 

 
Equation (13) and (14) give the analytical 

representation of the earliest prediction times of 
exponentially distributed and uniformly distributed 
failure occurrences, respectively, and thus provide a 
basis for us to compare the EPT’s for the two cases. 
The one with a smaller EPT gives earlier constraint 
violation predictions. 

Lemma 3 Given a deadline timing constraint c+: 
I1+d ≥ I2 with P where d ≥ 0, and g(y) is the probability 
density functions of independent failure occurrences on 
interval I2. The earliest prediction time of failure 
occurrence on interval I2 with exponential distribution 
approaches that of uniform distribution when  

∫ →−= −2

2

22
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min exp 01)( lenedyyg λ . 

Proof: 
To compare the earliest prediction time for the two 

failure occurrences with exponential distribution and 
uniform distribution, we only need to compare the 
corresponding t′ in (13) and (14), that is: 
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in the cases of exponential distribution and uniform 
distribution, respectively. 

When t+d ∈(max2, +∞), note that, 
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Similar proof can be obtained when t+d∈(min2, 
max2]. Therefore, the earliest prediction time of failure 
occurrence with exponential distribution equals that of 
failure occurrence with uniform distribution when 
λ2len2→0, that is, 221 lene λ−−  0→ .                                 

□ 
As can be seen from the above lemma, the case of 

uniform distribution only gives a prediction of 
violation as early as exponential distribution when the 
cumulative distribution of the exponential distribution 
over the second interval approaches 0. This is a very 



rare and even impossible case. In general, an earlier 
prediction of violation can be obtained in applications 
with exponential failure occurrences under certain 
conditions: 

Theorem 5 The earliest prediction time of failure 
occurrence with exponential distribution is always 
smaller than that of failure occurrence with uniform 
distribution when t+d ∈(T,+∞), where 
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Proof: 
Case 1: t+d ∈(max2, +∞) 
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Compute the derivative of F(x), we obtain: 
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Thus, F(x) is monotonically decreasing. Moreover, 
from Lemma 3 we have F(x) →0 when x =λ2len2→0. 
Thus, we have: 

uniformexp ttxF ''0)( <⇒<  

 
Case 2: t+d ∈(min2, max2] 
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Suppose x= t+d−min2, x∈ (0, len2], and (15) 
becomes 
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Compute the derivative of F(x), we obtain 
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Thus, F(x) is monotonically decreasing and from 
(16), we have: 
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Combining the two cases, we have that 
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□ 
Note that T is a constant independent of t+d when 

the timing constraint is given, that is, when P, λ2, and 
len2 are set. 

 
8. Conclusion 
 

In distributed embedded systems, it is crucial to 
monitor the timing relationship between a pair of 
independent failures occur on different machines. We 
focus on the problem of determining the satisfaction 
probability (SP) of transient failure timing constraints 
under a Poisson failure model. Moreover, we look into 
the problem of predicting at run-time the earliest time 
(EPT) we can claim a violation of a constraint. We first 
give general case satisfaction analysis for interval-
based timing constraints where event occurrences over 
intervals have arbitrary probability density functions. 
We further present a detailed study on transient failure 
timing constraints with a Poisson failure model. Our 
analysis shows that there are upper bounds and lower 
bounds on the satisfaction probabilities under certain 
constraint configurations in this failure model. 
Furthermore, we present results and compare the 
earliest prediction times for different failure models: 
the EPT is smaller for exponentially distributed 
failures than that of uniformly distributed failures 
under some circumstances. 

More specifically, we are able to use the general 
theories of interval-based timing constraints to show in 
this paper the following important properties regarding 
transient failure timing constraints: 

1. Given a timing constraint between transient 
failure c+: I1+d ≥ I2 with P, if it is in αβ 
configuration and failure occurrences on 
intervals I1 and I2 are exponentially distributed, 
the satisfaction probability (SP) of the 
constraint increases when either min2 or max2, 
the minimum or maximum possible time the 
second failure could occur, decreases. 
Moreover, the satisfaction probability of the 
timing constraint in αβ configuration can be no 
larger than 50%. 

2. The earliest prediction time (EPT) of failure 
occurrence with exponential distribution is 
smaller than that of failure occurrence with 
uniform distribution when t + d ∈ (T, +∞), and 
is larger when t + d ∈ (min2, T], where 
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It should be noted that in hard timing constraint 
settings, a real-time system should be designed taking 
worst-case scenarios into consideration. However, 
under soft timing constraints settings, when certain 
hard timing constraints may be intrinsically infeasible 
to satisfy, the interval base timing constraints with 
confidence threshold smaller than 100% can be applied 
as a relaxation. Moreover, while this paper considers 
two event occurrences to be monitored, this approach 
can be extended to a distributed system with multiple 
events in two ways: 

1. In [10], the all-pairs shortest-path algorithm is 
extended to facilitate the derivation of 
implicit constraints from a set of timing 
constraints among multiple events. And the 
earliest prediction times derived in this paper 
can be well fit in to the algorithm. 

2. As argued in [16], in some distributed 
embedded applications (e.g., distributed 
voting in sensor networks), the probabilistic 
timing behavior of a group of events can be 
derived from those of individual events. This 
allows us to study the interval based timing 
constraints between multiple groups of events 
which raises the granularity of analyses and 
reduces the complexity to a great extent. 
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